aboutsummaryrefslogtreecommitdiff
path: root/Doc/Manual/Varargs.html
blob: fb58ee39a968cbd95fe92e22e38e7d5ac3ba7baf (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<html>
<head>
<title>Variable Length Arguments</title>
<link rel="stylesheet" type="text/css" href="style.css">
<meta http-equiv="content-type" content="text/html; charset=UTF-8">
</head>

<body bgcolor="#ffffff">
<H1><a name="Varargs">14 Variable Length Arguments</a></H1>
<!-- INDEX -->
<div class="sectiontoc">
<ul>
<li><a href="#Varargs_nn2">Introduction</a>
<li><a href="#Varargs_nn3">The Problem</a>
<li><a href="#Varargs_nn4">Default varargs support</a>
<li><a href="#Varargs_nn5">Argument replacement using %varargs</a>
<li><a href="#Varargs_nn6">Varargs and typemaps</a>
<li><a href="#Varargs_nn7">Varargs wrapping with libffi</a>
<li><a href="#Varargs_nn8">Wrapping of va_list</a>
<li><a href="#Varargs_nn9">C++ Issues</a>
<li><a href="#Varargs_nn10">Discussion</a>
</ul>
</div>
<!-- INDEX -->



<p>
<b>(a.k.a, "The horror. The horror.")</b>
</p>

<p>
This chapter describes the problem of wrapping functions that take a
variable number of arguments. For instance, generating wrappers for
the C <tt>printf()</tt> family of functions.
</p>

<p>
This topic is sufficiently advanced to merit its own chapter.  In
fact, support for varargs is an often requested feature that was first
added in SWIG-1.3.12.  Most other wrapper generation tools have
wisely chosen to avoid this issue.
</p>

<H2><a name="Varargs_nn2">14.1 Introduction</a></H2>


<p>
Some C and C++ programs may include functions that accept a variable
number of arguments.  For example, most programmers are
familiar with functions from the C library such as the following:
</p>

<div class="code">
<pre>
int printf(const char *fmt, ...)
int fprintf(FILE *, const char *fmt, ...);
int sprintf(char *s, const char *fmt, ...);
</pre>
</div>

<p>
Although there is probably little practical purpose in wrapping these
specific C library functions in a scripting language (what would be the
point?), a library may include its own set of special functions based
on a similar API. For example:
</p>

<div class="code">
<pre>
int  traceprintf(const char *fmt, ...);
</pre>
</div>

<p>
In this case, you may want to have some kind of access from the target language.
</p>

<p>
Before describing the SWIG implementation, it is important to discuss
the common uses of varargs that you are likely to encounter in real
programs.  Obviously, there are the <tt>printf()</tt> style output
functions as shown.  Closely related to this would be
<tt>scanf()</tt> style input functions that accept a format string and a
list of pointers into which return values are placed.  However, variable
length arguments are also sometimes used to write functions that accept a
NULL-terminated list of pointers.  A good example of this would 
be a function like this:
</p>

<div class="code">
<pre>
int execlp(const char *path, const char *arg1, ...);
...

/* Example */
execlp("ls", "ls", "-l", NULL);
</pre>
</div>

<p>
In addition, varargs is sometimes used to fake default arguments in older
C libraries.   For instance, the low level <tt>open()</tt> system call
is often declared as a varargs function so that it will accept two
or three arguments:
</p>

<div class="code">
<pre>
int open(const char *path, int oflag, ...);
...

/* Examples */
f = open("foo", O_RDONLY);
g = open("bar", O_WRONLY | O_CREAT, 0644);
</pre>
</div>

<p>
Finally, to implement a varargs function, recall that you have to use
the C library functions defined in <tt>&lt;stdarg.h&gt;</tt>.  For
example:
</p>

<div class="code">
<pre>
List make_list(const char *s, ...) {
  va_list ap;
  List    x;
  ...
  va_start(ap, s);
  while (s) {
    x.append(s);
    s = va_arg(ap, const char *);
  }
  va_end(ap);
  return x;
}
</pre>
</div>

<H2><a name="Varargs_nn3">14.2 The Problem</a></H2>


<p>
Generating wrappers for a variable length argument function presents a
number of special challenges.  Although C provides support for
implementing functions that receive variable length arguments, there
are no functions that can go in the other direction.  Specifically,
you can't write a function that dynamically creates a list of
arguments and which invokes a varargs function on your behalf.
</p>

<p>
Although it is possible to write functions that accept the special
type <tt>va_list</tt>, this is something entirely different.  You
can't take a <tt>va_list</tt> structure and pass it in place of the
variable length arguments to another varargs function.  It just
doesn't work.
</p>

<p>
The reason this doesn't work has to do with the way that function
calls get compiled. For example, suppose that your program has a function call like this:
</p>

<div class="code">
<pre>
printf("Hello %s. Your number is %d\n", name, num);
</pre>
</div>

<p>
When the compiler looks at this, it knows that you are calling
<tt>printf()</tt> with exactly three arguments.  Furthermore, it knows
that the number of arguments as well are their types and sizes is
<em>never</em> going to change during program execution.  Therefore,
this gets turned to machine code that sets up a three-argument stack
frame followed by a call to <tt>printf()</tt>.
</p>

<p>
In contrast, suppose you attempted to make some kind of wrapper around
<tt>printf()</tt> using code like this:
</p>

<div class="code">
<pre>
int wrap_printf(const char *fmt, ...) {
  va_list ap;
  va_start(ap, fmt);
  ...
  printf(fmt, ap);
  ...
  va_end(ap);
};
</pre>
</div>

<p>
Although this code might compile, it won't do what you expect. This is
because the call to <tt>printf()</tt> is compiled as a procedure call
involving only two arguments.  However, clearly a two-argument
configuration of the call stack is completely wrong if your intent is
to pass an arbitrary number of arguments to the real
<tt>printf()</tt>.  Needless to say, it won't work.
</p>

<p>
Unfortunately, the situation just described is exactly the problem
faced by wrapper generation tools.  In general, the number of passed
arguments will not be known until run-time.  To make matters even
worse, you won't know the types and sizes of arguments until run-time
as well.  Needless to say, there is no obvious way to make the C
compiler generate code for a function call involving an unknown number
of arguments of unknown types.
</p>

<p>
In theory, it <em>is</em> possible to write a wrapper that does the right thing.
However, this involves knowing the underlying ABI for the target platform and language
as well as writing special purpose code that manually constructed the call stack before 
making a procedure call.  Unfortunately, both of these tasks require the use of inline
assembly code.  Clearly, that's the kind of solution you would much rather avoid.
</p>

<p>
With this nastiness in mind, SWIG provides a number of solutions to the varargs 
wrapping problem.  Most of these solutions are compromises that provide limited
varargs support without having to resort to assembly language.   However, SWIG
can also support real varargs wrapping (with stack-frame manipulation) if you
are willing to get hands dirty.  Keep reading.
</p>

<H2><a name="Varargs_nn4">14.3 Default varargs support</a></H2>


<p>
When variable length arguments appear in an interface, the default
behavior is to drop the variable argument list entirely, replacing
them with a single NULL pointer.  For example, if you had this
function,
</p>

<div class="code">
<pre>
void traceprintf(const char *fmt, ...);
</pre>
</div>

<p>
it would be wrapped as if it had been declared as follows:
</p>

<div class="code">
<pre>
void traceprintf(const char *fmt);
</pre>
</div>

<p>
When the function is called inside the wrappers, it is called as follows:
</p>

<div class="code">
<pre>
traceprintf(arg1, NULL);
</pre>
</div>

<p>
Arguably, this approach seems to defeat the whole point of variable length arguments.  However,
this actually provides enough support for many simple kinds of varargs functions to still be useful, however it does come with a caveat.
For instance, you could make function calls like this (in Python):
</p>

<div class="targetlang">
<pre>
&gt;&gt;&gt; traceprintf("Hello World")
&gt;&gt;&gt; traceprintf("Hello %s. Your number is %d\n" % (name, num))
&gt;&gt;&gt; traceprintf("Your result is 90%%.")
</pre>
</div>

<p>
Notice how string formatting is being done in Python instead of C. 
The caveat is the strings passed must be safe to use in C though.
For example if name was to contain a "%" it should be double escaped in order to avoid unpredictable 
behaviour:
</p>

<div class="targetlang">
<pre>
&gt;&gt;&gt; traceprintf("Your result is 90%.\n")  # unpredictable behaviour
&gt;&gt;&gt; traceprintf("Your result is 90%%.\n") # good
</pre>
</div>

<p>
Read on for further solutions.
</p>


<H2><a name="Varargs_nn5">14.4 Argument replacement using %varargs</a></H2>


<p>
Instead of dropping the variable length arguments, an alternative approach is to replace
<tt>(...)</tt> with a set of suitable arguments.   SWIG provides a special <tt>%varargs</tt> directive 
that can be used to do this.  For example,
</p>

<div class="code">
<pre>
%varargs(int mode = 0) open;
...
int open(const char *path, int oflags, ...);
</pre>
</div>

<p>
is equivalent to this:
</p>

<div class="code">
<pre>
int open(const char *path, int oflags, int mode = 0);
</pre>
</div>

<p>
In this case, <tt>%varargs</tt> is simply providing more specific information about the
extra arguments that might be passed to a function.  
If the arguments to a varargs function are of uniform type, <tt>%varargs</tt> can also
accept a numerical argument count as follows:
</p>

<div class="code">
<pre>
%varargs(3, char *str = NULL) execlp;
...
int execlp(const char *path, const char *arg, ...);
</pre>
</div>

<p>
and is effectively seen as:
</p>

<div class="code">
<pre>
int execlp(const char *path, const char *arg, 
           char *str1 = NULL, 
           char *str2 = NULL, 
           char *str3 = NULL);
</pre>
</div>

<p>
This would wrap <tt>execlp()</tt> as a function that accepted up to 3 optional arguments.
Depending on the application, this may be more than enough for practical purposes.
</p>

<p>
The handling of <a href="SWIGPlus.html#SWIGPlus_default_args">default arguments</a> can be changed via the
<tt>compactdefaultargs</tt> feature. If this feature is used, for example
</p>

<div class="code">
<pre>
%feature("compactdefaultargs") execlp;
%varargs(3, char *str = NULL) execlp;
...
int execlp(const char *path, const char *arg, ...);
</pre>
</div>

<p>
a call from the target language which does not provide the maximum number of arguments, such as,
<tt>execlp("a", "b", "c")</tt>
will generate C code which includes the missing default values, that is, <tt>execlp("a", "b", "c", NULL, NULL)</tt>. 
If <tt>compactdefaultargs</tt> is not used, then the generated code will be
<tt>execlp("a", "b", "c")</tt>. The former is useful for helping providing a sentinel to terminate the argument list.
However, this is not guaranteed, for example when a user passes a non-NULL value for all the parameters.
When using <tt>compactdefaultargs</tt> it is possible to guarantee the NULL sentinel is passed through the, 
<tt>numinputs=0</tt> <a href="Typemaps.html#Typemaps_nn26">'in' typemap attribute</a>, naming the <b>last parameter</b>.
For example,
</p>

<div class="code">
<pre>
%feature("compactdefaultargs") execlp;
%varargs(3, char *str = NULL) execlp;
%typemap(in, numinputs=0) char *str3 ""
...
int execlp(const char *path, const char *arg, ...);
</pre>
</div>

<p>
Note that <tt>str3</tt> is the name of the last argument, as we have used <tt>%varargs</tt> with 3.
Now <tt>execlp("a", "b", "c", "d", "e")</tt> will result in an error as one too many arguments has been passed,
as now only 2 additional 'str' arguments can be passed with the 3rd one always using the specified default <tt>NULL</tt>.
</p>

<p>
Argument replacement is most appropriate in cases where the types of
the extra arguments are uniform and the maximum number of arguments are
known. 
Argument replacement is not as useful when working with functions that accept
mixed argument types such as <tt>printf()</tt>.  Providing general purpose
wrappers to such functions presents special problems (covered shortly).  
</p>

<H2><a name="Varargs_nn6">14.5 Varargs and typemaps</a></H2>


<p>
Variable length arguments may be used in typemap specifications.  For example:
</p>

<div class="code">
<pre>
%typemap(in) (...) {
    // Get variable length arguments (somehow)
    ...
}

%typemap(in) (const char *fmt, ...) {
    // Multi-argument typemap
}
</pre>
</div>

<p>
However, this immediately raises the question of what "type" is actually used
to represent <tt>(...)</tt>.  For lack of a better alternative, the type of
<tt>(...)</tt> is set to <tt>void *</tt>.  Since there is no
way to dynamically pass arguments to a varargs function (as previously described),
the <tt>void *</tt> argument value is intended to serve as a place holder
for storing some kind of information about the extra arguments (if any).  In addition, the
default behavior of SWIG is to pass the <tt>void *</tt> value as an argument to
the function.  Therefore, you could use the pointer to hold a valid argument value if you wanted.
</p>

<p>
To illustrate, here is a safer version of wrapping <tt>printf()</tt> in Python:
</p>

<div class="code">
<pre>
%typemap(in) (const char *fmt, ...) {
    $1 = "%s";                                /* Fix format string to %s */
    $2 = (void *) PyString_AsString($input);  /* Get string argument */
};
...
int printf(const char *fmt, ...);
</pre>
</div>

<p>
In this example, the format string is implicitly set to <tt>"%s"</tt>.
This prevents a program from passing a bogus format string to the
extension.  Then, the passed input object is decoded and placed in the
<tt>void *</tt> argument defined for the <tt>(...)</tt> argument.  When the
actual function call is made, the underlying wrapper code will look roughly
like this:
</p>

<div class="code">
<pre>
wrap_printf() {
  char *arg1;
  void *arg2;
  int   result;

  arg1 = "%s";
  arg2 = (void *) PyString_AsString(arg2obj);
  ...
  result = printf(arg1, arg2);
  ...
}
</pre>
</div>

<p>
Notice how both arguments are passed to the function and it does what you
would expect. 
</p>

<p>
The next example illustrates a more advanced kind of varargs typemap.
Disclaimer: this requires special support in the target language module and is not
guaranteed to work with all SWIG modules at this time.  It also starts to illustrate
some of the more fundamental problems with supporting varargs in more generality.
</p>

<p>
If a typemap is defined for any form of <tt>(...)</tt>, many SWIG
modules will generate wrappers that accept a variable number of
arguments as input and will make these arguments available in some
form.  The precise details of this depends on the language module
being used (consult the appropriate chapter for more details).
However, suppose that you wanted to create a Python wrapper for the
<tt>execlp()</tt> function shown earlier.  To do this using a typemap
instead of using <tt>%varargs</tt>, you might first write a typemap
like this:
</p>

<div class="code">
<pre>
%typemap(in) (...)(char *vargs[10]) {
  int i;
  int argc;
  for (i = 0; i &lt; 10; i++) vargs[i] = 0;
  argc = PyTuple_Size(varargs);
  if (argc &gt; 10) {
    PyErr_SetString(PyExc_ValueError, "Too many arguments");
    SWIG_fail;
  }
  for (i = 0; i &lt; argc; i++) {
    PyObject *pyobj = PyTuple_GetItem(varargs, i);
    char *str = 0;
%#if PY_VERSION_HEX&gt;=0x03000000
    PyObject *pystr;
    if (!PyUnicode_Check(pyobj)) {
      PyErr_SetString(PyExc_ValueError, "Expected a string");
      SWIG_fail;
    }
    pystr = PyUnicode_AsUTF8String(pyobj);
    str = strdup(PyBytes_AsString(pystr));
    Py_XDECREF(pystr);
%#else  
    if (!PyString_Check(pyobj)) {
      PyErr_SetString(PyExc_ValueError, "Expected a string");
      SWIG_fail;
    }
    str = PyString_AsString(pyobj);
%#endif
    vargs[i] = str;
  }
  $1 = (void *)vargs;
}

%typemap(freearg) (...) {
%#if PY_VERSION_HEX&gt;=0x03000000
  int i;
  for (i = 0; i &lt; 10; i++) {
    free(vargs$argnum[i]);
  }
%#endif
}
</pre>
</div>

<p>
In the 'in' typemap, the special variable <tt>varargs</tt> is a tuple
holding all of the extra arguments passed (this is specific to the
Python module).  The typemap then pulls this apart and sticks the
values into the array of strings <tt>args</tt>.  Then, the array is
assigned to <tt>$1</tt> (recall that this is the <tt>void *</tt>
variable corresponding to <tt>(...)</tt>).  However, this assignment
is only half of the picture----clearly this alone is not enough to
make the function work.  The 'freearg' typemap cleans up memory
allocated in the 'in' typemap; this code is generated to be called
after the <tt>execlp</tt> function is called. To patch everything
up, you have to rewrite the
underlying action code using the <tt>%feature</tt> directive like
this:
</p>

<div class="code">
<pre>
%feature("action") execlp {
  char **vargs = (char **) arg3;
  result = execlp(arg1, arg2, vargs[0], vargs[1], vargs[2], vargs[3], vargs[4],
                  vargs[5], vargs[6], vargs[7], vargs[8], vargs[9], NULL);
}

int execlp(const char *path, const char *arg, ...);
</pre>
</div>

<p>
This patches everything up and creates a function that more or less
works.  However, don't try explaining this to your coworkers unless
you know for certain that they've had several cups of coffee.  If you
really want to elevate your guru status and increase your job
security, continue to the next section.
</p>

<H2><a name="Varargs_nn7">14.6 Varargs wrapping with libffi</a></H2>


<p>
All of the previous examples have relied on features of SWIG that are
portable and which don't rely upon any low-level machine-level
details.  In many ways, they have all dodged the real issue of variable
length arguments by recasting a varargs function into some weaker variation
with a fixed number of arguments of known types.  In many cases, this
works perfectly fine.  However, if you want more generality than this,
you need to bring out some bigger guns.
</p>

<p>
One way to do this is to use a special purpose library such as libffi
(<a
href="http://www.sourceware.org/libffi/">http://www.sourceware.org/libffi/</a>).
libffi is a library that allows you to dynamically construct
call-stacks and invoke procedures in a relatively platform independent
manner.  Details about the library can be found in the libffi
distribution and are not repeated here.
</p>

<p>
To illustrate the use of libffi, suppose that you <em>really</em> wanted to create a
wrapper for <tt>execlp()</tt> that accepted <em>any</em> number of
arguments.  To do this, you might make a few adjustments to the previous
example. For example:
</p>

<div class="code">
<pre>
/* Take an arbitrary number of extra arguments and place into an array
   of strings */

%typemap(in) (...) {
  char **argv;
  int    argc;
  int    i;

  argc = PyTuple_Size(varargs);
  argv = (char **) malloc(sizeof(char *)*(argc+1));
  for (i = 0; i &lt; argc; i++) {
    PyObject *o = PyTuple_GetItem(varargs, i);
    if (!PyString_Check(o)) {
      free(argv);
      PyErr_SetString(PyExc_ValueError, "Expected a string");
      SWIG_fail;
    }
    argv[i] = PyString_AsString(o);
  }
  argv[i] = NULL;
  $1 = (void *) argv;
}

/* Rewrite the function call, using libffi */    

%feature("action") execlp {
  int       i, vc;
  ffi_cif   cif;
  ffi_type  **types;
  void      **values;
  char      **args;

  vc = PyTuple_Size(varargs);
  types  = (ffi_type **) malloc((vc+3)*sizeof(ffi_type *));
  values = (void **) malloc((vc+3)*sizeof(void *));
  args   = (char **) arg3;

  /* Set up path parameter */
  types[0] = &amp;ffi_type_pointer;
  values[0] = &amp;arg1;
  
  /* Set up first argument */
  types[1] = &amp;ffi_type_pointer;
  values[1] = &amp;arg2;

  /* Set up rest of parameters */
  for (i = 0; i &lt;= vc; i++) {
    types[2+i] = &amp;ffi_type_pointer;
    values[2+i] = &amp;args[i];
  }
  if (ffi_prep_cif(&amp;cif, FFI_DEFAULT_ABI, vc+3,
                   &amp;ffi_type_uint, types) == FFI_OK) {
    ffi_call(&amp;cif, (void (*)()) execlp, &amp;result, values);
  } else {
    free(types);
    free(values);
    free(arg3);
    PyErr_SetString(PyExc_RuntimeError, "Whoa!!!!!");
    SWIG_fail;
  }
  free(types);
  free(values);
  free(arg3);
}

/* Declare the function. Whew! */
int execlp(const char *path, const char *arg1, ...);
</pre>
</div>

<p>
Looking at this example, you may start to wonder if SWIG is making
life any easier.  Given the amount of code involved, you might also wonder
why you didn't just write a hand-crafted wrapper!  Either that or you're wondering
"why in the hell am I trying to wrap this varargs function in the 
first place?!?"  Obviously, those are questions you'll have to answer for yourself.
</p>

<p>
As a more extreme example of libffi, here is some code that attempts to wrap <tt>printf()</tt>,
</p>

<div class="code">
<pre>
/* A wrapper for printf() using libffi */

%{
/* Structure for holding passed arguments after conversion */
  typedef struct {
    int type;
    union {
      int    ivalue;
      double dvalue;
      void   *pvalue;
    } val;
  } vtype;
  enum { VT_INT, VT_DOUBLE, VT_POINTER };
%}

%typemap(in) (const char *fmt, ...) {
  vtype *argv;
  int    argc;
  int    i;

  /* Format string */
  $1 = PyString_AsString($input);

  /* Variable length arguments */
  argc = PyTuple_Size(varargs);
  argv = (vtype *) malloc(argc*sizeof(vtype));
  for (i = 0; i &lt; argc; i++) {
    PyObject *o = PyTuple_GetItem(varargs, i);
    if (PyInt_Check(o)) {
      argv[i].type = VT_INT;
      argv[i].val.ivalue = PyInt_AsLong(o);
    } else if (PyFloat_Check(o)) {
      argv[i].type = VT_DOUBLE;
      argv[i].val.dvalue = PyFloat_AsDouble(o);
    } else if (PyString_Check(o)) {
      argv[i].type = VT_POINTER;
      argv[i].val.pvalue = (void *) PyString_AsString(o);
    } else {
      free(argv);
      PyErr_SetString(PyExc_ValueError, "Unsupported argument type");
      return NULL;
    }
  }
  $2 = (void *) argv;
}

/* Rewrite the function call using libffi */    
%feature("action") printf {
  int       i, vc;
  ffi_cif   cif;
  ffi_type  **types;
  void      **values;
  vtype     *args;

  vc = PyTuple_Size(varargs);
  types  = (ffi_type **) malloc((vc+1)*sizeof(ffi_type *));
  values = (void **) malloc((vc+1)*sizeof(void *));
  args   = (vtype *) arg2;

  /* Set up fmt parameter */
  types[0] = &amp;ffi_type_pointer;
  values[0] = &amp;arg1;

  /* Set up rest of parameters */
  for (i = 0; i &lt; vc; i++) {
    switch(args[i].type) {
    case VT_INT:
      types[1+i] = &amp;ffi_type_uint;
      values[1+i] = &amp;args[i].val.ivalue;
      break;
    case VT_DOUBLE:
      types[1+i] = &amp;ffi_type_double;
      values[1+i] = &amp;args[i].val.dvalue;
      break;
    case VT_POINTER:
      types[1+i] = &amp;ffi_type_pointer;
      values[1+i] = &amp;args[i].val.pvalue;
      break;
    default:
      abort();    /* Whoa! We're seriously hosed */
      break;   
    }
  }
  if (ffi_prep_cif(&amp;cif, FFI_DEFAULT_ABI, vc+1,
                   &amp;ffi_type_uint, types) == FFI_OK) {
    ffi_call(&amp;cif, (void (*)()) printf, &amp;result, values);
  } else {
    free(types);
    free(values);
    free(args);
    PyErr_SetString(PyExc_RuntimeError, "Whoa!!!!!");
    SWIG_fail;
  }
  free(types);
  free(values);
  free(args);
}

/* The function */
int printf(const char *fmt, ...);
</pre>
</div>

<p>
Much to your amazement, it even seems to work if you try it:
</p>

<div class="targetlang">
<pre>
&gt;&gt;&gt; import example
&gt;&gt;&gt; example.printf("Grade: %s   %d/60 = %0.2f%%\n", "Dave", 47, 47.0*100/60)
Grade: Dave   47/60 = 78.33%
&gt;&gt;&gt;
</pre>
</div>

<p>
Of course, there are still some limitations to consider:
</p>

<div class="targetlang">
<pre>
&gt;&gt;&gt; example.printf("la de da de da %s", 42)
Segmentation fault (core dumped)
</pre>
</div>

<p>
And, on this note, we leave further exploration of libffi to the reader as an exercise.  Although Python has been used as an example,
most of the techniques in this section can be extrapolated to other language modules with a bit of work.   The only
details you need to know is how the extra arguments are accessed in each target language.  For example, in the Python
module, we used the special <tt>varargs</tt> variable to get these arguments.  Modules such as Tcl8 and Perl5 simply
provide an argument number for the first extra argument.  This can be used to index into an array of passed arguments to get
values.   Please consult the chapter on each language module for more details.
</p>

<H2><a name="Varargs_nn8">14.7 Wrapping of va_list</a></H2>


<p>
Closely related to variable length argument wrapping, you may encounter functions that accept a parameter
of type <tt>va_list</tt>.  For example:
</p>

<div class="code">
<pre>
int vprintf(const char *fmt, va_list ap);
</pre>
</div>

<p>
As far as we know, there is no obvious way to wrap these functions with
SWIG.  This is because there is no documented way to assemble the
proper va_list structure (there are no C library functions to do it
and the contents of va_list are opaque).  Not only that, the contents
of a <tt>va_list</tt> structure are closely tied to the underlying
call-stack.  It's not clear that exporting a <tt>va_list</tt> would
have any use or that it would work at all.
</p>

<p>
A workaround can be implemented by writing a simple varargs C wrapper and then using the techniques
discussed earlier in this chapter for varargs. Below is a simple wrapper for <tt>vprintf</tt> renamed so that
it can still be called as <tt>vprintf</tt> from your target language. The <tt>%varargs</tt>
used in the example restricts the function to taking one string argument.
</p>

<div class="code">
<pre>
%{
int vprintf(const char *fmt, va_list ap);
%}

%varargs(const char *) my_vprintf;
%rename(vprintf) my_vprintf;

%inline %{
int my_vprintf(const char *fmt, ...) {
  va_list ap;
  int result;

  va_start(ap, fmt);
  result = vprintf(fmt, ap);
  va_end(ap);
  return result;
}
%}
</pre>
</div>

<H2><a name="Varargs_nn9">14.8 C++ Issues</a></H2>


<p>
Wrapping of C++ member functions that accept a variable number of
arguments presents a number of challenges.   By far, the easiest way to
handle this is to use the <tt>%varargs</tt> directive.   This is portable
and it fully supports classes much like the <tt>%rename</tt> directive.  For example:
</p>

<div class="code">
<pre>
%varargs (10, char * = NULL) Foo::bar;

class Foo {
public:
  virtual void bar(char *arg, ...);   // gets varargs above
};

class Spam: public Foo {
public:
  virtual void bar(char *arg, ...);   // gets varargs above
};
</pre>
</div>

<p>
<tt>%varargs</tt> also works with constructors, operators, and any
other C++ programming construct that accepts variable arguments.
</p>

<p>
Doing anything more advanced than this is likely to involve a serious
world of pain.  In order to use a library like libffi, you will need
to know the underlying calling conventions and details of the C++ ABI.  For
instance, the details of how <tt>this</tt> is passed to member
functions as well as any hidden arguments that might be used to pass
additional information.  These details are implementation specific and
may differ between compilers and even different versions of the same
compiler.  Also, be aware that invoking a member function is further
complicated if it is a virtual method.  In this case,
invocation might require a table lookup to obtain the proper function address
(although you might be able to obtain an address by casting a bound
pointer to a pointer to function as described in the C++ ARM section
18.3.4).
</p>

<p>
If you do decide to change the underlying action code, be aware that SWIG
always places the <tt>this</tt> pointer in <tt>arg1</tt>.   Other arguments
are placed in <tt>arg2</tt>, <tt>arg3</tt>, and so forth.  For example:
</p>

<div class="code">
<pre>
%feature("action") Foo::bar {
  ...
  result = arg1-&gt;bar(arg2, arg3, etc.);
  ...
}
</pre>
</div>

<p>
Given the potential to shoot yourself in the foot, it is probably easier to reconsider your
design or to provide an alternative interface using a helper function than it is to create a
fully general wrapper to a varargs C++ member function.
</p>

<H2><a name="Varargs_nn10">14.9 Discussion</a></H2>


<p>
This chapter has provided a number of techniques that can be used to address the problem of variable length
argument wrapping.  If you care about portability and ease of use, the <tt>%varargs</tt> directive is
probably the easiest way to tackle the problem.   However, using typemaps, it is possible to do some very advanced
kinds of wrapping.
</p>

<p>
One point of discussion concerns the structure of the libffi examples in the previous section.  Looking
at that code, it is not at all clear that this is the easiest way to solve the problem.  However, there 
are a number of subtle aspects of the solution to consider--mostly concerning the way in which the
problem has been decomposed.   First, the example is structured in a way that tries to maintain separation
between wrapper-specific information and the declaration of the function itself.   The idea here is that
you might structure your interface like this:
</p>

<div class="code">
<pre>
%typemap(const char *fmt, ...) {
  ...
}
%feature("action") traceprintf {
  ...
}

/* Include some header file with traceprintf in it */
%include "someheader.h"
</pre>
</div>

<p>
Second, careful scrutiny will reveal that the typemaps involving <tt>(...)</tt> have nothing
whatsoever to do with the libffi library.  In fact, they are generic with respect to the way in which
the function is actually called.   This decoupling means that it will be much easier to consider
other library alternatives for making the function call.  For instance, if libffi wasn't supported on a certain
platform, you might be able to use something else instead.  You could use conditional compilation
to control this:
</p>

<div class="code">
<pre>
#ifdef USE_LIBFFI
%feature("action") printf {
  ...
}
#endif
#ifdef USE_OTHERFFI
%feature("action") printf {
...
}
#endif
</pre>
</div>

<p>
Finally, even though you might be inclined to just write a hand-written wrapper for varargs functions,
the techniques used in the previous section have the advantage of being compatible with all other features
of SWIG such as exception handling.
</p>

<p>
As a final word, some C programmers seem to have the assumption that
the wrapping of variable length argument functions is an easily solved
problem.  However, this section has hopefully dispelled some of these
myths.  All things being equal, you are better off avoiding variable
length arguments if you can.  If you can't avoid them, please consider
some of the simple solutions first.  If you can't live with a simple
solution, proceed with caution.  At the very least, make sure you
carefully read the section "A7.3.2 Function Calls" in Kernighan and
Ritchie and make sure you fully understand the parameter passing conventions used for varargs.
Also, be aware of the platform dependencies and reliability issues that
this will introduce.  Good luck.
</p>

</body>
</html>