aboutsummaryrefslogtreecommitdiff
path: root/src/runtime/metrics/runtime.rs
diff options
context:
space:
mode:
Diffstat (limited to 'src/runtime/metrics/runtime.rs')
-rw-r--r--src/runtime/metrics/runtime.rs658
1 files changed, 658 insertions, 0 deletions
diff --git a/src/runtime/metrics/runtime.rs b/src/runtime/metrics/runtime.rs
new file mode 100644
index 0000000..d29cb3d
--- /dev/null
+++ b/src/runtime/metrics/runtime.rs
@@ -0,0 +1,658 @@
+use crate::runtime::Handle;
+
+use std::sync::atomic::Ordering::Relaxed;
+use std::time::Duration;
+
+/// Handle to the runtime's metrics.
+///
+/// This handle is internally reference-counted and can be freely cloned. A
+/// `RuntimeMetrics` handle is obtained using the [`Runtime::metrics`] method.
+///
+/// [`Runtime::metrics`]: crate::runtime::Runtime::metrics()
+#[derive(Clone, Debug)]
+pub struct RuntimeMetrics {
+ handle: Handle,
+}
+
+impl RuntimeMetrics {
+ pub(crate) fn new(handle: Handle) -> RuntimeMetrics {
+ RuntimeMetrics { handle }
+ }
+
+ /// Returns the number of worker threads used by the runtime.
+ ///
+ /// The number of workers is set by configuring `worker_threads` on
+ /// `runtime::Builder`. When using the `current_thread` runtime, the return
+ /// value is always `1`.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use tokio::runtime::Handle;
+ ///
+ /// #[tokio::main]
+ /// async fn main() {
+ /// let metrics = Handle::current().metrics();
+ ///
+ /// let n = metrics.num_workers();
+ /// println!("Runtime is using {} workers", n);
+ /// }
+ /// ```
+ pub fn num_workers(&self) -> usize {
+ self.handle.inner.num_workers()
+ }
+
+ /// Returns the number of additional threads spawned by the runtime.
+ ///
+ /// The number of workers is set by configuring `max_blocking_threads` on
+ /// `runtime::Builder`.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use tokio::runtime::Handle;
+ ///
+ /// #[tokio::main]
+ /// async fn main() {
+ /// let _ = tokio::task::spawn_blocking(move || {
+ /// // Stand-in for compute-heavy work or using synchronous APIs
+ /// 1 + 1
+ /// }).await;
+ /// let metrics = Handle::current().metrics();
+ ///
+ /// let n = metrics.num_blocking_threads();
+ /// println!("Runtime has created {} threads", n);
+ /// }
+ /// ```
+ pub fn num_blocking_threads(&self) -> usize {
+ self.handle.inner.num_blocking_threads()
+ }
+
+ /// Returns the number of idle threads, which hve spawned by the runtime
+ /// for `spawn_blocking` calls.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use tokio::runtime::Handle;
+ ///
+ /// #[tokio::main]
+ /// async fn main() {
+ /// let _ = tokio::task::spawn_blocking(move || {
+ /// // Stand-in for compute-heavy work or using synchronous APIs
+ /// 1 + 1
+ /// }).await;
+ /// let metrics = Handle::current().metrics();
+ ///
+ /// let n = metrics.num_idle_blocking_threads();
+ /// println!("Runtime has {} idle blocking thread pool threads", n);
+ /// }
+ /// ```
+ pub fn num_idle_blocking_threads(&self) -> usize {
+ self.handle.inner.num_idle_blocking_threads()
+ }
+
+ /// Returns the number of tasks scheduled from **outside** of the runtime.
+ ///
+ /// The remote schedule count starts at zero when the runtime is created and
+ /// increases by one each time a task is woken from **outside** of the
+ /// runtime. This usually means that a task is spawned or notified from a
+ /// non-runtime thread and must be queued using the Runtime's injection
+ /// queue, which tends to be slower.
+ ///
+ /// The counter is monotonically increasing. It is never decremented or
+ /// reset to zero.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use tokio::runtime::Handle;
+ ///
+ /// #[tokio::main]
+ /// async fn main() {
+ /// let metrics = Handle::current().metrics();
+ ///
+ /// let n = metrics.remote_schedule_count();
+ /// println!("{} tasks were scheduled from outside the runtime", n);
+ /// }
+ /// ```
+ pub fn remote_schedule_count(&self) -> u64 {
+ self.handle
+ .inner
+ .scheduler_metrics()
+ .remote_schedule_count
+ .load(Relaxed)
+ }
+
+ /// Returns the total number of times the given worker thread has parked.
+ ///
+ /// The worker park count starts at zero when the runtime is created and
+ /// increases by one each time the worker parks the thread waiting for new
+ /// inbound events to process. This usually means the worker has processed
+ /// all pending work and is currently idle.
+ ///
+ /// The counter is monotonically increasing. It is never decremented or
+ /// reset to zero.
+ ///
+ /// # Arguments
+ ///
+ /// `worker` is the index of the worker being queried. The given value must
+ /// be between 0 and `num_workers()`. The index uniquely identifies a single
+ /// worker and will continue to identify the worker throughout the lifetime
+ /// of the runtime instance.
+ ///
+ /// # Panics
+ ///
+ /// The method panics when `worker` represents an invalid worker, i.e. is
+ /// greater than or equal to `num_workers()`.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use tokio::runtime::Handle;
+ ///
+ /// #[tokio::main]
+ /// async fn main() {
+ /// let metrics = Handle::current().metrics();
+ ///
+ /// let n = metrics.worker_park_count(0);
+ /// println!("worker 0 parked {} times", n);
+ /// }
+ /// ```
+ pub fn worker_park_count(&self, worker: usize) -> u64 {
+ self.handle
+ .inner
+ .worker_metrics(worker)
+ .park_count
+ .load(Relaxed)
+ }
+
+ /// Returns the number of times the given worker thread unparked but
+ /// performed no work before parking again.
+ ///
+ /// The worker no-op count starts at zero when the runtime is created and
+ /// increases by one each time the worker unparks the thread but finds no
+ /// new work and goes back to sleep. This indicates a false-positive wake up.
+ ///
+ /// The counter is monotonically increasing. It is never decremented or
+ /// reset to zero.
+ ///
+ /// # Arguments
+ ///
+ /// `worker` is the index of the worker being queried. The given value must
+ /// be between 0 and `num_workers()`. The index uniquely identifies a single
+ /// worker and will continue to identify the worker throughout the lifetime
+ /// of the runtime instance.
+ ///
+ /// # Panics
+ ///
+ /// The method panics when `worker` represents an invalid worker, i.e. is
+ /// greater than or equal to `num_workers()`.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use tokio::runtime::Handle;
+ ///
+ /// #[tokio::main]
+ /// async fn main() {
+ /// let metrics = Handle::current().metrics();
+ ///
+ /// let n = metrics.worker_noop_count(0);
+ /// println!("worker 0 had {} no-op unparks", n);
+ /// }
+ /// ```
+ pub fn worker_noop_count(&self, worker: usize) -> u64 {
+ self.handle
+ .inner
+ .worker_metrics(worker)
+ .noop_count
+ .load(Relaxed)
+ }
+
+ /// Returns the number of tasks the given worker thread stole from
+ /// another worker thread.
+ ///
+ /// This metric only applies to the **multi-threaded** runtime and will
+ /// always return `0` when using the current thread runtime.
+ ///
+ /// The worker steal count starts at zero when the runtime is created and
+ /// increases by `N` each time the worker has processed its scheduled queue
+ /// and successfully steals `N` more pending tasks from another worker.
+ ///
+ /// The counter is monotonically increasing. It is never decremented or
+ /// reset to zero.
+ ///
+ /// # Arguments
+ ///
+ /// `worker` is the index of the worker being queried. The given value must
+ /// be between 0 and `num_workers()`. The index uniquely identifies a single
+ /// worker and will continue to identify the worker throughout the lifetime
+ /// of the runtime instance.
+ ///
+ /// # Panics
+ ///
+ /// The method panics when `worker` represents an invalid worker, i.e. is
+ /// greater than or equal to `num_workers()`.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use tokio::runtime::Handle;
+ ///
+ /// #[tokio::main]
+ /// async fn main() {
+ /// let metrics = Handle::current().metrics();
+ ///
+ /// let n = metrics.worker_steal_count(0);
+ /// println!("worker 0 has stolen {} tasks", n);
+ /// }
+ /// ```
+ pub fn worker_steal_count(&self, worker: usize) -> u64 {
+ self.handle
+ .inner
+ .worker_metrics(worker)
+ .steal_count
+ .load(Relaxed)
+ }
+
+ /// Returns the number of times the given worker thread stole tasks from
+ /// another worker thread.
+ ///
+ /// This metric only applies to the **multi-threaded** runtime and will
+ /// always return `0` when using the current thread runtime.
+ ///
+ /// The worker steal count starts at zero when the runtime is created and
+ /// increases by one each time the worker has processed its scheduled queue
+ /// and successfully steals more pending tasks from another worker.
+ ///
+ /// The counter is monotonically increasing. It is never decremented or
+ /// reset to zero.
+ ///
+ /// # Arguments
+ ///
+ /// `worker` is the index of the worker being queried. The given value must
+ /// be between 0 and `num_workers()`. The index uniquely identifies a single
+ /// worker and will continue to identify the worker throughout the lifetime
+ /// of the runtime instance.
+ ///
+ /// # Panics
+ ///
+ /// The method panics when `worker` represents an invalid worker, i.e. is
+ /// greater than or equal to `num_workers()`.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use tokio::runtime::Handle;
+ ///
+ /// #[tokio::main]
+ /// async fn main() {
+ /// let metrics = Handle::current().metrics();
+ ///
+ /// let n = metrics.worker_steal_operations(0);
+ /// println!("worker 0 has stolen tasks {} times", n);
+ /// }
+ /// ```
+ pub fn worker_steal_operations(&self, worker: usize) -> u64 {
+ self.handle
+ .inner
+ .worker_metrics(worker)
+ .steal_operations
+ .load(Relaxed)
+ }
+
+ /// Returns the number of tasks the given worker thread has polled.
+ ///
+ /// The worker poll count starts at zero when the runtime is created and
+ /// increases by one each time the worker polls a scheduled task.
+ ///
+ /// The counter is monotonically increasing. It is never decremented or
+ /// reset to zero.
+ ///
+ /// # Arguments
+ ///
+ /// `worker` is the index of the worker being queried. The given value must
+ /// be between 0 and `num_workers()`. The index uniquely identifies a single
+ /// worker and will continue to identify the worker throughout the lifetime
+ /// of the runtime instance.
+ ///
+ /// # Panics
+ ///
+ /// The method panics when `worker` represents an invalid worker, i.e. is
+ /// greater than or equal to `num_workers()`.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use tokio::runtime::Handle;
+ ///
+ /// #[tokio::main]
+ /// async fn main() {
+ /// let metrics = Handle::current().metrics();
+ ///
+ /// let n = metrics.worker_poll_count(0);
+ /// println!("worker 0 has polled {} tasks", n);
+ /// }
+ /// ```
+ pub fn worker_poll_count(&self, worker: usize) -> u64 {
+ self.handle
+ .inner
+ .worker_metrics(worker)
+ .poll_count
+ .load(Relaxed)
+ }
+
+ /// Returns the amount of time the given worker thread has been busy.
+ ///
+ /// The worker busy duration starts at zero when the runtime is created and
+ /// increases whenever the worker is spending time processing work. Using
+ /// this value can indicate the load of the given worker. If a lot of time
+ /// is spent busy, then the worker is under load and will check for inbound
+ /// events less often.
+ ///
+ /// The timer is monotonically increasing. It is never decremented or reset
+ /// to zero.
+ ///
+ /// # Arguments
+ ///
+ /// `worker` is the index of the worker being queried. The given value must
+ /// be between 0 and `num_workers()`. The index uniquely identifies a single
+ /// worker and will continue to identify the worker throughout the lifetime
+ /// of the runtime instance.
+ ///
+ /// # Panics
+ ///
+ /// The method panics when `worker` represents an invalid worker, i.e. is
+ /// greater than or equal to `num_workers()`.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use tokio::runtime::Handle;
+ ///
+ /// #[tokio::main]
+ /// async fn main() {
+ /// let metrics = Handle::current().metrics();
+ ///
+ /// let n = metrics.worker_total_busy_duration(0);
+ /// println!("worker 0 was busy for a total of {:?}", n);
+ /// }
+ /// ```
+ pub fn worker_total_busy_duration(&self, worker: usize) -> Duration {
+ let nanos = self
+ .handle
+ .inner
+ .worker_metrics(worker)
+ .busy_duration_total
+ .load(Relaxed);
+ Duration::from_nanos(nanos)
+ }
+
+ /// Returns the number of tasks scheduled from **within** the runtime on the
+ /// given worker's local queue.
+ ///
+ /// The local schedule count starts at zero when the runtime is created and
+ /// increases by one each time a task is woken from **inside** of the
+ /// runtime on the given worker. This usually means that a task is spawned
+ /// or notified from within a runtime thread and will be queued on the
+ /// worker-local queue.
+ ///
+ /// The counter is monotonically increasing. It is never decremented or
+ /// reset to zero.
+ ///
+ /// # Arguments
+ ///
+ /// `worker` is the index of the worker being queried. The given value must
+ /// be between 0 and `num_workers()`. The index uniquely identifies a single
+ /// worker and will continue to identify the worker throughout the lifetime
+ /// of the runtime instance.
+ ///
+ /// # Panics
+ ///
+ /// The method panics when `worker` represents an invalid worker, i.e. is
+ /// greater than or equal to `num_workers()`.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use tokio::runtime::Handle;
+ ///
+ /// #[tokio::main]
+ /// async fn main() {
+ /// let metrics = Handle::current().metrics();
+ ///
+ /// let n = metrics.worker_local_schedule_count(0);
+ /// println!("{} tasks were scheduled on the worker's local queue", n);
+ /// }
+ /// ```
+ pub fn worker_local_schedule_count(&self, worker: usize) -> u64 {
+ self.handle
+ .inner
+ .worker_metrics(worker)
+ .local_schedule_count
+ .load(Relaxed)
+ }
+
+ /// Returns the number of times the given worker thread saturated its local
+ /// queue.
+ ///
+ /// This metric only applies to the **multi-threaded** scheduler.
+ ///
+ /// The worker steal count starts at zero when the runtime is created and
+ /// increases by one each time the worker attempts to schedule a task
+ /// locally, but its local queue is full. When this happens, half of the
+ /// local queue is moved to the injection queue.
+ ///
+ /// The counter is monotonically increasing. It is never decremented or
+ /// reset to zero.
+ ///
+ /// # Arguments
+ ///
+ /// `worker` is the index of the worker being queried. The given value must
+ /// be between 0 and `num_workers()`. The index uniquely identifies a single
+ /// worker and will continue to identify the worker throughout the lifetime
+ /// of the runtime instance.
+ ///
+ /// # Panics
+ ///
+ /// The method panics when `worker` represents an invalid worker, i.e. is
+ /// greater than or equal to `num_workers()`.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use tokio::runtime::Handle;
+ ///
+ /// #[tokio::main]
+ /// async fn main() {
+ /// let metrics = Handle::current().metrics();
+ ///
+ /// let n = metrics.worker_overflow_count(0);
+ /// println!("worker 0 has overflowed its queue {} times", n);
+ /// }
+ /// ```
+ pub fn worker_overflow_count(&self, worker: usize) -> u64 {
+ self.handle
+ .inner
+ .worker_metrics(worker)
+ .overflow_count
+ .load(Relaxed)
+ }
+
+ /// Returns the number of tasks currently scheduled in the runtime's
+ /// injection queue.
+ ///
+ /// Tasks that are spawned or notified from a non-runtime thread are
+ /// scheduled using the runtime's injection queue. This metric returns the
+ /// **current** number of tasks pending in the injection queue. As such, the
+ /// returned value may increase or decrease as new tasks are scheduled and
+ /// processed.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use tokio::runtime::Handle;
+ ///
+ /// #[tokio::main]
+ /// async fn main() {
+ /// let metrics = Handle::current().metrics();
+ ///
+ /// let n = metrics.injection_queue_depth();
+ /// println!("{} tasks currently pending in the runtime's injection queue", n);
+ /// }
+ /// ```
+ pub fn injection_queue_depth(&self) -> usize {
+ self.handle.inner.injection_queue_depth()
+ }
+
+ /// Returns the number of tasks currently scheduled in the given worker's
+ /// local queue.
+ ///
+ /// Tasks that are spawned or notified from within a runtime thread are
+ /// scheduled using that worker's local queue. This metric returns the
+ /// **current** number of tasks pending in the worker's local queue. As
+ /// such, the returned value may increase or decrease as new tasks are
+ /// scheduled and processed.
+ ///
+ /// # Arguments
+ ///
+ /// `worker` is the index of the worker being queried. The given value must
+ /// be between 0 and `num_workers()`. The index uniquely identifies a single
+ /// worker and will continue to identify the worker throughout the lifetime
+ /// of the runtime instance.
+ ///
+ /// # Panics
+ ///
+ /// The method panics when `worker` represents an invalid worker, i.e. is
+ /// greater than or equal to `num_workers()`.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use tokio::runtime::Handle;
+ ///
+ /// #[tokio::main]
+ /// async fn main() {
+ /// let metrics = Handle::current().metrics();
+ ///
+ /// let n = metrics.worker_local_queue_depth(0);
+ /// println!("{} tasks currently pending in worker 0's local queue", n);
+ /// }
+ /// ```
+ pub fn worker_local_queue_depth(&self, worker: usize) -> usize {
+ self.handle.inner.worker_local_queue_depth(worker)
+ }
+
+ /// Returns the number of tasks currently scheduled in the blocking
+ /// thread pool, spawned using `spawn_blocking`.
+ ///
+ /// This metric returns the **current** number of tasks pending in
+ /// blocking thread pool. As such, the returned value may increase
+ /// or decrease as new tasks are scheduled and processed.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use tokio::runtime::Handle;
+ ///
+ /// #[tokio::main]
+ /// async fn main() {
+ /// let metrics = Handle::current().metrics();
+ ///
+ /// let n = metrics.blocking_queue_depth();
+ /// println!("{} tasks currently pending in the blocking thread pool", n);
+ /// }
+ /// ```
+ pub fn blocking_queue_depth(&self) -> usize {
+ self.handle.inner.blocking_queue_depth()
+ }
+}
+
+cfg_net! {
+ impl RuntimeMetrics {
+ /// Returns the number of file descriptors that have been registered with the
+ /// runtime's I/O driver.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use tokio::runtime::Handle;
+ ///
+ /// #[tokio::main]
+ /// async fn main() {
+ /// let metrics = Handle::current().metrics();
+ ///
+ /// let registered_fds = metrics.io_driver_fd_registered_count();
+ /// println!("{} fds have been registered with the runtime's I/O driver.", registered_fds);
+ ///
+ /// let deregistered_fds = metrics.io_driver_fd_deregistered_count();
+ ///
+ /// let current_fd_count = registered_fds - deregistered_fds;
+ /// println!("{} fds are currently registered by the runtime's I/O driver.", current_fd_count);
+ /// }
+ /// ```
+ pub fn io_driver_fd_registered_count(&self) -> u64 {
+ self.with_io_driver_metrics(|m| {
+ m.fd_registered_count.load(Relaxed)
+ })
+ }
+
+ /// Returns the number of file descriptors that have been deregistered by the
+ /// runtime's I/O driver.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use tokio::runtime::Handle;
+ ///
+ /// #[tokio::main]
+ /// async fn main() {
+ /// let metrics = Handle::current().metrics();
+ ///
+ /// let n = metrics.io_driver_fd_deregistered_count();
+ /// println!("{} fds have been deregistered by the runtime's I/O driver.", n);
+ /// }
+ /// ```
+ pub fn io_driver_fd_deregistered_count(&self) -> u64 {
+ self.with_io_driver_metrics(|m| {
+ m.fd_deregistered_count.load(Relaxed)
+ })
+ }
+
+ /// Returns the number of ready events processed by the runtime's
+ /// I/O driver.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use tokio::runtime::Handle;
+ ///
+ /// #[tokio::main]
+ /// async fn main() {
+ /// let metrics = Handle::current().metrics();
+ ///
+ /// let n = metrics.io_driver_ready_count();
+ /// println!("{} ready events processed by the runtime's I/O driver.", n);
+ /// }
+ /// ```
+ pub fn io_driver_ready_count(&self) -> u64 {
+ self.with_io_driver_metrics(|m| m.ready_count.load(Relaxed))
+ }
+
+ fn with_io_driver_metrics<F>(&self, f: F) -> u64
+ where
+ F: Fn(&super::IoDriverMetrics) -> u64,
+ {
+ // TODO: Investigate if this should return 0, most of our metrics always increase
+ // thus this breaks that guarantee.
+ self.handle
+ .inner
+ .driver()
+ .io
+ .as_ref()
+ .map(|h| f(&h.metrics))
+ .unwrap_or(0)
+ }
+ }
+}