aboutsummaryrefslogtreecommitdiff
path: root/src/f32/coresimd/vec4.rs
diff options
context:
space:
mode:
Diffstat (limited to 'src/f32/coresimd/vec4.rs')
-rw-r--r--src/f32/coresimd/vec4.rs211
1 files changed, 170 insertions, 41 deletions
diff --git a/src/f32/coresimd/vec4.rs b/src/f32/coresimd/vec4.rs
index bc26d66..81b4e7e 100644
--- a/src/f32/coresimd/vec4.rs
+++ b/src/f32/coresimd/vec4.rs
@@ -1,28 +1,27 @@
// Generated from vec.rs.tera template. Edit the template, not the generated file.
-use crate::{coresimd::*, BVec4A, Vec2, Vec3, Vec3A};
+use crate::{coresimd::*, f32::math, BVec4A, Vec2, Vec3, Vec3A};
#[cfg(not(target_arch = "spirv"))]
use core::fmt;
use core::iter::{Product, Sum};
use core::{f32, ops::*};
-use core::simd::*;
+use core::simd::{cmp::SimdPartialEq, cmp::SimdPartialOrd, num::SimdFloat, *};
use std::simd::StdFloat;
-#[cfg(feature = "libm")]
-#[allow(unused_imports)]
-use num_traits::Float;
-
/// Creates a 4-dimensional vector.
#[inline(always)]
+#[must_use]
pub const fn vec4(x: f32, y: f32, z: f32, w: f32) -> Vec4 {
Vec4::new(x, y, z, w)
}
-/// A 4-dimensional vector with SIMD support.
+/// A 4-dimensional vector.
+///
+/// SIMD vector types are used for storage on supported platforms.
///
-/// This type uses 16 byte aligned SIMD vector type for storage.
+/// This type is 16 byte aligned.
#[derive(Clone, Copy)]
#[repr(transparent)]
pub struct Vec4(pub(crate) f32x4);
@@ -37,31 +36,43 @@ impl Vec4 {
/// All negative ones.
pub const NEG_ONE: Self = Self::splat(-1.0);
- /// All NAN.
+ /// All `f32::MIN`.
+ pub const MIN: Self = Self::splat(f32::MIN);
+
+ /// All `f32::MAX`.
+ pub const MAX: Self = Self::splat(f32::MAX);
+
+ /// All `f32::NAN`.
pub const NAN: Self = Self::splat(f32::NAN);
- /// A unit-length vector pointing along the positive X axis.
+ /// All `f32::INFINITY`.
+ pub const INFINITY: Self = Self::splat(f32::INFINITY);
+
+ /// All `f32::NEG_INFINITY`.
+ pub const NEG_INFINITY: Self = Self::splat(f32::NEG_INFINITY);
+
+ /// A unit vector pointing along the positive X axis.
pub const X: Self = Self::new(1.0, 0.0, 0.0, 0.0);
- /// A unit-length vector pointing along the positive Y axis.
+ /// A unit vector pointing along the positive Y axis.
pub const Y: Self = Self::new(0.0, 1.0, 0.0, 0.0);
- /// A unit-length vector pointing along the positive Z axis.
+ /// A unit vector pointing along the positive Z axis.
pub const Z: Self = Self::new(0.0, 0.0, 1.0, 0.0);
- /// A unit-length vector pointing along the positive W axis.
+ /// A unit vector pointing along the positive W axis.
pub const W: Self = Self::new(0.0, 0.0, 0.0, 1.0);
- /// A unit-length vector pointing along the negative X axis.
+ /// A unit vector pointing along the negative X axis.
pub const NEG_X: Self = Self::new(-1.0, 0.0, 0.0, 0.0);
- /// A unit-length vector pointing along the negative Y axis.
+ /// A unit vector pointing along the negative Y axis.
pub const NEG_Y: Self = Self::new(0.0, -1.0, 0.0, 0.0);
- /// A unit-length vector pointing along the negative Z axis.
+ /// A unit vector pointing along the negative Z axis.
pub const NEG_Z: Self = Self::new(0.0, 0.0, -1.0, 0.0);
- /// A unit-length vector pointing along the negative W axis.
+ /// A unit vector pointing along the negative W axis.
pub const NEG_W: Self = Self::new(0.0, 0.0, 0.0, -1.0);
/// The unit axes.
@@ -69,12 +80,14 @@ impl Vec4 {
/// Creates a new vector.
#[inline(always)]
+ #[must_use]
pub const fn new(x: f32, y: f32, z: f32, w: f32) -> Self {
Self(f32x4::from_array([x, y, z, w]))
}
/// Creates a vector with all elements set to `v`.
#[inline]
+ #[must_use]
pub const fn splat(v: f32) -> Self {
Self(Simd::from_array([v; 4]))
}
@@ -85,18 +98,21 @@ impl Vec4 {
/// A true element in the mask uses the corresponding element from `if_true`, and false
/// uses the element from `if_false`.
#[inline]
+ #[must_use]
pub fn select(mask: BVec4A, if_true: Self, if_false: Self) -> Self {
Self(mask.0.select(if_true.0, if_false.0))
}
/// Creates a new vector from an array.
#[inline]
+ #[must_use]
pub const fn from_array(a: [f32; 4]) -> Self {
Self::new(a[0], a[1], a[2], a[3])
}
/// `[x, y, z, w]`
#[inline]
+ #[must_use]
pub const fn to_array(&self) -> [f32; 4] {
unsafe { *(self as *const Vec4 as *const [f32; 4]) }
}
@@ -107,6 +123,7 @@ impl Vec4 {
///
/// Panics if `slice` is less than 4 elements long.
#[inline]
+ #[must_use]
pub const fn from_slice(slice: &[f32]) -> Self {
Self::new(slice[0], slice[1], slice[2], slice[3])
}
@@ -124,12 +141,13 @@ impl Vec4 {
slice[3] = self.w;
}
- /// Creates a 2D vector from the `x`, `y` and `z` elements of `self`, discarding `w`.
+ /// Creates a 3D vector from the `x`, `y` and `z` elements of `self`, discarding `w`.
///
- /// Truncation to `Vec3` may also be performed by using `self.xyz()` or `Vec3::from()`.
+ /// Truncation to [`Vec3`] may also be performed by using [`self.xyz()`][crate::swizzles::Vec4Swizzles::xyz()].
///
- /// To truncate to `Vec3A` use `Vec3A::from()`.
+ /// To truncate to [`Vec3A`] use [`Vec3A::from()`].
#[inline]
+ #[must_use]
pub fn truncate(self) -> Vec3 {
use crate::swizzles::Vec4Swizzles;
self.xyz()
@@ -137,20 +155,23 @@ impl Vec4 {
/// Computes the dot product of `self` and `rhs`.
#[inline]
+ #[must_use]
pub fn dot(self, rhs: Self) -> f32 {
dot4(self.0, rhs.0)
}
/// Returns a vector where every component is the dot product of `self` and `rhs`.
#[inline]
+ #[must_use]
pub fn dot_into_vec(self, rhs: Self) -> Self {
- Self(unsafe { dot4_into_f32x4(self.0, rhs.0) })
+ Self(dot4_into_f32x4(self.0, rhs.0))
}
/// Returns a vector containing the minimum values for each element of `self` and `rhs`.
///
/// In other words this computes `[self.x.min(rhs.x), self.y.min(rhs.y), ..]`.
#[inline]
+ #[must_use]
pub fn min(self, rhs: Self) -> Self {
Self(self.0.simd_min(rhs.0))
}
@@ -159,6 +180,7 @@ impl Vec4 {
///
/// In other words this computes `[self.x.max(rhs.x), self.y.max(rhs.y), ..]`.
#[inline]
+ #[must_use]
pub fn max(self, rhs: Self) -> Self {
Self(self.0.simd_max(rhs.0))
}
@@ -171,6 +193,7 @@ impl Vec4 {
///
/// Will panic if `min` is greater than `max` when `glam_assert` is enabled.
#[inline]
+ #[must_use]
pub fn clamp(self, min: Self, max: Self) -> Self {
glam_assert!(min.cmple(max).all(), "clamp: expected min <= max");
self.max(min).min(max)
@@ -180,6 +203,7 @@ impl Vec4 {
///
/// In other words this computes `min(x, y, ..)`.
#[inline]
+ #[must_use]
pub fn min_element(self) -> f32 {
self.0.reduce_min()
}
@@ -188,6 +212,7 @@ impl Vec4 {
///
/// In other words this computes `max(x, y, ..)`.
#[inline]
+ #[must_use]
pub fn max_element(self) -> f32 {
self.0.reduce_max()
}
@@ -198,6 +223,7 @@ impl Vec4 {
/// In other words, this computes `[self.x == rhs.x, self.y == rhs.y, ..]` for all
/// elements.
#[inline]
+ #[must_use]
pub fn cmpeq(self, rhs: Self) -> BVec4A {
BVec4A(f32x4::simd_eq(self.0, rhs.0))
}
@@ -208,6 +234,7 @@ impl Vec4 {
/// In other words this computes `[self.x != rhs.x, self.y != rhs.y, ..]` for all
/// elements.
#[inline]
+ #[must_use]
pub fn cmpne(self, rhs: Self) -> BVec4A {
BVec4A(f32x4::simd_ne(self.0, rhs.0))
}
@@ -218,6 +245,7 @@ impl Vec4 {
/// In other words this computes `[self.x >= rhs.x, self.y >= rhs.y, ..]` for all
/// elements.
#[inline]
+ #[must_use]
pub fn cmpge(self, rhs: Self) -> BVec4A {
BVec4A(f32x4::simd_ge(self.0, rhs.0))
}
@@ -228,6 +256,7 @@ impl Vec4 {
/// In other words this computes `[self.x > rhs.x, self.y > rhs.y, ..]` for all
/// elements.
#[inline]
+ #[must_use]
pub fn cmpgt(self, rhs: Self) -> BVec4A {
BVec4A(f32x4::simd_gt(self.0, rhs.0))
}
@@ -238,6 +267,7 @@ impl Vec4 {
/// In other words this computes `[self.x <= rhs.x, self.y <= rhs.y, ..]` for all
/// elements.
#[inline]
+ #[must_use]
pub fn cmple(self, rhs: Self) -> BVec4A {
BVec4A(f32x4::simd_le(self.0, rhs.0))
}
@@ -248,12 +278,14 @@ impl Vec4 {
/// In other words this computes `[self.x < rhs.x, self.y < rhs.y, ..]` for all
/// elements.
#[inline]
+ #[must_use]
pub fn cmplt(self, rhs: Self) -> BVec4A {
BVec4A(f32x4::simd_lt(self.0, rhs.0))
}
/// Returns a vector containing the absolute value of each element of `self`.
#[inline]
+ #[must_use]
pub fn abs(self) -> Self {
Self(self.0.abs())
}
@@ -264,12 +296,14 @@ impl Vec4 {
/// - `-1.0` if the number is negative, `-0.0` or `NEG_INFINITY`
/// - `NAN` if the number is `NAN`
#[inline]
+ #[must_use]
pub fn signum(self) -> Self {
Self(self.0.signum())
}
/// Returns a vector with signs of `rhs` and the magnitudes of `self`.
#[inline]
+ #[must_use]
pub fn copysign(self, rhs: Self) -> Self {
Self(self.0.copysign(rhs.0))
}
@@ -279,6 +313,7 @@ impl Vec4 {
/// A negative element results in a `1` bit and a positive element in a `0` bit. Element `x` goes
/// into the first lowest bit, element `y` into the second, etc.
#[inline]
+ #[must_use]
pub fn is_negative_bitmask(self) -> u32 {
self.0.is_sign_negative().to_bitmask() as u32
}
@@ -286,12 +321,14 @@ impl Vec4 {
/// Returns `true` if, and only if, all elements are finite. If any element is either
/// `NaN`, positive or negative infinity, this will return `false`.
#[inline]
+ #[must_use]
pub fn is_finite(self) -> bool {
f32x4::is_finite(self.0).all()
}
/// Returns `true` if any elements are `NaN`.
#[inline]
+ #[must_use]
pub fn is_nan(self) -> bool {
self.is_nan_mask().any()
}
@@ -300,6 +337,7 @@ impl Vec4 {
///
/// In other words, this computes `[x.is_nan(), y.is_nan(), z.is_nan(), w.is_nan()]`.
#[inline]
+ #[must_use]
pub fn is_nan_mask(self) -> BVec4A {
BVec4A(f32x4::is_nan(self.0))
}
@@ -307,6 +345,7 @@ impl Vec4 {
/// Computes the length of `self`.
#[doc(alias = "magnitude")]
#[inline]
+ #[must_use]
pub fn length(self) -> f32 {
let dot = dot4_in_x(self.0, self.0);
dot.sqrt()[0]
@@ -317,6 +356,7 @@ impl Vec4 {
/// This is faster than `length()` as it avoids a square root operation.
#[doc(alias = "magnitude2")]
#[inline]
+ #[must_use]
pub fn length_squared(self) -> f32 {
self.dot(self)
}
@@ -325,6 +365,7 @@ impl Vec4 {
///
/// For valid results, `self` must _not_ be of length zero.
#[inline]
+ #[must_use]
pub fn length_recip(self) -> f32 {
let dot = dot4_in_x(self.0, self.0);
dot.sqrt().recip()[0]
@@ -332,27 +373,55 @@ impl Vec4 {
/// Computes the Euclidean distance between two points in space.
#[inline]
+ #[must_use]
pub fn distance(self, rhs: Self) -> f32 {
(self - rhs).length()
}
/// Compute the squared euclidean distance between two points in space.
#[inline]
+ #[must_use]
pub fn distance_squared(self, rhs: Self) -> f32 {
(self - rhs).length_squared()
}
+ /// Returns the element-wise quotient of [Euclidean division] of `self` by `rhs`.
+ #[inline]
+ #[must_use]
+ pub fn div_euclid(self, rhs: Self) -> Self {
+ Self::new(
+ math::div_euclid(self.x, rhs.x),
+ math::div_euclid(self.y, rhs.y),
+ math::div_euclid(self.z, rhs.z),
+ math::div_euclid(self.w, rhs.w),
+ )
+ }
+
+ /// Returns the element-wise remainder of [Euclidean division] of `self` by `rhs`.
+ ///
+ /// [Euclidean division]: f32::rem_euclid
+ #[inline]
+ #[must_use]
+ pub fn rem_euclid(self, rhs: Self) -> Self {
+ Self::new(
+ math::rem_euclid(self.x, rhs.x),
+ math::rem_euclid(self.y, rhs.y),
+ math::rem_euclid(self.z, rhs.z),
+ math::rem_euclid(self.w, rhs.w),
+ )
+ }
+
/// Returns `self` normalized to length 1.0.
///
/// For valid results, `self` must _not_ be of length zero, nor very close to zero.
///
- /// See also [`Self::try_normalize`] and [`Self::normalize_or_zero`].
+ /// See also [`Self::try_normalize()`] and [`Self::normalize_or_zero()`].
///
/// Panics
///
/// Will panic if `self` is zero length when `glam_assert` is enabled.
- #[must_use]
#[inline]
+ #[must_use]
pub fn normalize(self) -> Self {
let length = dot4_into_f32x4(self.0, self.0).sqrt();
#[allow(clippy::let_and_return)]
@@ -366,9 +435,9 @@ impl Vec4 {
/// In particular, if the input is zero (or very close to zero), or non-finite,
/// the result of this operation will be `None`.
///
- /// See also [`Self::normalize_or_zero`].
- #[must_use]
+ /// See also [`Self::normalize_or_zero()`].
#[inline]
+ #[must_use]
pub fn try_normalize(self) -> Option<Self> {
let rcp = self.length_recip();
if rcp.is_finite() && rcp > 0.0 {
@@ -383,9 +452,9 @@ impl Vec4 {
/// In particular, if the input is zero (or very close to zero), or non-finite,
/// the result of this operation will be zero.
///
- /// See also [`Self::try_normalize`].
- #[must_use]
+ /// See also [`Self::try_normalize()`].
#[inline]
+ #[must_use]
pub fn normalize_or_zero(self) -> Self {
let rcp = self.length_recip();
if rcp.is_finite() && rcp > 0.0 {
@@ -399,9 +468,10 @@ impl Vec4 {
///
/// Uses a precision threshold of `1e-6`.
#[inline]
+ #[must_use]
pub fn is_normalized(self) -> bool {
// TODO: do something with epsilon
- (self.length_squared() - 1.0).abs() <= 1e-4
+ math::abs(self.length_squared() - 1.0) <= 1e-4
}
/// Returns the vector projection of `self` onto `rhs`.
@@ -411,8 +481,8 @@ impl Vec4 {
/// # Panics
///
/// Will panic if `rhs` is zero length when `glam_assert` is enabled.
- #[must_use]
#[inline]
+ #[must_use]
pub fn project_onto(self, rhs: Self) -> Self {
let other_len_sq_rcp = rhs.dot(rhs).recip();
glam_assert!(other_len_sq_rcp.is_finite());
@@ -429,8 +499,8 @@ impl Vec4 {
/// # Panics
///
/// Will panic if `rhs` has a length of zero when `glam_assert` is enabled.
- #[must_use]
#[inline]
+ #[must_use]
pub fn reject_from(self, rhs: Self) -> Self {
self - self.project_onto(rhs)
}
@@ -442,8 +512,8 @@ impl Vec4 {
/// # Panics
///
/// Will panic if `rhs` is not normalized when `glam_assert` is enabled.
- #[must_use]
#[inline]
+ #[must_use]
pub fn project_onto_normalized(self, rhs: Self) -> Self {
glam_assert!(rhs.is_normalized());
rhs * self.dot(rhs)
@@ -459,8 +529,8 @@ impl Vec4 {
/// # Panics
///
/// Will panic if `rhs` is not normalized when `glam_assert` is enabled.
- #[must_use]
#[inline]
+ #[must_use]
pub fn reject_from_normalized(self, rhs: Self) -> Self {
self - self.project_onto_normalized(rhs)
}
@@ -468,6 +538,7 @@ impl Vec4 {
/// Returns a vector containing the nearest integer to a number for each element of `self`.
/// Round half-way cases away from 0.0.
#[inline]
+ #[must_use]
pub fn round(self) -> Self {
Self(self.0.round())
}
@@ -475,6 +546,7 @@ impl Vec4 {
/// Returns a vector containing the largest integer less than or equal to a number for each
/// element of `self`.
#[inline]
+ #[must_use]
pub fn floor(self) -> Self {
Self(self.0.floor())
}
@@ -482,15 +554,25 @@ impl Vec4 {
/// Returns a vector containing the smallest integer greater than or equal to a number for
/// each element of `self`.
#[inline]
+ #[must_use]
pub fn ceil(self) -> Self {
Self(self.0.ceil())
}
+ /// Returns a vector containing the integer part each element of `self`. This means numbers are
+ /// always truncated towards zero.
+ #[inline]
+ #[must_use]
+ pub fn trunc(self) -> Self {
+ Self(self.0.trunc())
+ }
+
/// Returns a vector containing the fractional part of the vector, e.g. `self -
/// self.floor()`.
///
/// Note that this is fast but not precise for large numbers.
#[inline]
+ #[must_use]
pub fn fract(self) -> Self {
self - self.floor()
}
@@ -498,23 +580,31 @@ impl Vec4 {
/// Returns a vector containing `e^self` (the exponential function) for each element of
/// `self`.
#[inline]
+ #[must_use]
pub fn exp(self) -> Self {
- Self::new(self.x.exp(), self.y.exp(), self.z.exp(), self.w.exp())
+ Self::new(
+ math::exp(self.x),
+ math::exp(self.y),
+ math::exp(self.z),
+ math::exp(self.w),
+ )
}
/// Returns a vector containing each element of `self` raised to the power of `n`.
#[inline]
+ #[must_use]
pub fn powf(self, n: f32) -> Self {
Self::new(
- self.x.powf(n),
- self.y.powf(n),
- self.z.powf(n),
- self.w.powf(n),
+ math::powf(self.x, n),
+ math::powf(self.y, n),
+ math::powf(self.z, n),
+ math::powf(self.w, n),
)
}
/// Returns a vector containing the reciprocal `1.0/n` of each element of `self`.
#[inline]
+ #[must_use]
pub fn recip(self) -> Self {
Self(self.0.recip())
}
@@ -526,6 +616,7 @@ impl Vec4 {
/// extrapolated.
#[doc(alias = "mix")]
#[inline]
+ #[must_use]
pub fn lerp(self, rhs: Self, s: f32) -> Self {
self + ((rhs - self) * s)
}
@@ -540,6 +631,7 @@ impl Vec4 {
/// For more see
/// [comparing floating point numbers](https://randomascii.wordpress.com/2012/02/25/comparing-floating-point-numbers-2012-edition/).
#[inline]
+ #[must_use]
pub fn abs_diff_eq(self, rhs: Self, max_abs_diff: f32) -> bool {
self.sub(rhs).abs().cmple(Self::splat(max_abs_diff)).all()
}
@@ -550,33 +642,38 @@ impl Vec4 {
///
/// Will panic if `min` is greater than `max` when `glam_assert` is enabled.
#[inline]
+ #[must_use]
pub fn clamp_length(self, min: f32, max: f32) -> Self {
glam_assert!(min <= max);
let length_sq = self.length_squared();
if length_sq < min * min {
- self * (length_sq.sqrt().recip() * min)
+ min * (self / math::sqrt(length_sq))
} else if length_sq > max * max {
- self * (length_sq.sqrt().recip() * max)
+ max * (self / math::sqrt(length_sq))
} else {
self
}
}
/// Returns a vector with a length no more than `max`
+ #[inline]
+ #[must_use]
pub fn clamp_length_max(self, max: f32) -> Self {
let length_sq = self.length_squared();
if length_sq > max * max {
- self * (length_sq.sqrt().recip() * max)
+ max * (self / math::sqrt(length_sq))
} else {
self
}
}
/// Returns a vector with a length no less than `min`
+ #[inline]
+ #[must_use]
pub fn clamp_length_min(self, min: f32) -> Self {
let length_sq = self.length_squared();
if length_sq < min * min {
- self * (length_sq.sqrt().recip() * min)
+ min * (self / math::sqrt(length_sq))
} else {
self
}
@@ -590,27 +687,59 @@ impl Vec4 {
/// and will be heavily dependant on designing algorithms with specific target hardware in
/// mind.
#[inline]
+ #[must_use]
pub fn mul_add(self, a: Self, b: Self) -> Self {
Self(self.0.mul_add(a.0, b.0))
}
/// Casts all elements of `self` to `f64`.
#[inline]
+ #[must_use]
pub fn as_dvec4(&self) -> crate::DVec4 {
crate::DVec4::new(self.x as f64, self.y as f64, self.z as f64, self.w as f64)
}
+ /// Casts all elements of `self` to `i16`.
+ #[inline]
+ #[must_use]
+ pub fn as_i16vec4(&self) -> crate::I16Vec4 {
+ crate::I16Vec4::new(self.x as i16, self.y as i16, self.z as i16, self.w as i16)
+ }
+
+ /// Casts all elements of `self` to `u16`.
+ #[inline]
+ #[must_use]
+ pub fn as_u16vec4(&self) -> crate::U16Vec4 {
+ crate::U16Vec4::new(self.x as u16, self.y as u16, self.z as u16, self.w as u16)
+ }
+
/// Casts all elements of `self` to `i32`.
#[inline]
+ #[must_use]
pub fn as_ivec4(&self) -> crate::IVec4 {
crate::IVec4::new(self.x as i32, self.y as i32, self.z as i32, self.w as i32)
}
/// Casts all elements of `self` to `u32`.
#[inline]
+ #[must_use]
pub fn as_uvec4(&self) -> crate::UVec4 {
crate::UVec4::new(self.x as u32, self.y as u32, self.z as u32, self.w as u32)
}
+
+ /// Casts all elements of `self` to `i64`.
+ #[inline]
+ #[must_use]
+ pub fn as_i64vec4(&self) -> crate::I64Vec4 {
+ crate::I64Vec4::new(self.x as i64, self.y as i64, self.z as i64, self.w as i64)
+ }
+
+ /// Casts all elements of `self` to `u64`.
+ #[inline]
+ #[must_use]
+ pub fn as_u64vec4(&self) -> crate::U64Vec4 {
+ crate::U64Vec4::new(self.x as u64, self.y as u64, self.z as u64, self.w as u64)
+ }
}
impl Default for Vec4 {