aboutsummaryrefslogtreecommitdiff
path: root/MathFunctions.c
blob: 0b08aad8618c0e2630f3482f8c755736ed50eae0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
// This file was extracted from the TCG Published
// Trusted Platform Module Library
// Part 4: Supporting Routines
// Family "2.0"
// Level 00 Revision 01.16
// October 30, 2014

#include <string.h>

#include "CryptoEngine.h"

#ifndef EMBEDDED_MODE
#include "OsslCryptoEngine.h"
//
//
//          Externally Accessible Functions
//
//           _math__Normalize2B()
//
//     This function will normalize the value in a TPM2B. If there are leading bytes of zero, the first non-zero
//     byte is shifted up.
//
//     Return Value                     Meaning
//
//     0                                no significant bytes, value is zero
//     >0                               number of significant bytes
//
LIB_EXPORT UINT16
_math__Normalize2B(
     TPM2B               *b                  // IN/OUT: number to normalize
     )
{
     UINT16        from;
     UINT16        to;
     UINT16        size = b->size;
     for(from = 0; b->buffer[from] == 0 && from < size; from++);
     b->size -= from;
     for(to = 0; from < size; to++, from++ )
         b->buffer[to] = b->buffer[from];
     return b->size;
}
//
//
//
//        _math__Denormalize2B()
//
//     This function is used to adjust a TPM2B so that the number has the desired number of bytes. This is
//     accomplished by adding bytes of zero at the start of the number.
//
//     Return Value                      Meaning
//
//     TRUE                              number de-normalized
//     FALSE                             number already larger than the desired size
//
LIB_EXPORT BOOL
_math__Denormalize2B(
    TPM2B              *in,                   // IN:OUT TPM2B number to de-normalize
    UINT32              size                  // IN: the desired size
    )
{
    UINT32       to;
    UINT32       from;
    // If the current size is greater than the requested size, see if this can be
    // normalized to a value smaller than the requested size and then de-normalize
    if(in->size > size)
    {
        _math__Normalize2B(in);
        if(in->size > size)
            return FALSE;
    }
    // If the size is already what is requested, leave
    if(in->size == size)
        return TRUE;
    // move the bytes to the 'right'
    for(from = in->size, to = size; from > 0;)
        in->buffer[--to] = in->buffer[--from];
    // 'to' will always be greater than 0 because we checked for equal above.
    for(; to > 0;)
        in->buffer[--to] = 0;
    in->size = (UINT16)size;
    return TRUE;
}
//
//
//        _math__sub()
//
//     This function to subtract one unsigned value from another c = a - b. c may be the same as a or b.
//
//     Return Value                      Meaning
//
//     1                                 if (a > b) so no borrow
//     0                                 if (a = b) so no borrow and b == a
//     -1                                if (a < b) so there was a borrow
//
LIB_EXPORT int
_math__sub(
    const UINT32        aSize,                //   IN: size   of a
    const BYTE         *a,                    //   IN: a
    const UINT32        bSize,                //   IN: size   of b
    const BYTE         *b,                    //   IN: b
    UINT16             *cSize,                //   OUT: set   to MAX(aSize, bSize)
    BYTE               *c                     //   OUT: the   difference
    )
{
    int               borrow = 0;
    int               notZero = 0;
    int               i;
    int               i2;
    // set c to the longer of a or b
    *cSize = (UINT16)((aSize > bSize) ? aSize : bSize);
    // pick the shorter of a and b
    i = (aSize > bSize) ? bSize : aSize;
    i2 = *cSize - i;
    a = &a[aSize - 1];
    b = &b[bSize - 1];
    c = &c[*cSize - 1];
    for(; i > 0; i--)
    {
        borrow = *a-- - *b-- + borrow;
        *c-- = (BYTE)borrow;
        notZero = notZero || borrow;
        borrow >>= 8;
    }
    if(aSize > bSize)
    {
        for(;i2 > 0; i2--)
        {
            borrow = *a-- + borrow;
            *c-- = (BYTE)borrow;
            notZero = notZero || borrow;
            borrow >>= 8;
        }
    }
    else if(aSize < bSize)
    {
        for(;i2 > 0; i2--)
        {
            borrow = 0 - *b-- + borrow;
            *c-- = (BYTE)borrow;
            notZero = notZero || borrow;
            borrow >>= 8;
        }
    }
    // if there is a borrow, then b > a
    if(borrow)
        return -1;
    // either a > b or they are the same
    return notZero;
}
//
//
//         _math__Inc()
//
//      This function increments a large, big-endian number value by one.
//
//      Return Value                   Meaning
//
//      0                              result is zero
//      !0                             result is not zero
//
LIB_EXPORT int
_math__Inc(
    UINT32             aSize,              // IN: size of a
    BYTE              *a                   // IN: a
    )
{
//
      for(a = &a[aSize-1];aSize > 0; aSize--)
      {
          if((*a-- += 1) != 0)
              return 1;
      }
      return 0;
}
//
//
//          _math__Dec()
//
//      This function decrements a large, ENDIAN value by one.
//
LIB_EXPORT void
_math__Dec(
      UINT32            aSize,                // IN: size of a
      BYTE             *a                     // IN: a
      )
{
      for(a = &a[aSize-1]; aSize > 0; aSize--)
      {
          if((*a-- -= 1) != 0xff)
              return;
      }
      return;
}
//
//
//          _math__Mul()
//
//      This function is used to multiply two large integers: p = a* b. If the size of p is not specified (pSize ==
//      NULL), the size of the results p is assumed to be aSize + bSize and the results are de-normalized so that
//      the resulting size is exactly aSize + bSize. If pSize is provided, then the actual size of the result is
//      returned. The initial value for pSize must be at least aSize + pSize.
//
//      Return Value                      Meaning
//
//      <0                                indicates an error
//      >= 0                              the size of the product
//
LIB_EXPORT int
_math__Mul(
      const UINT32      aSize,                //   IN: size of a
      const BYTE       *a,                    //   IN: a
      const UINT32      bSize,                //   IN: size of b
      const BYTE       *b,                    //   IN: b
      UINT32           *pSize,                //   IN/OUT: size of the product
      BYTE             *p                     //   OUT: product. length of product = aSize +
                                              //       bSize
      )
{
      BIGNUM           *bnA;
      BIGNUM           *bnB;
      BIGNUM           *bnP;
      BN_CTX           *context;
      int              retVal = 0;
      // First check that pSize is large enough if present
      if((pSize != NULL) && (*pSize < (aSize + bSize)))
          return CRYPT_PARAMETER;
      pAssert(pSize == NULL || *pSize <= MAX_2B_BYTES);
      //
//
    // Allocate space for BIGNUM context
    //
    context = BN_CTX_new();
    if(context == NULL)
        FAIL(FATAL_ERROR_ALLOCATION);
    bnA = BN_CTX_get(context);
    bnB = BN_CTX_get(context);
    bnP = BN_CTX_get(context);
    if (bnP == NULL)
        FAIL(FATAL_ERROR_ALLOCATION);
    // Convert the inputs to BIGNUMs
    //
    if (BN_bin2bn(a, aSize, bnA) == NULL || BN_bin2bn(b, bSize, bnB) == NULL)
        FAIL(FATAL_ERROR_INTERNAL);
    // Perform the multiplication
    //
    if (BN_mul(bnP, bnA, bnB, context) != 1)
        FAIL(FATAL_ERROR_INTERNAL);
    // If the size of the results is allowed to float, then set the return
    // size. Otherwise, it might be necessary to de-normalize the results
    retVal = BN_num_bytes(bnP);
    if(pSize == NULL)
    {
        BN_bn2bin(bnP, &p[aSize + bSize - retVal]);
        memset(p, 0, aSize + bSize - retVal);
        retVal = aSize + bSize;
    }
    else
    {
        BN_bn2bin(bnP, p);
        *pSize = retVal;
    }
    BN_CTX_end(context);
    BN_CTX_free(context);
    return retVal;
}
//
//
//         _math__Div()
//
//      Divide an integer (n) by an integer (d) producing a quotient (q) and a remainder (r). If q or r is not needed,
//      then the pointer to them may be set to NULL.
//
//      Return Value                     Meaning
//
//      CRYPT_SUCCESS                    operation complete
//      CRYPT_UNDERFLOW                  q or r is too small to receive the result
//
LIB_EXPORT CRYPT_RESULT
_math__Div(
    const TPM2B         *n,                  //   IN: numerator
    const TPM2B         *d,                  //   IN: denominator
    TPM2B               *q,                  //   OUT: quotient
    TPM2B               *r                   //   OUT: remainder
    )
{
    BIGNUM              *bnN;
    BIGNUM              *bnD;
    BIGNUM              *bnQ;
    BIGNUM              *bnR;
    BN_CTX            *context;
    CRYPT_RESULT       retVal = CRYPT_SUCCESS;
    // Get structures for the big number representations
    context = BN_CTX_new();
    if(context == NULL)
        FAIL(FATAL_ERROR_ALLOCATION);
    BN_CTX_start(context);
    bnN = BN_CTX_get(context);
    bnD = BN_CTX_get(context);
    bnQ = BN_CTX_get(context);
    bnR = BN_CTX_get(context);
    // Errors in BN_CTX_get() are sticky so only need to check the last allocation
    if (    bnR == NULL
         || BN_bin2bn(n->buffer, n->size, bnN) == NULL
         || BN_bin2bn(d->buffer, d->size, bnD) == NULL)
             FAIL(FATAL_ERROR_INTERNAL);
    // Check for divide by zero.
    if(BN_num_bits(bnD) == 0)
        FAIL(FATAL_ERROR_DIVIDE_ZERO);
    // Perform the division
    if (BN_div(bnQ, bnR, bnN, bnD, context) != 1)
        FAIL(FATAL_ERROR_INTERNAL);
    // Convert the BIGNUM result back to our format
    if(q != NULL)   // If the quotient is being returned
    {
        if(!BnTo2B(q, bnQ, q->size))
        {
            retVal = CRYPT_UNDERFLOW;
            goto Done;
        }
      }
    if(r != NULL)   // If the remainder is being returned
    {
        if(!BnTo2B(r, bnR, r->size))
            retVal = CRYPT_UNDERFLOW;
    }
Done:
   BN_CTX_end(context);
   BN_CTX_free(context);
    return retVal;
}
#endif // ! EMBEDDED_MODE
//
//
//         _math__uComp()
//
//      This function compare two unsigned values.
//
//      Return Value                      Meaning
//
//      1                                 if (a > b)
//      0                                 if (a = b)
//      -1                                if (a < b)
//
LIB_EXPORT int
_math__uComp(
    const UINT32       aSize,                 // IN: size of a
    const BYTE        *a,                     // IN: a
    const UINT32       bSize,                // IN: size of b
    const BYTE        *b                     // IN: b
    )
{
    int              borrow = 0;
    int              notZero = 0;
    int              i;
    // If a has more digits than b, then a is greater than b if
    // any of the more significant bytes is non zero
    if((i = (int)aSize - (int)bSize) > 0)
        for(; i > 0; i--)
            if(*a++) // means a > b
                 return 1;
    // If b has more digits than a, then b is greater if any of the
    // more significant bytes is non zero
    if(i < 0) // Means that b is longer than a
        for(; i < 0; i++)
            if(*b++) // means that b > a
                 return -1;
    // Either the vales are the same size or the upper bytes of a or b are
    // all zero, so compare the rest
    i = (aSize > bSize) ? bSize : aSize;
    a = &a[i-1];
    b = &b[i-1];
    for(; i > 0; i--)
    {
        borrow = *a-- - *b-- + borrow;
        notZero = notZero || borrow;
        borrow >>= 8;
    }
    // if there is a borrow, then b > a
    if(borrow)
        return -1;
    // either a > b or they are the same
    return notZero;
}
//
//
//           _math__Comp()
//
//      Compare two signed integers:
//
//      Return Value                    Meaning
//
//      1                               if a > b
//      0                               if a = b
//      -1                              if a < b
//
LIB_EXPORT int
_math__Comp(
    const   UINT32     aSize,                //   IN:   size of a
    const   BYTE      *a,                    //   IN:   a buffer
    const   UINT32     bSize,                //   IN:   size of b
    const   BYTE      *b                     //   IN:   b buffer
    )
{
    int        signA, signB;              // sign of a and b
    // For positive or 0, sign_a is 1
    // for negative, sign_a is 0
    signA = ((a[0] & 0x80) == 0) ? 1 : 0;
    // For positive or 0, sign_b is 1
    // for negative, sign_b is 0
   signB = ((b[0] & 0x80) == 0) ? 1 : 0;
   if(signA != signB)
   {
       return signA - signB;
   }
   if(signA == 1)
       // do unsigned compare function
       return _math__uComp(aSize, a, bSize, b);
   else
       // do unsigned compare the other way
       return 0 - _math__uComp(aSize, a, bSize, b);
}
//
//
//       _math__ModExp
//
//      This function is used to do modular exponentiation in support of RSA. The most typical uses are: c = m^e
//      mod n (RSA encrypt) and m = c^d mod n (RSA decrypt). When doing decryption, the e parameter of the
//      function will contain the private exponent d instead of the public exponent e.
//      If the results will not fit in the provided buffer, an error is returned (CRYPT_ERROR_UNDERFLOW). If
//      the results is smaller than the buffer, the results is de-normalized.
//      This version is intended for use with RSA and requires that m be less than n.
//
//      Return Value                      Meaning
//
//      CRYPT_SUCCESS                     exponentiation succeeded
//      CRYPT_PARAMETER                   number to exponentiate is larger than the modulus
//      CRYPT_UNDERFLOW                   result will not fit into the provided buffer
//
#ifndef EMBEDDED_MODE
LIB_EXPORT CRYPT_RESULT
_math__ModExp(
   UINT32               cSize,                 //   IN: size of the result
   BYTE                *c,                     //   OUT: results buffer
   const UINT32         mSize,                 //   IN: size of number to be exponentiated
   const BYTE          *m,                     //   IN: number to be exponentiated
   const UINT32         eSize,                 //   IN: size of power
   const BYTE          *e,                     //   IN: power
   const UINT32         nSize,                 //   IN: modulus size
   const BYTE          *n                      //   IN: modulu
   )
{
   CRYPT_RESULT         retVal = CRYPT_SUCCESS;
   BN_CTX              *context;
   BIGNUM              *bnC;
   BIGNUM              *bnM;
   BIGNUM              *bnE;
   BIGNUM              *bnN;
   INT32                i;
   context = BN_CTX_new();
   if(context == NULL)
       FAIL(FATAL_ERROR_ALLOCATION);
   BN_CTX_start(context);
   bnC = BN_CTX_get(context);
   bnM = BN_CTX_get(context);
   bnE = BN_CTX_get(context);
   bnN = BN_CTX_get(context);
   // Errors for BN_CTX_get are sticky so only need to check last allocation
   if(bnN == NULL)
         FAIL(FATAL_ERROR_ALLOCATION);
    //convert arguments
    if (    BN_bin2bn(m, mSize, bnM) == NULL
         || BN_bin2bn(e, eSize, bnE) == NULL
         || BN_bin2bn(n, nSize, bnN) == NULL)
             FAIL(FATAL_ERROR_INTERNAL);
    // Don't do exponentiation if the number being exponentiated is
    // larger than the modulus.
    if(BN_ucmp(bnM, bnN) >= 0)
    {
        retVal = CRYPT_PARAMETER;
        goto Cleanup;
    }
    // Perform the exponentiation
    if(!(BN_mod_exp(bnC, bnM, bnE, bnN, context)))
        FAIL(FATAL_ERROR_INTERNAL);
    // Convert the results
    // Make sure that the results will fit in the provided buffer.
    if((unsigned)BN_num_bytes(bnC) > cSize)
    {
        retVal = CRYPT_UNDERFLOW;
        goto Cleanup;
    }
    i = cSize - BN_num_bytes(bnC);
    BN_bn2bin(bnC, &c[i]);
    memset(c, 0, i);
Cleanup:
   // Free up allocated BN values
   BN_CTX_end(context);
   BN_CTX_free(context);
   return retVal;
}
//
//
//       _math__IsPrime()
//
//      Check if an 32-bit integer is a prime.
//
//      Return Value                      Meaning
//
//      TRUE                              if the integer is probably a prime
//      FALSE                             if the integer is definitely not a prime
//
LIB_EXPORT BOOL
_math__IsPrime(
    const UINT32         prime
    )
{
    int       isPrime;
    BIGNUM    *p;
    // Assume the size variables are not overflow, which should not happen in
    // the contexts that this function will be called.
    if((p = BN_new()) == NULL)
        FAIL(FATAL_ERROR_ALLOCATION);
    if(!BN_set_word(p, prime))
        FAIL(FATAL_ERROR_INTERNAL);
    //
    // BN_is_prime returning -1 means that it ran into an error.
//
   // It should only return 0 or 1
   //
   if((isPrime = BN_is_prime_ex(p, BN_prime_checks, NULL, NULL)) < 0)
       FAIL(FATAL_ERROR_INTERNAL);
   if(p != NULL)
       BN_clear_free(p);
   return (isPrime == 1);
}
#endif // ! EMBEDDED_MODE