aboutsummaryrefslogtreecommitdiff
path: root/re2/compile.cc
diff options
context:
space:
mode:
Diffstat (limited to 're2/compile.cc')
-rw-r--r--re2/compile.cc1138
1 files changed, 1138 insertions, 0 deletions
diff --git a/re2/compile.cc b/re2/compile.cc
new file mode 100644
index 0000000..67c4c2c
--- /dev/null
+++ b/re2/compile.cc
@@ -0,0 +1,1138 @@
+// Copyright 2007 The RE2 Authors. All Rights Reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+// Compile regular expression to Prog.
+//
+// Prog and Inst are defined in prog.h.
+// This file's external interface is just Regexp::CompileToProg.
+// The Compiler class defined in this file is private.
+
+#include "re2/prog.h"
+#include "re2/re2.h"
+#include "re2/regexp.h"
+#include "re2/walker-inl.h"
+
+namespace re2 {
+
+// List of pointers to Inst* that need to be filled in (patched).
+// Because the Inst* haven't been filled in yet,
+// we can use the Inst* word to hold the list's "next" pointer.
+// It's kind of sleazy, but it works well in practice.
+// See http://swtch.com/~rsc/regexp/regexp1.html for inspiration.
+//
+// Because the out and out1 fields in Inst are no longer pointers,
+// we can't use pointers directly here either. Instead, p refers
+// to inst_[p>>1].out (p&1 == 0) or inst_[p>>1].out1 (p&1 == 1).
+// p == 0 represents the NULL list. This is okay because instruction #0
+// is always the fail instruction, which never appears on a list.
+
+struct PatchList {
+ uint32 p;
+
+ // Returns patch list containing just p.
+ static PatchList Mk(uint32 p);
+
+ // Patches all the entries on l to have value v.
+ // Caller must not ever use patch list again.
+ static void Patch(Prog::Inst *inst0, PatchList l, uint32 v);
+
+ // Deref returns the next pointer pointed at by p.
+ static PatchList Deref(Prog::Inst *inst0, PatchList l);
+
+ // Appends two patch lists and returns result.
+ static PatchList Append(Prog::Inst *inst0, PatchList l1, PatchList l2);
+};
+
+static PatchList nullPatchList = { 0 };
+
+// Returns patch list containing just p.
+PatchList PatchList::Mk(uint32 p) {
+ PatchList l;
+ l.p = p;
+ return l;
+}
+
+// Returns the next pointer pointed at by l.
+PatchList PatchList::Deref(Prog::Inst* inst0, PatchList l) {
+ Prog::Inst* ip = &inst0[l.p>>1];
+ if (l.p&1)
+ l.p = ip->out1();
+ else
+ l.p = ip->out();
+ return l;
+}
+
+// Patches all the entries on l to have value v.
+void PatchList::Patch(Prog::Inst *inst0, PatchList l, uint32 val) {
+ while (l.p != 0) {
+ Prog::Inst* ip = &inst0[l.p>>1];
+ if (l.p&1) {
+ l.p = ip->out1();
+ ip->out1_ = val;
+ } else {
+ l.p = ip->out();
+ ip->set_out(val);
+ }
+ }
+}
+
+// Appends two patch lists and returns result.
+PatchList PatchList::Append(Prog::Inst* inst0, PatchList l1, PatchList l2) {
+ if (l1.p == 0)
+ return l2;
+ if (l2.p == 0)
+ return l1;
+
+ PatchList l = l1;
+ for (;;) {
+ PatchList next = PatchList::Deref(inst0, l);
+ if (next.p == 0)
+ break;
+ l = next;
+ }
+
+ Prog::Inst* ip = &inst0[l.p>>1];
+ if (l.p&1)
+ ip->out1_ = l2.p;
+ else
+ ip->set_out(l2.p);
+
+ return l1;
+}
+
+// Compiled program fragment.
+struct Frag {
+ uint32 begin;
+ PatchList end;
+
+ Frag() : begin(0) { end.p = 0; } // needed so Frag can go in vector
+ Frag(uint32 begin, PatchList end) : begin(begin), end(end) {}
+};
+
+static Frag kNullFrag;
+
+// Input encodings.
+enum Encoding {
+ kEncodingUTF8 = 1, // UTF-8 (0-10FFFF)
+ kEncodingLatin1, // Latin1 (0-FF)
+};
+
+class Compiler : public Regexp::Walker<Frag> {
+ public:
+ explicit Compiler();
+ ~Compiler();
+
+ // Compiles Regexp to a new Prog.
+ // Caller is responsible for deleting Prog when finished with it.
+ // If reversed is true, compiles for walking over the input
+ // string backward (reverses all concatenations).
+ static Prog *Compile(Regexp* re, bool reversed, int64 max_mem);
+
+ // Compiles alternation of all the re to a new Prog.
+ // Each re has a match with an id equal to its index in the vector.
+ static Prog* CompileSet(const RE2::Options& options, RE2::Anchor anchor,
+ Regexp* re);
+
+ // Interface for Regexp::Walker, which helps traverse the Regexp.
+ // The walk is purely post-recursive: given the machines for the
+ // children, PostVisit combines them to create the machine for
+ // the current node. The child_args are Frags.
+ // The Compiler traverses the Regexp parse tree, visiting
+ // each node in depth-first order. It invokes PreVisit before
+ // visiting the node's children and PostVisit after visiting
+ // the children.
+ Frag PreVisit(Regexp* re, Frag parent_arg, bool* stop);
+ Frag PostVisit(Regexp* re, Frag parent_arg, Frag pre_arg, Frag* child_args,
+ int nchild_args);
+ Frag ShortVisit(Regexp* re, Frag parent_arg);
+ Frag Copy(Frag arg);
+
+ // Given fragment a, returns a+ or a+?; a* or a*?; a? or a??
+ Frag Plus(Frag a, bool nongreedy);
+ Frag Star(Frag a, bool nongreedy);
+ Frag Quest(Frag a, bool nongreedy);
+
+ // Given fragment a, returns (a) capturing as \n.
+ Frag Capture(Frag a, int n);
+
+ // Given fragments a and b, returns ab; a|b
+ Frag Cat(Frag a, Frag b);
+ Frag Alt(Frag a, Frag b);
+
+ // Returns a fragment that can't match anything.
+ Frag NoMatch();
+
+ // Returns a fragment that matches the empty string.
+ Frag Match(int32 id);
+
+ // Returns a no-op fragment.
+ Frag Nop();
+
+ // Returns a fragment matching the byte range lo-hi.
+ Frag ByteRange(int lo, int hi, bool foldcase);
+
+ // Returns a fragment matching an empty-width special op.
+ Frag EmptyWidth(EmptyOp op);
+
+ // Adds n instructions to the program.
+ // Returns the index of the first one.
+ // Returns -1 if no more instructions are available.
+ int AllocInst(int n);
+
+ // Deletes unused instructions.
+ void Trim();
+
+ // Rune range compiler.
+
+ // Begins a new alternation.
+ void BeginRange();
+
+ // Adds a fragment matching the rune range lo-hi.
+ void AddRuneRange(Rune lo, Rune hi, bool foldcase);
+ void AddRuneRangeLatin1(Rune lo, Rune hi, bool foldcase);
+ void AddRuneRangeUTF8(Rune lo, Rune hi, bool foldcase);
+ void Add_80_10ffff();
+
+ // New suffix that matches the byte range lo-hi, then goes to next.
+ int RuneByteSuffix(uint8 lo, uint8 hi, bool foldcase, int next);
+ int UncachedRuneByteSuffix(uint8 lo, uint8 hi, bool foldcase, int next);
+
+ // Adds a suffix to alternation.
+ void AddSuffix(int id);
+
+ // Returns the alternation of all the added suffixes.
+ Frag EndRange();
+
+ // Single rune.
+ Frag Literal(Rune r, bool foldcase);
+
+ void Setup(Regexp::ParseFlags, int64, RE2::Anchor);
+ Prog* Finish();
+
+ // Returns .* where dot = any byte
+ Frag DotStar();
+
+ private:
+ Prog* prog_; // Program being built.
+ bool failed_; // Did we give up compiling?
+ Encoding encoding_; // Input encoding
+ bool reversed_; // Should program run backward over text?
+
+ int max_inst_; // Maximum number of instructions.
+
+ Prog::Inst* inst_; // Pointer to first instruction.
+ int inst_len_; // Number of instructions used.
+ int inst_cap_; // Number of instructions allocated.
+
+ int64 max_mem_; // Total memory budget.
+
+ map<uint64, int> rune_cache_;
+ Frag rune_range_;
+
+ RE2::Anchor anchor_; // anchor mode for RE2::Set
+
+ DISALLOW_EVIL_CONSTRUCTORS(Compiler);
+};
+
+Compiler::Compiler() {
+ prog_ = new Prog();
+ failed_ = false;
+ encoding_ = kEncodingUTF8;
+ reversed_ = false;
+ inst_ = NULL;
+ inst_len_ = 0;
+ inst_cap_ = 0;
+ max_inst_ = 1; // make AllocInst for fail instruction okay
+ max_mem_ = 0;
+ int fail = AllocInst(1);
+ inst_[fail].InitFail();
+ max_inst_ = 0; // Caller must change
+}
+
+Compiler::~Compiler() {
+ delete prog_;
+ delete[] inst_;
+}
+
+int Compiler::AllocInst(int n) {
+ if (failed_ || inst_len_ + n > max_inst_) {
+ failed_ = true;
+ return -1;
+ }
+
+ if (inst_len_ + n > inst_cap_) {
+ if (inst_cap_ == 0)
+ inst_cap_ = 8;
+ while (inst_len_ + n > inst_cap_)
+ inst_cap_ *= 2;
+ Prog::Inst* ip = new Prog::Inst[inst_cap_];
+ memmove(ip, inst_, inst_len_ * sizeof ip[0]);
+ memset(ip + inst_len_, 0, (inst_cap_ - inst_len_) * sizeof ip[0]);
+ delete[] inst_;
+ inst_ = ip;
+ }
+ int id = inst_len_;
+ inst_len_ += n;
+ return id;
+}
+
+void Compiler::Trim() {
+ if (inst_len_ < inst_cap_) {
+ Prog::Inst* ip = new Prog::Inst[inst_len_];
+ memmove(ip, inst_, inst_len_ * sizeof ip[0]);
+ delete[] inst_;
+ inst_ = ip;
+ inst_cap_ = inst_len_;
+ }
+}
+
+// These routines are somewhat hard to visualize in text --
+// see http://swtch.com/~rsc/regexp/regexp1.html for
+// pictures explaining what is going on here.
+
+// Returns an unmatchable fragment.
+Frag Compiler::NoMatch() {
+ return Frag(0, nullPatchList);
+}
+
+// Is a an unmatchable fragment?
+static bool IsNoMatch(Frag a) {
+ return a.begin == 0;
+}
+
+// Given fragments a and b, returns fragment for ab.
+Frag Compiler::Cat(Frag a, Frag b) {
+ if (IsNoMatch(a) || IsNoMatch(b))
+ return NoMatch();
+
+ // Elide no-op.
+ Prog::Inst* begin = &inst_[a.begin];
+ if (begin->opcode() == kInstNop &&
+ a.end.p == (a.begin << 1) &&
+ begin->out() == 0) {
+ PatchList::Patch(inst_, a.end, b.begin); // in case refs to a somewhere
+ return b;
+ }
+
+ // To run backward over string, reverse all concatenations.
+ if (reversed_) {
+ PatchList::Patch(inst_, b.end, a.begin);
+ return Frag(b.begin, a.end);
+ }
+
+ PatchList::Patch(inst_, a.end, b.begin);
+ return Frag(a.begin, b.end);
+}
+
+// Given fragments for a and b, returns fragment for a|b.
+Frag Compiler::Alt(Frag a, Frag b) {
+ // Special case for convenience in loops.
+ if (IsNoMatch(a))
+ return b;
+ if (IsNoMatch(b))
+ return a;
+
+ int id = AllocInst(1);
+ if (id < 0)
+ return NoMatch();
+
+ inst_[id].InitAlt(a.begin, b.begin);
+ return Frag(id, PatchList::Append(inst_, a.end, b.end));
+}
+
+// When capturing submatches in like-Perl mode, a kOpAlt Inst
+// treats out_ as the first choice, out1_ as the second.
+//
+// For *, +, and ?, if out_ causes another repetition,
+// then the operator is greedy. If out1_ is the repetition
+// (and out_ moves forward), then the operator is non-greedy.
+
+// Given a fragment a, returns a fragment for a* or a*? (if nongreedy)
+Frag Compiler::Star(Frag a, bool nongreedy) {
+ int id = AllocInst(1);
+ if (id < 0)
+ return NoMatch();
+ inst_[id].InitAlt(0, 0);
+ PatchList::Patch(inst_, a.end, id);
+ if (nongreedy) {
+ inst_[id].out1_ = a.begin;
+ return Frag(id, PatchList::Mk(id << 1));
+ } else {
+ inst_[id].set_out(a.begin);
+ return Frag(id, PatchList::Mk((id << 1) | 1));
+ }
+}
+
+// Given a fragment for a, returns a fragment for a+ or a+? (if nongreedy)
+Frag Compiler::Plus(Frag a, bool nongreedy) {
+ // a+ is just a* with a different entry point.
+ Frag f = Star(a, nongreedy);
+ return Frag(a.begin, f.end);
+}
+
+// Given a fragment for a, returns a fragment for a? or a?? (if nongreedy)
+Frag Compiler::Quest(Frag a, bool nongreedy) {
+ int id = AllocInst(1);
+ if (id < 0)
+ return NoMatch();
+ PatchList pl;
+ if (nongreedy) {
+ inst_[id].InitAlt(0, a.begin);
+ pl = PatchList::Mk(id << 1);
+ } else {
+ inst_[id].InitAlt(a.begin, 0);
+ pl = PatchList::Mk((id << 1) | 1);
+ }
+ return Frag(id, PatchList::Append(inst_, pl, a.end));
+}
+
+// Returns a fragment for the byte range lo-hi.
+Frag Compiler::ByteRange(int lo, int hi, bool foldcase) {
+ int id = AllocInst(1);
+ if (id < 0)
+ return NoMatch();
+ inst_[id].InitByteRange(lo, hi, foldcase, 0);
+ prog_->byte_inst_count_++;
+ prog_->MarkByteRange(lo, hi);
+ if (foldcase && lo <= 'z' && hi >= 'a') {
+ if (lo < 'a')
+ lo = 'a';
+ if (hi > 'z')
+ hi = 'z';
+ if (lo <= hi)
+ prog_->MarkByteRange(lo + 'A' - 'a', hi + 'A' - 'a');
+ }
+ return Frag(id, PatchList::Mk(id << 1));
+}
+
+// Returns a no-op fragment. Sometimes unavoidable.
+Frag Compiler::Nop() {
+ int id = AllocInst(1);
+ if (id < 0)
+ return NoMatch();
+ inst_[id].InitNop(0);
+ return Frag(id, PatchList::Mk(id << 1));
+}
+
+// Returns a fragment that signals a match.
+Frag Compiler::Match(int32 match_id) {
+ int id = AllocInst(1);
+ if (id < 0)
+ return NoMatch();
+ inst_[id].InitMatch(match_id);
+ return Frag(id, nullPatchList);
+}
+
+// Returns a fragment matching a particular empty-width op (like ^ or $)
+Frag Compiler::EmptyWidth(EmptyOp empty) {
+ int id = AllocInst(1);
+ if (id < 0)
+ return NoMatch();
+ inst_[id].InitEmptyWidth(empty, 0);
+ if (empty & (kEmptyBeginLine|kEmptyEndLine))
+ prog_->MarkByteRange('\n', '\n');
+ if (empty & (kEmptyWordBoundary|kEmptyNonWordBoundary)) {
+ int j;
+ for (int i = 0; i < 256; i = j) {
+ for (j = i+1; j < 256 && Prog::IsWordChar(i) == Prog::IsWordChar(j); j++)
+ ;
+ prog_->MarkByteRange(i, j-1);
+ }
+ }
+ return Frag(id, PatchList::Mk(id << 1));
+}
+
+// Given a fragment a, returns a fragment with capturing parens around a.
+Frag Compiler::Capture(Frag a, int n) {
+ int id = AllocInst(2);
+ if (id < 0)
+ return NoMatch();
+ inst_[id].InitCapture(2*n, a.begin);
+ inst_[id+1].InitCapture(2*n+1, 0);
+ PatchList::Patch(inst_, a.end, id+1);
+
+ return Frag(id, PatchList::Mk((id+1) << 1));
+}
+
+// A Rune is a name for a Unicode code point.
+// Returns maximum rune encoded by UTF-8 sequence of length len.
+static int MaxRune(int len) {
+ int b; // number of Rune blents lenn len-byte UTF-8 sequence (len < UTFmax)
+ if (len == 1)
+ b = 7;
+ else
+ b = 8-(len+1) + 6*(len-1);
+ return (1<<b) - 1; // maximum Rune for b bits.
+}
+
+// The rune range compiler caches common suffix fragments,
+// which are very common in UTF-8 (e.g., [80-bf]).
+// The fragment suffixes are identified by their start
+// instructions. NULL denotes the eventual end match.
+// The Frag accumulates in rune_range_. Caching common
+// suffixes reduces the UTF-8 "." from 32 to 24 instructions,
+// and it reduces the corresponding one-pass NFA from 16 nodes to 8.
+
+void Compiler::BeginRange() {
+ rune_cache_.clear();
+ rune_range_.begin = 0;
+ rune_range_.end = nullPatchList;
+}
+
+int Compiler::UncachedRuneByteSuffix(uint8 lo, uint8 hi, bool foldcase,
+ int next) {
+ Frag f = ByteRange(lo, hi, foldcase);
+ if (next != 0) {
+ PatchList::Patch(inst_, f.end, next);
+ } else {
+ rune_range_.end = PatchList::Append(inst_, rune_range_.end, f.end);
+ }
+ return f.begin;
+}
+
+int Compiler::RuneByteSuffix(uint8 lo, uint8 hi, bool foldcase, int next) {
+ // In Latin1 mode, there's no point in caching.
+ // In forward UTF-8 mode, only need to cache continuation bytes.
+ if (encoding_ == kEncodingLatin1 ||
+ (encoding_ == kEncodingUTF8 &&
+ !reversed_ &&
+ !(0x80 <= lo && hi <= 0xbf))) {
+ return UncachedRuneByteSuffix(lo, hi, foldcase, next);
+ }
+
+ uint64 key = ((uint64)next << 17) | (lo<<9) | (hi<<1) | foldcase;
+ map<uint64, int>::iterator it = rune_cache_.find(key);
+ if (it != rune_cache_.end())
+ return it->second;
+ int id = UncachedRuneByteSuffix(lo, hi, foldcase, next);
+ rune_cache_[key] = id;
+ return id;
+}
+
+void Compiler::AddSuffix(int id) {
+ if (rune_range_.begin == 0) {
+ rune_range_.begin = id;
+ return;
+ }
+
+ int alt = AllocInst(1);
+ if (alt < 0) {
+ rune_range_.begin = 0;
+ return;
+ }
+ inst_[alt].InitAlt(rune_range_.begin, id);
+ rune_range_.begin = alt;
+}
+
+Frag Compiler::EndRange() {
+ return rune_range_;
+}
+
+// Converts rune range lo-hi into a fragment that recognizes
+// the bytes that would make up those runes in the current
+// encoding (Latin 1 or UTF-8).
+// This lets the machine work byte-by-byte even when
+// using multibyte encodings.
+
+void Compiler::AddRuneRange(Rune lo, Rune hi, bool foldcase) {
+ switch (encoding_) {
+ default:
+ case kEncodingUTF8:
+ AddRuneRangeUTF8(lo, hi, foldcase);
+ break;
+ case kEncodingLatin1:
+ AddRuneRangeLatin1(lo, hi, foldcase);
+ break;
+ }
+}
+
+void Compiler::AddRuneRangeLatin1(Rune lo, Rune hi, bool foldcase) {
+ // Latin1 is easy: runes *are* bytes.
+ if (lo > hi || lo > 0xFF)
+ return;
+ if (hi > 0xFF)
+ hi = 0xFF;
+ AddSuffix(RuneByteSuffix(lo, hi, foldcase, 0));
+}
+
+// Table describing how to make a UTF-8 matching machine
+// for the rune range 80-10FFFF (Runeself-Runemax).
+// This range happens frequently enough (for example /./ and /[^a-z]/)
+// and the rune_cache_ map is slow enough that this is worth
+// special handling. Makes compilation of a small expression
+// with a dot in it about 10% faster.
+// The * in the comments below mark whole sequences.
+static struct ByteRangeProg {
+ int next;
+ int lo;
+ int hi;
+} prog_80_10ffff[] = {
+ // Two-byte
+ { -1, 0x80, 0xBF, }, // 0: 80-BF
+ { 0, 0xC2, 0xDF, }, // 1: C2-DF 80-BF*
+
+ // Three-byte
+ { 0, 0xA0, 0xBF, }, // 2: A0-BF 80-BF
+ { 2, 0xE0, 0xE0, }, // 3: E0 A0-BF 80-BF*
+ { 0, 0x80, 0xBF, }, // 4: 80-BF 80-BF
+ { 4, 0xE1, 0xEF, }, // 5: E1-EF 80-BF 80-BF*
+
+ // Four-byte
+ { 4, 0x90, 0xBF, }, // 6: 90-BF 80-BF 80-BF
+ { 6, 0xF0, 0xF0, }, // 7: F0 90-BF 80-BF 80-BF*
+ { 4, 0x80, 0xBF, }, // 8: 80-BF 80-BF 80-BF
+ { 8, 0xF1, 0xF3, }, // 9: F1-F3 80-BF 80-BF 80-BF*
+ { 4, 0x80, 0x8F, }, // 10: 80-8F 80-BF 80-BF
+ { 10, 0xF4, 0xF4, }, // 11: F4 80-8F 80-BF 80-BF*
+};
+
+void Compiler::Add_80_10ffff() {
+ int inst[arraysize(prog_80_10ffff)];
+ for (int i = 0; i < arraysize(prog_80_10ffff); i++) {
+ const ByteRangeProg& p = prog_80_10ffff[i];
+ int next = 0;
+ if (p.next >= 0)
+ next = inst[p.next];
+ inst[i] = UncachedRuneByteSuffix(p.lo, p.hi, false, next);
+ if ((p.lo & 0xC0) != 0x80)
+ AddSuffix(inst[i]);
+ }
+}
+
+void Compiler::AddRuneRangeUTF8(Rune lo, Rune hi, bool foldcase) {
+ if (lo > hi)
+ return;
+
+ // Pick off 80-10FFFF as a common special case
+ // that can bypass the slow rune_cache_.
+ if (lo == 0x80 && hi == 0x10ffff && !reversed_) {
+ Add_80_10ffff();
+ return;
+ }
+
+ // Split range into same-length sized ranges.
+ for (int i = 1; i < UTFmax; i++) {
+ Rune max = MaxRune(i);
+ if (lo <= max && max < hi) {
+ AddRuneRangeUTF8(lo, max, foldcase);
+ AddRuneRangeUTF8(max+1, hi, foldcase);
+ return;
+ }
+ }
+
+ // ASCII range is always a special case.
+ if (hi < Runeself) {
+ AddSuffix(RuneByteSuffix(lo, hi, foldcase, 0));
+ return;
+ }
+
+ // Split range into sections that agree on leading bytes.
+ for (int i = 1; i < UTFmax; i++) {
+ uint m = (1<<(6*i)) - 1; // last i bytes of a UTF-8 sequence
+ if ((lo & ~m) != (hi & ~m)) {
+ if ((lo & m) != 0) {
+ AddRuneRangeUTF8(lo, lo|m, foldcase);
+ AddRuneRangeUTF8((lo|m)+1, hi, foldcase);
+ return;
+ }
+ if ((hi & m) != m) {
+ AddRuneRangeUTF8(lo, (hi&~m)-1, foldcase);
+ AddRuneRangeUTF8(hi&~m, hi, foldcase);
+ return;
+ }
+ }
+ }
+
+ // Finally. Generate byte matching equivalent for lo-hi.
+ uint8 ulo[UTFmax], uhi[UTFmax];
+ int n = runetochar(reinterpret_cast<char*>(ulo), &lo);
+ int m = runetochar(reinterpret_cast<char*>(uhi), &hi);
+ (void)m; // USED(m)
+ DCHECK_EQ(n, m);
+
+ int id = 0;
+ if (reversed_) {
+ for (int i = 0; i < n; i++)
+ id = RuneByteSuffix(ulo[i], uhi[i], false, id);
+ } else {
+ for (int i = n-1; i >= 0; i--)
+ id = RuneByteSuffix(ulo[i], uhi[i], false, id);
+ }
+ AddSuffix(id);
+}
+
+// Should not be called.
+Frag Compiler::Copy(Frag arg) {
+ // We're using WalkExponential; there should be no copying.
+ LOG(DFATAL) << "Compiler::Copy called!";
+ failed_ = true;
+ return NoMatch();
+}
+
+// Visits a node quickly; called once WalkExponential has
+// decided to cut this walk short.
+Frag Compiler::ShortVisit(Regexp* re, Frag) {
+ failed_ = true;
+ return NoMatch();
+}
+
+// Called before traversing a node's children during the walk.
+Frag Compiler::PreVisit(Regexp* re, Frag, bool* stop) {
+ // Cut off walk if we've already failed.
+ if (failed_)
+ *stop = true;
+
+ return kNullFrag; // not used by caller
+}
+
+Frag Compiler::Literal(Rune r, bool foldcase) {
+ switch (encoding_) {
+ default:
+ return kNullFrag;
+
+ case kEncodingLatin1:
+ return ByteRange(r, r, foldcase);
+
+ case kEncodingUTF8: {
+ if (r < Runeself) // Make common case fast.
+ return ByteRange(r, r, foldcase);
+ uint8 buf[UTFmax];
+ int n = runetochar(reinterpret_cast<char*>(buf), &r);
+ Frag f = ByteRange((uint8)buf[0], buf[0], false);
+ for (int i = 1; i < n; i++)
+ f = Cat(f, ByteRange((uint8)buf[i], buf[i], false));
+ return f;
+ }
+ }
+}
+
+// Called after traversing the node's children during the walk.
+// Given their frags, build and return the frag for this re.
+Frag Compiler::PostVisit(Regexp* re, Frag, Frag, Frag* child_frags,
+ int nchild_frags) {
+ // If a child failed, don't bother going forward, especially
+ // since the child_frags might contain Frags with NULLs in them.
+ if (failed_)
+ return NoMatch();
+
+ // Given the child fragments, return the fragment for this node.
+ switch (re->op()) {
+ case kRegexpRepeat:
+ // Should not see; code at bottom of function will print error
+ break;
+
+ case kRegexpNoMatch:
+ return NoMatch();
+
+ case kRegexpEmptyMatch:
+ return Nop();
+
+ case kRegexpHaveMatch: {
+ Frag f = Match(re->match_id());
+ // Remember unanchored match to end of string.
+ if (anchor_ != RE2::ANCHOR_BOTH)
+ f = Cat(DotStar(), f);
+ return f;
+ }
+
+ case kRegexpConcat: {
+ Frag f = child_frags[0];
+ for (int i = 1; i < nchild_frags; i++)
+ f = Cat(f, child_frags[i]);
+ return f;
+ }
+
+ case kRegexpAlternate: {
+ Frag f = child_frags[0];
+ for (int i = 1; i < nchild_frags; i++)
+ f = Alt(f, child_frags[i]);
+ return f;
+ }
+
+ case kRegexpStar:
+ return Star(child_frags[0], re->parse_flags()&Regexp::NonGreedy);
+
+ case kRegexpPlus:
+ return Plus(child_frags[0], re->parse_flags()&Regexp::NonGreedy);
+
+ case kRegexpQuest:
+ return Quest(child_frags[0], re->parse_flags()&Regexp::NonGreedy);
+
+ case kRegexpLiteral:
+ return Literal(re->rune(), re->parse_flags()&Regexp::FoldCase);
+
+ case kRegexpLiteralString: {
+ // Concatenation of literals.
+ if (re->nrunes() == 0)
+ return Nop();
+ Frag f;
+ for (int i = 0; i < re->nrunes(); i++) {
+ Frag f1 = Literal(re->runes()[i], re->parse_flags()&Regexp::FoldCase);
+ if (i == 0)
+ f = f1;
+ else
+ f = Cat(f, f1);
+ }
+ return f;
+ }
+
+ case kRegexpAnyChar:
+ BeginRange();
+ AddRuneRange(0, Runemax, false);
+ return EndRange();
+
+ case kRegexpAnyByte:
+ return ByteRange(0x00, 0xFF, false);
+
+ case kRegexpCharClass: {
+ CharClass* cc = re->cc();
+ if (cc->empty()) {
+ // This can't happen.
+ LOG(DFATAL) << "No ranges in char class";
+ failed_ = true;
+ return NoMatch();
+ }
+
+ // ASCII case-folding optimization: if the char class
+ // behaves the same on A-Z as it does on a-z,
+ // discard any ranges wholly contained in A-Z
+ // and mark the other ranges as foldascii.
+ // This reduces the size of a program for
+ // (?i)abc from 3 insts per letter to 1 per letter.
+ bool foldascii = cc->FoldsASCII();
+
+ // Character class is just a big OR of the different
+ // character ranges in the class.
+ BeginRange();
+ for (CharClass::iterator i = cc->begin(); i != cc->end(); ++i) {
+ // ASCII case-folding optimization (see above).
+ if (foldascii && 'A' <= i->lo && i->hi <= 'Z')
+ continue;
+
+ // If this range contains all of A-Za-z or none of it,
+ // the fold flag is unnecessary; don't bother.
+ bool fold = foldascii;
+ if ((i->lo <= 'A' && 'z' <= i->hi) || i->hi < 'A' || 'z' < i->lo)
+ fold = false;
+
+ AddRuneRange(i->lo, i->hi, fold);
+ }
+ return EndRange();
+ }
+
+ case kRegexpCapture:
+ // If this is a non-capturing parenthesis -- (?:foo) --
+ // just use the inner expression.
+ if (re->cap() < 0)
+ return child_frags[0];
+ return Capture(child_frags[0], re->cap());
+
+ case kRegexpBeginLine:
+ return EmptyWidth(reversed_ ? kEmptyEndLine : kEmptyBeginLine);
+
+ case kRegexpEndLine:
+ return EmptyWidth(reversed_ ? kEmptyBeginLine : kEmptyEndLine);
+
+ case kRegexpBeginText:
+ return EmptyWidth(reversed_ ? kEmptyEndText : kEmptyBeginText);
+
+ case kRegexpEndText:
+ return EmptyWidth(reversed_ ? kEmptyBeginText : kEmptyEndText);
+
+ case kRegexpWordBoundary:
+ return EmptyWidth(kEmptyWordBoundary);
+
+ case kRegexpNoWordBoundary:
+ return EmptyWidth(kEmptyNonWordBoundary);
+ }
+ LOG(DFATAL) << "Missing case in Compiler: " << re->op();
+ failed_ = true;
+ return NoMatch();
+}
+
+// Is this regexp required to start at the beginning of the text?
+// Only approximate; can return false for complicated regexps like (\Aa|\Ab),
+// but handles (\A(a|b)). Could use the Walker to write a more exact one.
+static bool IsAnchorStart(Regexp** pre, int depth) {
+ Regexp* re = *pre;
+ Regexp* sub;
+ // The depth limit makes sure that we don't overflow
+ // the stack on a deeply nested regexp. As the comment
+ // above says, IsAnchorStart is conservative, so returning
+ // a false negative is okay. The exact limit is somewhat arbitrary.
+ if (re == NULL || depth >= 4)
+ return false;
+ switch (re->op()) {
+ default:
+ break;
+ case kRegexpConcat:
+ if (re->nsub() > 0) {
+ sub = re->sub()[0]->Incref();
+ if (IsAnchorStart(&sub, depth+1)) {
+ Regexp** subcopy = new Regexp*[re->nsub()];
+ subcopy[0] = sub; // already have reference
+ for (int i = 1; i < re->nsub(); i++)
+ subcopy[i] = re->sub()[i]->Incref();
+ *pre = Regexp::Concat(subcopy, re->nsub(), re->parse_flags());
+ delete[] subcopy;
+ re->Decref();
+ return true;
+ }
+ sub->Decref();
+ }
+ break;
+ case kRegexpCapture:
+ sub = re->sub()[0]->Incref();
+ if (IsAnchorStart(&sub, depth+1)) {
+ *pre = Regexp::Capture(sub, re->parse_flags(), re->cap());
+ re->Decref();
+ return true;
+ }
+ sub->Decref();
+ break;
+ case kRegexpBeginText:
+ *pre = Regexp::LiteralString(NULL, 0, re->parse_flags());
+ re->Decref();
+ return true;
+ }
+ return false;
+}
+
+// Is this regexp required to start at the end of the text?
+// Only approximate; can return false for complicated regexps like (a\z|b\z),
+// but handles ((a|b)\z). Could use the Walker to write a more exact one.
+static bool IsAnchorEnd(Regexp** pre, int depth) {
+ Regexp* re = *pre;
+ Regexp* sub;
+ // The depth limit makes sure that we don't overflow
+ // the stack on a deeply nested regexp. As the comment
+ // above says, IsAnchorEnd is conservative, so returning
+ // a false negative is okay. The exact limit is somewhat arbitrary.
+ if (re == NULL || depth >= 4)
+ return false;
+ switch (re->op()) {
+ default:
+ break;
+ case kRegexpConcat:
+ if (re->nsub() > 0) {
+ sub = re->sub()[re->nsub() - 1]->Incref();
+ if (IsAnchorEnd(&sub, depth+1)) {
+ Regexp** subcopy = new Regexp*[re->nsub()];
+ subcopy[re->nsub() - 1] = sub; // already have reference
+ for (int i = 0; i < re->nsub() - 1; i++)
+ subcopy[i] = re->sub()[i]->Incref();
+ *pre = Regexp::Concat(subcopy, re->nsub(), re->parse_flags());
+ delete[] subcopy;
+ re->Decref();
+ return true;
+ }
+ sub->Decref();
+ }
+ break;
+ case kRegexpCapture:
+ sub = re->sub()[0]->Incref();
+ if (IsAnchorEnd(&sub, depth+1)) {
+ *pre = Regexp::Capture(sub, re->parse_flags(), re->cap());
+ re->Decref();
+ return true;
+ }
+ sub->Decref();
+ break;
+ case kRegexpEndText:
+ *pre = Regexp::LiteralString(NULL, 0, re->parse_flags());
+ re->Decref();
+ return true;
+ }
+ return false;
+}
+
+void Compiler::Setup(Regexp::ParseFlags flags, int64 max_mem,
+ RE2::Anchor anchor) {
+ prog_->set_flags(flags);
+
+ if (flags & Regexp::Latin1)
+ encoding_ = kEncodingLatin1;
+ max_mem_ = max_mem;
+ if (max_mem <= 0) {
+ max_inst_ = 100000; // more than enough
+ } else if (max_mem <= sizeof(Prog)) {
+ // No room for anything.
+ max_inst_ = 0;
+ } else {
+ int64 m = (max_mem - sizeof(Prog)) / sizeof(Prog::Inst);
+ // Limit instruction count so that inst->id() fits nicely in an int.
+ // SparseArray also assumes that the indices (inst->id()) are ints.
+ // The call to WalkExponential uses 2*max_inst_ below,
+ // and other places in the code use 2 or 3 * prog->size().
+ // Limiting to 2^24 should avoid overflow in those places.
+ // (The point of allowing more than 32 bits of memory is to
+ // have plenty of room for the DFA states, not to use it up
+ // on the program.)
+ if (m >= 1<<24)
+ m = 1<<24;
+
+ // Inst imposes its own limit (currently bigger than 2^24 but be safe).
+ if (m > Prog::Inst::kMaxInst)
+ m = Prog::Inst::kMaxInst;
+
+ max_inst_ = m;
+ }
+
+ anchor_ = anchor;
+}
+
+// Compiles re, returning program.
+// Caller is responsible for deleting prog_.
+// If reversed is true, compiles a program that expects
+// to run over the input string backward (reverses all concatenations).
+// The reversed flag is also recorded in the returned program.
+Prog* Compiler::Compile(Regexp* re, bool reversed, int64 max_mem) {
+ Compiler c;
+
+ c.Setup(re->parse_flags(), max_mem, RE2::ANCHOR_BOTH /* unused */);
+ c.reversed_ = reversed;
+
+ // Simplify to remove things like counted repetitions
+ // and character classes like \d.
+ Regexp* sre = re->Simplify();
+ if (sre == NULL)
+ return NULL;
+
+ // Record whether prog is anchored, removing the anchors.
+ // (They get in the way of other optimizations.)
+ bool is_anchor_start = IsAnchorStart(&sre, 0);
+ bool is_anchor_end = IsAnchorEnd(&sre, 0);
+
+ // Generate fragment for entire regexp.
+ Frag f = c.WalkExponential(sre, kNullFrag, 2*c.max_inst_);
+ sre->Decref();
+ if (c.failed_)
+ return NULL;
+
+ // Success! Finish by putting Match node at end, and record start.
+ // Turn off c.reversed_ (if it is set) to force the remaining concatenations
+ // to behave normally.
+ c.reversed_ = false;
+ Frag all = c.Cat(f, c.Match(0));
+ c.prog_->set_start(all.begin);
+
+ if (reversed) {
+ c.prog_->set_anchor_start(is_anchor_end);
+ c.prog_->set_anchor_end(is_anchor_start);
+ } else {
+ c.prog_->set_anchor_start(is_anchor_start);
+ c.prog_->set_anchor_end(is_anchor_end);
+ }
+
+ // Also create unanchored version, which starts with a .*? loop.
+ if (c.prog_->anchor_start()) {
+ c.prog_->set_start_unanchored(c.prog_->start());
+ } else {
+ Frag unanchored = c.Cat(c.DotStar(), all);
+ c.prog_->set_start_unanchored(unanchored.begin);
+ }
+
+ c.prog_->set_reversed(reversed);
+
+ // Hand ownership of prog_ to caller.
+ return c.Finish();
+}
+
+Prog* Compiler::Finish() {
+ if (failed_)
+ return NULL;
+
+ if (prog_->start() == 0 && prog_->start_unanchored() == 0) {
+ // No possible matches; keep Fail instruction only.
+ inst_len_ = 1;
+ }
+
+ // Trim instruction to minimum array and transfer to Prog.
+ Trim();
+ prog_->inst_ = inst_;
+ prog_->size_ = inst_len_;
+ inst_ = NULL;
+
+ // Compute byte map.
+ prog_->ComputeByteMap();
+
+ prog_->Optimize();
+
+ // Record remaining memory for DFA.
+ if (max_mem_ <= 0) {
+ prog_->set_dfa_mem(1<<20);
+ } else {
+ int64 m = max_mem_ - sizeof(Prog) - inst_len_*sizeof(Prog::Inst);
+ if (m < 0)
+ m = 0;
+ prog_->set_dfa_mem(m);
+ }
+
+ Prog* p = prog_;
+ prog_ = NULL;
+ return p;
+}
+
+// Converts Regexp to Prog.
+Prog* Regexp::CompileToProg(int64 max_mem) {
+ return Compiler::Compile(this, false, max_mem);
+}
+
+Prog* Regexp::CompileToReverseProg(int64 max_mem) {
+ return Compiler::Compile(this, true, max_mem);
+}
+
+Frag Compiler::DotStar() {
+ return Star(ByteRange(0x00, 0xff, false), true);
+}
+
+// Compiles RE set to Prog.
+Prog* Compiler::CompileSet(const RE2::Options& options, RE2::Anchor anchor,
+ Regexp* re) {
+ Compiler c;
+
+ Regexp::ParseFlags pf = static_cast<Regexp::ParseFlags>(options.ParseFlags());
+ c.Setup(pf, options.max_mem(), anchor);
+
+ // Compile alternation of fragments.
+ Frag all = c.WalkExponential(re, kNullFrag, 2*c.max_inst_);
+ re->Decref();
+ if (c.failed_)
+ return NULL;
+
+ if (anchor == RE2::UNANCHORED) {
+ // The trailing .* was added while handling kRegexpHaveMatch.
+ // We just have to add the leading one.
+ all = c.Cat(c.DotStar(), all);
+ }
+
+ c.prog_->set_start(all.begin);
+ c.prog_->set_start_unanchored(all.begin);
+ c.prog_->set_anchor_start(true);
+ c.prog_->set_anchor_end(true);
+
+ Prog* prog = c.Finish();
+ if (prog == NULL)
+ return NULL;
+
+ // Make sure DFA has enough memory to operate,
+ // since we're not going to fall back to the NFA.
+ bool failed;
+ StringPiece sp = "hello, world";
+ prog->SearchDFA(sp, sp, Prog::kAnchored, Prog::kManyMatch,
+ NULL, &failed, NULL);
+ if (failed) {
+ delete prog;
+ return NULL;
+ }
+
+ return prog;
+}
+
+Prog* Prog::CompileSet(const RE2::Options& options, RE2::Anchor anchor,
+ Regexp* re) {
+ return Compiler::CompileSet(options, anchor, re);
+}
+
+} // namespace re2