aboutsummaryrefslogtreecommitdiff
path: root/util/sparse_set.h
diff options
context:
space:
mode:
Diffstat (limited to 'util/sparse_set.h')
-rw-r--r--util/sparse_set.h177
1 files changed, 177 insertions, 0 deletions
diff --git a/util/sparse_set.h b/util/sparse_set.h
new file mode 100644
index 0000000..9cb5753
--- /dev/null
+++ b/util/sparse_set.h
@@ -0,0 +1,177 @@
+// Copyright 2006 The RE2 Authors. All Rights Reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+// DESCRIPTION
+//
+// SparseSet<T>(m) is a set of integers in [0, m).
+// It requires sizeof(int)*m memory, but it provides
+// fast iteration through the elements in the set and fast clearing
+// of the set.
+//
+// Insertion and deletion are constant time operations.
+//
+// Allocating the set is a constant time operation
+// when memory allocation is a constant time operation.
+//
+// Clearing the set is a constant time operation (unusual!).
+//
+// Iterating through the set is an O(n) operation, where n
+// is the number of items in the set (not O(m)).
+//
+// The set iterator visits entries in the order they were first
+// inserted into the array. It is safe to add items to the set while
+// using an iterator: the iterator will visit indices added to the set
+// during the iteration, but will not re-visit indices whose values
+// change after visiting. Thus SparseSet can be a convenient
+// implementation of a work queue.
+//
+// The SparseSet implementation is NOT thread-safe. It is up to the
+// caller to make sure only one thread is accessing the set. (Typically
+// these sets are temporary values and used in situations where speed is
+// important.)
+//
+// The SparseSet interface does not present all the usual STL bells and
+// whistles.
+//
+// Implemented with reference to Briggs & Torczon, An Efficient
+// Representation for Sparse Sets, ACM Letters on Programming Languages
+// and Systems, Volume 2, Issue 1-4 (March-Dec. 1993), pp. 59-69.
+//
+// For a generalization to sparse array, see sparse_array.h.
+
+// IMPLEMENTATION
+//
+// See sparse_array.h for implementation details
+
+#ifndef RE2_UTIL_SPARSE_SET_H__
+#define RE2_UTIL_SPARSE_SET_H__
+
+#include "util/util.h"
+
+namespace re2 {
+
+class SparseSet {
+ public:
+ SparseSet()
+ : size_(0), max_size_(0), sparse_to_dense_(NULL), dense_(NULL) {}
+
+ SparseSet(int max_size) {
+ max_size_ = max_size;
+ sparse_to_dense_ = new int[max_size];
+ dense_ = new int[max_size];
+ // Don't need to zero the memory, but do so anyway
+ // to appease Valgrind.
+ if (RunningOnValgrind()) {
+ for (int i = 0; i < max_size; i++) {
+ dense_[i] = 0xababababU;
+ sparse_to_dense_[i] = 0xababababU;
+ }
+ }
+ size_ = 0;
+ }
+
+ ~SparseSet() {
+ delete[] sparse_to_dense_;
+ delete[] dense_;
+ }
+
+ typedef int* iterator;
+ typedef const int* const_iterator;
+
+ int size() const { return size_; }
+ iterator begin() { return dense_; }
+ iterator end() { return dense_ + size_; }
+ const_iterator begin() const { return dense_; }
+ const_iterator end() const { return dense_ + size_; }
+
+ // Change the maximum size of the array.
+ // Invalidates all iterators.
+ void resize(int new_max_size) {
+ if (size_ > new_max_size)
+ size_ = new_max_size;
+ if (new_max_size > max_size_) {
+ int* a = new int[new_max_size];
+ if (sparse_to_dense_) {
+ memmove(a, sparse_to_dense_, max_size_*sizeof a[0]);
+ if (RunningOnValgrind()) {
+ for (int i = max_size_; i < new_max_size; i++)
+ a[i] = 0xababababU;
+ }
+ delete[] sparse_to_dense_;
+ }
+ sparse_to_dense_ = a;
+
+ a = new int[new_max_size];
+ if (dense_) {
+ memmove(a, dense_, size_*sizeof a[0]);
+ if (RunningOnValgrind()) {
+ for (int i = size_; i < new_max_size; i++)
+ a[i] = 0xababababU;
+ }
+ delete[] dense_;
+ }
+ dense_ = a;
+ }
+ max_size_ = new_max_size;
+ }
+
+ // Return the maximum size of the array.
+ // Indices can be in the range [0, max_size).
+ int max_size() const { return max_size_; }
+
+ // Clear the array.
+ void clear() { size_ = 0; }
+
+ // Check whether i is in the array.
+ bool contains(int i) const {
+ DCHECK_GE(i, 0);
+ DCHECK_LT(i, max_size_);
+ if (static_cast<uint>(i) >= max_size_) {
+ return false;
+ }
+ // Unsigned comparison avoids checking sparse_to_dense_[i] < 0.
+ return (uint)sparse_to_dense_[i] < (uint)size_ &&
+ dense_[sparse_to_dense_[i]] == i;
+ }
+
+ // Adds i to the set.
+ void insert(int i) {
+ if (!contains(i))
+ insert_new(i);
+ }
+
+ // Set the value at the new index i to v.
+ // Fast but unsafe: only use if contains(i) is false.
+ void insert_new(int i) {
+ if (static_cast<uint>(i) >= max_size_) {
+ // Semantically, end() would be better here, but we already know
+ // the user did something stupid, so begin() insulates them from
+ // dereferencing an invalid pointer.
+ return;
+ }
+ DCHECK(!contains(i));
+ DCHECK_LT(size_, max_size_);
+ sparse_to_dense_[i] = size_;
+ dense_[size_] = i;
+ size_++;
+ }
+
+ // Comparison function for sorting.
+ // Can sort the sparse array so that future iterations
+ // will visit indices in increasing order using
+ // sort(arr.begin(), arr.end(), arr.less);
+ static bool less(int a, int b) { return a < b; }
+
+ private:
+ int size_;
+ int max_size_;
+ int* sparse_to_dense_;
+ int* dense_;
+
+ DISALLOW_EVIL_CONSTRUCTORS(SparseSet);
+};
+
+} // namespace re2
+
+#endif // RE2_UTIL_SPARSE_SET_H__