aboutsummaryrefslogtreecommitdiff
path: root/third_party/abseil-cpp/absl/container/internal/btree.h
diff options
context:
space:
mode:
Diffstat (limited to 'third_party/abseil-cpp/absl/container/internal/btree.h')
-rw-r--r--third_party/abseil-cpp/absl/container/internal/btree.h1241
1 files changed, 634 insertions, 607 deletions
diff --git a/third_party/abseil-cpp/absl/container/internal/btree.h b/third_party/abseil-cpp/absl/container/internal/btree.h
index fd5c0e7aba..f636c5fc73 100644
--- a/third_party/abseil-cpp/absl/container/internal/btree.h
+++ b/third_party/abseil-cpp/absl/container/internal/btree.h
@@ -65,6 +65,7 @@
#include "absl/container/internal/layout.h"
#include "absl/memory/memory.h"
#include "absl/meta/type_traits.h"
+#include "absl/strings/cord.h"
#include "absl/strings/string_view.h"
#include "absl/types/compare.h"
#include "absl/utility/utility.h"
@@ -87,12 +88,30 @@ struct StringBtreeDefaultLess {
// Compatibility constructor.
StringBtreeDefaultLess(std::less<std::string>) {} // NOLINT
- StringBtreeDefaultLess(std::less<string_view>) {} // NOLINT
+ StringBtreeDefaultLess(std::less<absl::string_view>) {} // NOLINT
+
+ // Allow converting to std::less for use in key_comp()/value_comp().
+ explicit operator std::less<std::string>() const { return {}; }
+ explicit operator std::less<absl::string_view>() const { return {}; }
+ explicit operator std::less<absl::Cord>() const { return {}; }
absl::weak_ordering operator()(absl::string_view lhs,
absl::string_view rhs) const {
return compare_internal::compare_result_as_ordering(lhs.compare(rhs));
}
+ StringBtreeDefaultLess(std::less<absl::Cord>) {} // NOLINT
+ absl::weak_ordering operator()(const absl::Cord &lhs,
+ const absl::Cord &rhs) const {
+ return compare_internal::compare_result_as_ordering(lhs.Compare(rhs));
+ }
+ absl::weak_ordering operator()(const absl::Cord &lhs,
+ absl::string_view rhs) const {
+ return compare_internal::compare_result_as_ordering(lhs.Compare(rhs));
+ }
+ absl::weak_ordering operator()(absl::string_view lhs,
+ const absl::Cord &rhs) const {
+ return compare_internal::compare_result_as_ordering(-rhs.Compare(lhs));
+ }
};
struct StringBtreeDefaultGreater {
@@ -101,23 +120,41 @@ struct StringBtreeDefaultGreater {
StringBtreeDefaultGreater() = default;
StringBtreeDefaultGreater(std::greater<std::string>) {} // NOLINT
- StringBtreeDefaultGreater(std::greater<string_view>) {} // NOLINT
+ StringBtreeDefaultGreater(std::greater<absl::string_view>) {} // NOLINT
+
+ // Allow converting to std::greater for use in key_comp()/value_comp().
+ explicit operator std::greater<std::string>() const { return {}; }
+ explicit operator std::greater<absl::string_view>() const { return {}; }
+ explicit operator std::greater<absl::Cord>() const { return {}; }
absl::weak_ordering operator()(absl::string_view lhs,
absl::string_view rhs) const {
return compare_internal::compare_result_as_ordering(rhs.compare(lhs));
}
+ StringBtreeDefaultGreater(std::greater<absl::Cord>) {} // NOLINT
+ absl::weak_ordering operator()(const absl::Cord &lhs,
+ const absl::Cord &rhs) const {
+ return compare_internal::compare_result_as_ordering(rhs.Compare(lhs));
+ }
+ absl::weak_ordering operator()(const absl::Cord &lhs,
+ absl::string_view rhs) const {
+ return compare_internal::compare_result_as_ordering(-lhs.Compare(rhs));
+ }
+ absl::weak_ordering operator()(absl::string_view lhs,
+ const absl::Cord &rhs) const {
+ return compare_internal::compare_result_as_ordering(rhs.Compare(lhs));
+ }
};
// A helper class to convert a boolean comparison into a three-way "compare-to"
-// comparison that returns a negative value to indicate less-than, zero to
-// indicate equality and a positive value to indicate greater-than. This helper
+// comparison that returns an `absl::weak_ordering`. This helper
// class is specialized for less<std::string>, greater<std::string>,
-// less<string_view>, and greater<string_view>.
+// less<string_view>, greater<string_view>, less<absl::Cord>, and
+// greater<absl::Cord>.
//
// key_compare_to_adapter is provided so that btree users
// automatically get the more efficient compare-to code when using common
-// google string types with common comparison functors.
+// Abseil string types with common comparison functors.
// These string-like specializations also turn on heterogeneous lookup by
// default.
template <typename Compare>
@@ -145,10 +182,54 @@ struct key_compare_to_adapter<std::greater<absl::string_view>> {
using type = StringBtreeDefaultGreater;
};
+template <>
+struct key_compare_to_adapter<std::less<absl::Cord>> {
+ using type = StringBtreeDefaultLess;
+};
+
+template <>
+struct key_compare_to_adapter<std::greater<absl::Cord>> {
+ using type = StringBtreeDefaultGreater;
+};
+
+// Detects an 'absl_btree_prefer_linear_node_search' member. This is
+// a protocol used as an opt-in or opt-out of linear search.
+//
+// For example, this would be useful for key types that wrap an integer
+// and define their own cheap operator<(). For example:
+//
+// class K {
+// public:
+// using absl_btree_prefer_linear_node_search = std::true_type;
+// ...
+// private:
+// friend bool operator<(K a, K b) { return a.k_ < b.k_; }
+// int k_;
+// };
+//
+// btree_map<K, V> m; // Uses linear search
+//
+// If T has the preference tag, then it has a preference.
+// Btree will use the tag's truth value.
+template <typename T, typename = void>
+struct has_linear_node_search_preference : std::false_type {};
+template <typename T, typename = void>
+struct prefers_linear_node_search : std::false_type {};
+template <typename T>
+struct has_linear_node_search_preference<
+ T, absl::void_t<typename T::absl_btree_prefer_linear_node_search>>
+ : std::true_type {};
+template <typename T>
+struct prefers_linear_node_search<
+ T, absl::void_t<typename T::absl_btree_prefer_linear_node_search>>
+ : T::absl_btree_prefer_linear_node_search {};
+
template <typename Key, typename Compare, typename Alloc, int TargetNodeSize,
bool Multi, typename SlotPolicy>
struct common_params {
- // If Compare is a common comparator for a std::string-like type, then we adapt it
+ using original_key_compare = Compare;
+
+ // If Compare is a common comparator for a string-like type, then we adapt it
// to use heterogeneous lookup and to be a key-compare-to comparator.
using key_compare = typename key_compare_to_adapter<Compare>::type;
// A type which indicates if we have a key-compare-to functor or a plain old
@@ -160,9 +241,6 @@ struct common_params {
using size_type = std::make_signed<size_t>::type;
using difference_type = ptrdiff_t;
- // True if this is a multiset or multimap.
- using is_multi_container = std::integral_constant<bool, Multi>;
-
using slot_policy = SlotPolicy;
using slot_type = typename slot_policy::slot_type;
using value_type = typename slot_policy::value_type;
@@ -172,6 +250,23 @@ struct common_params {
using reference = value_type &;
using const_reference = const value_type &;
+ // For the given lookup key type, returns whether we can have multiple
+ // equivalent keys in the btree. If this is a multi-container, then we can.
+ // Otherwise, we can have multiple equivalent keys only if all of the
+ // following conditions are met:
+ // - The comparator is transparent.
+ // - The lookup key type is not the same as key_type.
+ // - The comparator is not a StringBtreeDefault{Less,Greater} comparator
+ // that we know has the same equivalence classes for all lookup types.
+ template <typename LookupKey>
+ constexpr static bool can_have_multiple_equivalent_keys() {
+ return Multi ||
+ (IsTransparent<key_compare>::value &&
+ !std::is_same<LookupKey, Key>::value &&
+ !std::is_same<key_compare, StringBtreeDefaultLess>::value &&
+ !std::is_same<key_compare, StringBtreeDefaultGreater>::value);
+ }
+
enum {
kTargetNodeSize = TargetNodeSize,
@@ -217,10 +312,6 @@ struct common_params {
static void move(Alloc *alloc, slot_type *src, slot_type *dest) {
slot_policy::move(alloc, src, dest);
}
- static void move(Alloc *alloc, slot_type *first, slot_type *last,
- slot_type *result) {
- slot_policy::move(alloc, first, last, result);
- }
};
// A parameters structure for holding the type parameters for a btree_map.
@@ -238,23 +329,36 @@ struct map_params : common_params<Key, Compare, Alloc, TargetNodeSize, Multi,
using value_type = typename super_type::value_type;
using init_type = typename super_type::init_type;
- using key_compare = typename super_type::key_compare;
- // Inherit from key_compare for empty base class optimization.
- struct value_compare : private key_compare {
- value_compare() = default;
- explicit value_compare(const key_compare &cmp) : key_compare(cmp) {}
+ using original_key_compare = typename super_type::original_key_compare;
+ // Reference: https://en.cppreference.com/w/cpp/container/map/value_compare
+ class value_compare {
+ template <typename Params>
+ friend class btree;
+
+ protected:
+ explicit value_compare(original_key_compare c) : comp(std::move(c)) {}
- template <typename T, typename U>
- auto operator()(const T &left, const U &right) const
- -> decltype(std::declval<key_compare>()(left.first, right.first)) {
- return key_compare::operator()(left.first, right.first);
+ original_key_compare comp; // NOLINT
+
+ public:
+ auto operator()(const value_type &lhs, const value_type &rhs) const
+ -> decltype(comp(lhs.first, rhs.first)) {
+ return comp(lhs.first, rhs.first);
}
};
using is_map_container = std::true_type;
- static const Key &key(const value_type &x) { return x.first; }
- static const Key &key(const init_type &x) { return x.first; }
- static const Key &key(const slot_type *x) { return slot_policy::key(x); }
+ template <typename V>
+ static auto key(const V &value) -> decltype(value.first) {
+ return value.first;
+ }
+ static const Key &key(const slot_type *s) { return slot_policy::key(s); }
+ static const Key &key(slot_type *s) { return slot_policy::key(s); }
+ // For use in node handle.
+ static auto mutable_key(slot_type *s)
+ -> decltype(slot_policy::mutable_key(s)) {
+ return slot_policy::mutable_key(s);
+ }
static mapped_type &value(value_type *value) { return value->second; }
};
@@ -295,13 +399,6 @@ struct set_slot_policy {
static void move(Alloc * /*alloc*/, slot_type *src, slot_type *dest) {
*dest = std::move(*src);
}
-
- template <typename Alloc>
- static void move(Alloc *alloc, slot_type *first, slot_type *last,
- slot_type *result) {
- for (slot_type *src = first, *dest = result; src != last; ++src, ++dest)
- move(alloc, src, dest);
- }
};
// A parameters structure for holding the type parameters for a btree_set.
@@ -312,11 +409,14 @@ struct set_params : common_params<Key, Compare, Alloc, TargetNodeSize, Multi,
set_slot_policy<Key>> {
using value_type = Key;
using slot_type = typename set_params::common_params::slot_type;
- using value_compare = typename set_params::common_params::key_compare;
+ using value_compare =
+ typename set_params::common_params::original_key_compare;
using is_map_container = std::false_type;
- static const Key &key(const value_type &x) { return x; }
- static const Key &key(const slot_type *x) { return *x; }
+ template <typename V>
+ static const V &key(const V &value) { return value; }
+ static const Key &key(const slot_type *slot) { return *slot; }
+ static const Key &key(slot_type *slot) { return *slot; }
};
// An adapter class that converts a lower-bound compare into an upper-bound
@@ -326,8 +426,8 @@ struct set_params : common_params<Key, Compare, Alloc, TargetNodeSize, Multi,
template <typename Compare>
struct upper_bound_adapter {
explicit upper_bound_adapter(const Compare &c) : comp(c) {}
- template <typename K, typename LK>
- bool operator()(const K &a, const LK &b) const {
+ template <typename K1, typename K2>
+ bool operator()(const K1 &a, const K2 &b) const {
// Returns true when a is not greater than b.
return !compare_internal::compare_result_as_less_than(comp(b, a));
}
@@ -352,6 +452,10 @@ struct SearchResult {
// useful information.
template <typename V>
struct SearchResult<V, false> {
+ SearchResult() {}
+ explicit SearchResult(V value) : value(value) {}
+ SearchResult(V value, MatchKind /*match*/) : value(value) {}
+
V value;
static constexpr bool HasMatch() { return false; }
@@ -364,7 +468,6 @@ struct SearchResult<V, false> {
template <typename Params>
class btree_node {
using is_key_compare_to = typename Params::is_key_compare_to;
- using is_multi_container = typename Params::is_multi_container;
using field_type = typename Params::node_count_type;
using allocator_type = typename Params::allocator_type;
using slot_type = typename Params::slot_type;
@@ -382,18 +485,25 @@ class btree_node {
using difference_type = typename Params::difference_type;
// Btree decides whether to use linear node search as follows:
+ // - If the comparator expresses a preference, use that.
+ // - If the key expresses a preference, use that.
// - If the key is arithmetic and the comparator is std::less or
// std::greater, choose linear.
// - Otherwise, choose binary.
// TODO(ezb): Might make sense to add condition(s) based on node-size.
using use_linear_search = std::integral_constant<
bool,
- std::is_arithmetic<key_type>::value &&
- (std::is_same<std::less<key_type>, key_compare>::value ||
- std::is_same<std::greater<key_type>, key_compare>::value)>;
-
- // This class is organized by gtl::Layout as if it had the following
- // structure:
+ has_linear_node_search_preference<key_compare>::value
+ ? prefers_linear_node_search<key_compare>::value
+ : has_linear_node_search_preference<key_type>::value
+ ? prefers_linear_node_search<key_type>::value
+ : std::is_arithmetic<key_type>::value &&
+ (std::is_same<std::less<key_type>, key_compare>::value ||
+ std::is_same<std::greater<key_type>,
+ key_compare>::value)>;
+
+ // This class is organized by absl::container_internal::Layout as if it had
+ // the following structure:
// // A pointer to the node's parent.
// btree_node *parent;
//
@@ -407,23 +517,23 @@ class btree_node {
// // is the same as the count of values.
// field_type finish;
// // The maximum number of values the node can hold. This is an integer in
- // // [1, kNodeValues] for root leaf nodes, kNodeValues for non-root leaf
+ // // [1, kNodeSlots] for root leaf nodes, kNodeSlots for non-root leaf
// // nodes, and kInternalNodeMaxCount (as a sentinel value) for internal
- // // nodes (even though there are still kNodeValues values in the node).
+ // // nodes (even though there are still kNodeSlots values in the node).
// // TODO(ezb): make max_count use only 4 bits and record log2(capacity)
// // to free extra bits for is_root, etc.
// field_type max_count;
//
// // The array of values. The capacity is `max_count` for leaf nodes and
- // // kNodeValues for internal nodes. Only the values in
+ // // kNodeSlots for internal nodes. Only the values in
// // [start, finish) have been initialized and are valid.
// slot_type values[max_count];
//
// // The array of child pointers. The keys in children[i] are all less
// // than key(i). The keys in children[i + 1] are all greater than key(i).
- // // There are 0 children for leaf nodes and kNodeValues + 1 children for
+ // // There are 0 children for leaf nodes and kNodeSlots + 1 children for
// // internal nodes.
- // btree_node *children[kNodeValues + 1];
+ // btree_node *children[kNodeSlots + 1];
//
// This class is only constructed by EmptyNodeType. Normally, pointers to the
// layout above are allocated, cast to btree_node*, and de-allocated within
@@ -445,57 +555,62 @@ class btree_node {
private:
using layout_type = absl::container_internal::Layout<btree_node *, field_type,
slot_type, btree_node *>;
- constexpr static size_type SizeWithNValues(size_type n) {
+ constexpr static size_type SizeWithNSlots(size_type n) {
return layout_type(/*parent*/ 1,
/*position, start, finish, max_count*/ 4,
- /*values*/ n,
+ /*slots*/ n,
/*children*/ 0)
.AllocSize();
}
// A lower bound for the overhead of fields other than values in a leaf node.
constexpr static size_type MinimumOverhead() {
- return SizeWithNValues(1) - sizeof(value_type);
+ return SizeWithNSlots(1) - sizeof(value_type);
}
// Compute how many values we can fit onto a leaf node taking into account
// padding.
- constexpr static size_type NodeTargetValues(const int begin, const int end) {
+ constexpr static size_type NodeTargetSlots(const int begin, const int end) {
return begin == end ? begin
- : SizeWithNValues((begin + end) / 2 + 1) >
+ : SizeWithNSlots((begin + end) / 2 + 1) >
params_type::kTargetNodeSize
- ? NodeTargetValues(begin, (begin + end) / 2)
- : NodeTargetValues((begin + end) / 2 + 1, end);
+ ? NodeTargetSlots(begin, (begin + end) / 2)
+ : NodeTargetSlots((begin + end) / 2 + 1, end);
}
enum {
kTargetNodeSize = params_type::kTargetNodeSize,
- kNodeTargetValues = NodeTargetValues(0, params_type::kTargetNodeSize),
+ kNodeTargetSlots = NodeTargetSlots(0, params_type::kTargetNodeSize),
- // We need a minimum of 3 values per internal node in order to perform
+ // We need a minimum of 3 slots per internal node in order to perform
// splitting (1 value for the two nodes involved in the split and 1 value
- // propagated to the parent as the delimiter for the split).
- kNodeValues = kNodeTargetValues >= 3 ? kNodeTargetValues : 3,
+ // propagated to the parent as the delimiter for the split). For performance
+ // reasons, we don't allow 3 slots-per-node due to bad worst case occupancy
+ // of 1/3 (for a node, not a b-tree).
+ kMinNodeSlots = 4,
+
+ kNodeSlots =
+ kNodeTargetSlots >= kMinNodeSlots ? kNodeTargetSlots : kMinNodeSlots,
// The node is internal (i.e. is not a leaf node) if and only if `max_count`
// has this value.
kInternalNodeMaxCount = 0,
};
- // Leaves can have less than kNodeValues values.
- constexpr static layout_type LeafLayout(const int max_values = kNodeValues) {
+ // Leaves can have less than kNodeSlots values.
+ constexpr static layout_type LeafLayout(const int slot_count = kNodeSlots) {
return layout_type(/*parent*/ 1,
/*position, start, finish, max_count*/ 4,
- /*values*/ max_values,
+ /*slots*/ slot_count,
/*children*/ 0);
}
constexpr static layout_type InternalLayout() {
return layout_type(/*parent*/ 1,
/*position, start, finish, max_count*/ 4,
- /*values*/ kNodeValues,
- /*children*/ kNodeValues + 1);
+ /*slots*/ kNodeSlots,
+ /*children*/ kNodeSlots + 1);
}
- constexpr static size_type LeafSize(const int max_values = kNodeValues) {
- return LeafLayout(max_values).AllocSize();
+ constexpr static size_type LeafSize(const int slot_count = kNodeSlots) {
+ return LeafLayout(slot_count).AllocSize();
}
constexpr static size_type InternalSize() {
return InternalLayout().AllocSize();
@@ -552,10 +667,10 @@ class btree_node {
}
field_type max_count() const {
// Internal nodes have max_count==kInternalNodeMaxCount.
- // Leaf nodes have max_count in [1, kNodeValues].
+ // Leaf nodes have max_count in [1, kNodeSlots].
const field_type max_count = GetField<1>()[3];
return max_count == field_type{kInternalNodeMaxCount}
- ? field_type{kNodeValues}
+ ? field_type{kNodeSlots}
: max_count;
}
@@ -633,7 +748,7 @@ class btree_node {
}
++s;
}
- return {s};
+ return SearchResult<int, false>{s};
}
// Returns the position of the first value whose key is not less than k using
@@ -668,7 +783,7 @@ class btree_node {
e = mid;
}
}
- return {s};
+ return SearchResult<int, false>{s};
}
// Returns the position of the first value whose key is not less than k using
@@ -677,7 +792,7 @@ class btree_node {
SearchResult<int, true> binary_search_impl(
const K &k, int s, int e, const CompareTo &comp,
std::true_type /* IsCompareTo */) const {
- if (is_multi_container::value) {
+ if (params_type::template can_have_multiple_equivalent_keys<K>()) {
MatchKind exact_match = MatchKind::kNe;
while (s != e) {
const int mid = (s + e) >> 1;
@@ -688,14 +803,14 @@ class btree_node {
e = mid;
if (c == 0) {
// Need to return the first value whose key is not less than k,
- // which requires continuing the binary search if this is a
- // multi-container.
+ // which requires continuing the binary search if there could be
+ // multiple equivalent keys.
exact_match = MatchKind::kEq;
}
}
}
return {s, exact_match};
- } else { // Not a multi-container.
+ } else { // Can't have multiple equivalent keys.
while (s != e) {
const int mid = (s + e) >> 1;
const absl::weak_ordering c = comp(key(mid), k);
@@ -716,14 +831,10 @@ class btree_node {
template <typename... Args>
void emplace_value(size_type i, allocator_type *alloc, Args &&... args);
- // Removes the value at position i, shifting all existing values and children
- // at positions > i to the left by 1.
- void remove_value(int i, allocator_type *alloc);
-
- // Removes the values at positions [i, i + to_erase), shifting all values
- // after that range to the left by to_erase. Does not change children at all.
- void remove_values_ignore_children(int i, int to_erase,
- allocator_type *alloc);
+ // Removes the values at positions [i, i + to_erase), shifting all existing
+ // values and children after that range to the left by to_erase. Clears all
+ // children between [i, i + to_erase).
+ void remove_values(field_type i, field_type to_erase, allocator_type *alloc);
// Rebalances a node with its right sibling.
void rebalance_right_to_left(int to_move, btree_node *right,
@@ -735,75 +846,87 @@ class btree_node {
void split(int insert_position, btree_node *dest, allocator_type *alloc);
// Merges a node with its right sibling, moving all of the values and the
- // delimiting key in the parent node onto itself.
- void merge(btree_node *sibling, allocator_type *alloc);
-
- // Swap the contents of "this" and "src".
- void swap(btree_node *src, allocator_type *alloc);
+ // delimiting key in the parent node onto itself, and deleting the src node.
+ void merge(btree_node *src, allocator_type *alloc);
// Node allocation/deletion routines.
- static btree_node *init_leaf(btree_node *n, btree_node *parent,
- int max_count) {
- n->set_parent(parent);
- n->set_position(0);
- n->set_start(0);
- n->set_finish(0);
- n->set_max_count(max_count);
+ void init_leaf(btree_node *parent, int max_count) {
+ set_parent(parent);
+ set_position(0);
+ set_start(0);
+ set_finish(0);
+ set_max_count(max_count);
absl::container_internal::SanitizerPoisonMemoryRegion(
- n->start_slot(), max_count * sizeof(slot_type));
- return n;
+ start_slot(), max_count * sizeof(slot_type));
}
- static btree_node *init_internal(btree_node *n, btree_node *parent) {
- init_leaf(n, parent, kNodeValues);
+ void init_internal(btree_node *parent) {
+ init_leaf(parent, kNodeSlots);
// Set `max_count` to a sentinel value to indicate that this node is
// internal.
- n->set_max_count(kInternalNodeMaxCount);
+ set_max_count(kInternalNodeMaxCount);
absl::container_internal::SanitizerPoisonMemoryRegion(
- &n->mutable_child(n->start()),
- (kNodeValues + 1) * sizeof(btree_node *));
- return n;
- }
- void destroy(allocator_type *alloc) {
- for (int i = start(); i < finish(); ++i) {
- value_destroy(i, alloc);
- }
+ &mutable_child(start()), (kNodeSlots + 1) * sizeof(btree_node *));
}
- public:
- // Exposed only for tests.
- static bool testonly_uses_linear_node_search() {
- return use_linear_search::value;
+ static void deallocate(const size_type size, btree_node *node,
+ allocator_type *alloc) {
+ absl::container_internal::Deallocate<Alignment()>(alloc, node, size);
}
+ // Deletes a node and all of its children.
+ static void clear_and_delete(btree_node *node, allocator_type *alloc);
+
private:
template <typename... Args>
- void value_init(const size_type i, allocator_type *alloc, Args &&... args) {
+ void value_init(const field_type i, allocator_type *alloc, Args &&... args) {
absl::container_internal::SanitizerUnpoisonObject(slot(i));
params_type::construct(alloc, slot(i), std::forward<Args>(args)...);
}
- void value_destroy(const size_type i, allocator_type *alloc) {
+ void value_destroy(const field_type i, allocator_type *alloc) {
params_type::destroy(alloc, slot(i));
absl::container_internal::SanitizerPoisonObject(slot(i));
}
+ void value_destroy_n(const field_type i, const field_type n,
+ allocator_type *alloc) {
+ for (slot_type *s = slot(i), *end = slot(i + n); s != end; ++s) {
+ params_type::destroy(alloc, s);
+ absl::container_internal::SanitizerPoisonObject(s);
+ }
+ }
+
+ static void transfer(slot_type *dest, slot_type *src, allocator_type *alloc) {
+ absl::container_internal::SanitizerUnpoisonObject(dest);
+ params_type::transfer(alloc, dest, src);
+ absl::container_internal::SanitizerPoisonObject(src);
+ }
+
+ // Transfers value from slot `src_i` in `src_node` to slot `dest_i` in `this`.
+ void transfer(const size_type dest_i, const size_type src_i,
+ btree_node *src_node, allocator_type *alloc) {
+ transfer(slot(dest_i), src_node->slot(src_i), alloc);
+ }
- // Move n values starting at value i in this node into the values starting at
- // value j in node x.
- void uninitialized_move_n(const size_type n, const size_type i,
- const size_type j, btree_node *x,
- allocator_type *alloc) {
- absl::container_internal::SanitizerUnpoisonMemoryRegion(
- x->slot(j), n * sizeof(slot_type));
- for (slot_type *src = slot(i), *end = src + n, *dest = x->slot(j);
+ // Transfers `n` values starting at value `src_i` in `src_node` into the
+ // values starting at value `dest_i` in `this`.
+ void transfer_n(const size_type n, const size_type dest_i,
+ const size_type src_i, btree_node *src_node,
+ allocator_type *alloc) {
+ for (slot_type *src = src_node->slot(src_i), *end = src + n,
+ *dest = slot(dest_i);
src != end; ++src, ++dest) {
- params_type::construct(alloc, dest, src);
+ transfer(dest, src, alloc);
}
}
- // Destroys a range of n values, starting at index i.
- void value_destroy_n(const size_type i, const size_type n,
- allocator_type *alloc) {
- for (int j = 0; j < n; ++j) {
- value_destroy(i + j, alloc);
+ // Same as above, except that we start at the end and work our way to the
+ // beginning.
+ void transfer_n_backward(const size_type n, const size_type dest_i,
+ const size_type src_i, btree_node *src_node,
+ allocator_type *alloc) {
+ for (slot_type *src = src_node->slot(src_i + n - 1), *end = src - n,
+ *dest = slot(dest_i + n - 1);
+ src != end; --src, --dest) {
+ transfer(dest, src, alloc);
}
}
@@ -820,6 +943,7 @@ struct btree_iterator {
using key_type = typename Node::key_type;
using size_type = typename Node::size_type;
using params_type = typename Node::params_type;
+ using is_map_container = typename params_type::is_map_container;
using node_type = Node;
using normal_node = typename std::remove_const<Node>::type;
@@ -831,7 +955,7 @@ struct btree_iterator {
using slot_type = typename params_type::slot_type;
using iterator =
- btree_iterator<normal_node, normal_reference, normal_pointer>;
+ btree_iterator<normal_node, normal_reference, normal_pointer>;
using const_iterator =
btree_iterator<const_node, const_reference, const_pointer>;
@@ -848,20 +972,19 @@ struct btree_iterator {
btree_iterator(Node *n, int p) : node(n), position(p) {}
// NOTE: this SFINAE allows for implicit conversions from iterator to
- // const_iterator, but it specifically avoids defining copy constructors so
- // that btree_iterator can be trivially copyable. This is for performance and
- // binary size reasons.
+ // const_iterator, but it specifically avoids hiding the copy constructor so
+ // that the trivial one will be used when possible.
template <typename N, typename R, typename P,
absl::enable_if_t<
std::is_same<btree_iterator<N, R, P>, iterator>::value &&
std::is_same<btree_iterator, const_iterator>::value,
int> = 0>
- btree_iterator(const btree_iterator<N, R, P> &x) // NOLINT
- : node(x.node), position(x.position) {}
+ btree_iterator(const btree_iterator<N, R, P> other) // NOLINT
+ : node(other.node), position(other.position) {}
private:
// This SFINAE allows explicit conversions from const_iterator to
- // iterator, but also avoids defining a copy constructor.
+ // iterator, but also avoids hiding the copy constructor.
// NOTE: the const_cast is safe because this constructor is only called by
// non-const methods and the container owns the nodes.
template <typename N, typename R, typename P,
@@ -869,8 +992,8 @@ struct btree_iterator {
std::is_same<btree_iterator<N, R, P>, const_iterator>::value &&
std::is_same<btree_iterator, iterator>::value,
int> = 0>
- explicit btree_iterator(const btree_iterator<N, R, P> &x)
- : node(const_cast<node_type *>(x.node)), position(x.position) {}
+ explicit btree_iterator(const btree_iterator<N, R, P> other)
+ : node(const_cast<node_type *>(other.node)), position(other.position) {}
// Increment/decrement the iterator.
void increment() {
@@ -890,16 +1013,27 @@ struct btree_iterator {
void decrement_slow();
public:
- bool operator==(const const_iterator &x) const {
- return node == x.node && position == x.position;
+ bool operator==(const iterator &other) const {
+ return node == other.node && position == other.position;
}
- bool operator!=(const const_iterator &x) const {
- return node != x.node || position != x.position;
+ bool operator==(const const_iterator &other) const {
+ return node == other.node && position == other.position;
+ }
+ bool operator!=(const iterator &other) const {
+ return node != other.node || position != other.position;
+ }
+ bool operator!=(const const_iterator &other) const {
+ return node != other.node || position != other.position;
}
// Accessors for the key/value the iterator is pointing at.
- reference operator*() const { return node->value(position); }
- pointer operator->() const { return &node->value(position); }
+ reference operator*() const {
+ ABSL_HARDENING_ASSERT(node != nullptr);
+ ABSL_HARDENING_ASSERT(node->start() <= position);
+ ABSL_HARDENING_ASSERT(node->finish() > position);
+ return node->value(position);
+ }
+ pointer operator->() const { return &operator*(); }
btree_iterator &operator++() {
increment();
@@ -921,6 +1055,8 @@ struct btree_iterator {
}
private:
+ friend iterator;
+ friend const_iterator;
template <typename Params>
friend class btree;
template <typename Tree>
@@ -931,8 +1067,6 @@ struct btree_iterator {
friend class btree_map_container;
template <typename Tree>
friend class btree_multiset_container;
- template <typename N, typename R, typename P>
- friend struct btree_iterator;
template <typename TreeType, typename CheckerType>
friend class base_checker;
@@ -942,7 +1076,8 @@ struct btree_iterator {
// The node in the tree the iterator is pointing at.
Node *node;
// The position within the node of the tree the iterator is pointing at.
- // TODO(ezb): make this a field_type
+ // NOTE: this is an int rather than a field_type because iterators can point
+ // to invalid positions (such as -1) in certain circumstances.
int position;
};
@@ -950,6 +1085,8 @@ template <typename Params>
class btree {
using node_type = btree_node<Params>;
using is_key_compare_to = typename Params::is_key_compare_to;
+ using init_type = typename Params::init_type;
+ using field_type = typename node_type::field_type;
// We use a static empty node for the root/leftmost/rightmost of empty btrees
// in order to avoid branching in begin()/end().
@@ -984,9 +1121,9 @@ class btree {
#endif
}
- enum {
- kNodeValues = node_type::kNodeValues,
- kMinNodeValues = kNodeValues / 2,
+ enum : uint32_t {
+ kNodeSlots = node_type::kNodeSlots,
+ kMinNodeValues = kNodeSlots / 2,
};
struct node_stats {
@@ -994,9 +1131,9 @@ class btree {
node_stats(size_type l, size_type i) : leaf_nodes(l), internal_nodes(i) {}
- node_stats &operator+=(const node_stats &x) {
- leaf_nodes += x.leaf_nodes;
- internal_nodes += x.internal_nodes;
+ node_stats &operator+=(const node_stats &other) {
+ leaf_nodes += other.leaf_nodes;
+ internal_nodes += other.internal_nodes;
return *this;
}
@@ -1010,13 +1147,15 @@ class btree {
using size_type = typename Params::size_type;
using difference_type = typename Params::difference_type;
using key_compare = typename Params::key_compare;
+ using original_key_compare = typename Params::original_key_compare;
using value_compare = typename Params::value_compare;
using allocator_type = typename Params::allocator_type;
using reference = typename Params::reference;
using const_reference = typename Params::const_reference;
using pointer = typename Params::pointer;
using const_pointer = typename Params::const_pointer;
- using iterator = btree_iterator<node_type, reference, pointer>;
+ using iterator =
+ typename btree_iterator<node_type, reference, pointer>::iterator;
using const_iterator = typename iterator::const_iterator;
using reverse_iterator = std::reverse_iterator<iterator>;
using const_reverse_iterator = std::reverse_iterator<const_iterator>;
@@ -1028,28 +1167,46 @@ class btree {
private:
// For use in copy_or_move_values_in_order.
- const value_type &maybe_move_from_iterator(const_iterator x) { return *x; }
- value_type &&maybe_move_from_iterator(iterator x) { return std::move(*x); }
+ const value_type &maybe_move_from_iterator(const_iterator it) { return *it; }
+ value_type &&maybe_move_from_iterator(iterator it) {
+ // This is a destructive operation on the other container so it's safe for
+ // us to const_cast and move from the keys here even if it's a set.
+ return std::move(const_cast<value_type &>(*it));
+ }
// Copies or moves (depending on the template parameter) the values in
- // x into this btree in their order in x. This btree must be empty before this
- // method is called. This method is used in copy construction, copy
- // assignment, and move assignment.
+ // other into this btree in their order in other. This btree must be empty
+ // before this method is called. This method is used in copy construction,
+ // copy assignment, and move assignment.
template <typename Btree>
- void copy_or_move_values_in_order(Btree *x);
+ void copy_or_move_values_in_order(Btree &other);
// Validates that various assumptions/requirements are true at compile time.
constexpr static bool static_assert_validation();
public:
- btree(const key_compare &comp, const allocator_type &alloc);
-
- btree(const btree &x);
- btree(btree &&x) noexcept
- : root_(std::move(x.root_)),
- rightmost_(absl::exchange(x.rightmost_, EmptyNode())),
- size_(absl::exchange(x.size_, 0)) {
- x.mutable_root() = EmptyNode();
+ btree(const key_compare &comp, const allocator_type &alloc)
+ : root_(comp, alloc, EmptyNode()), rightmost_(EmptyNode()), size_(0) {}
+
+ btree(const btree &other) : btree(other, other.allocator()) {}
+ btree(const btree &other, const allocator_type &alloc)
+ : btree(other.key_comp(), alloc) {
+ copy_or_move_values_in_order(other);
+ }
+ btree(btree &&other) noexcept
+ : root_(std::move(other.root_)),
+ rightmost_(absl::exchange(other.rightmost_, EmptyNode())),
+ size_(absl::exchange(other.size_, 0)) {
+ other.mutable_root() = EmptyNode();
+ }
+ btree(btree &&other, const allocator_type &alloc)
+ : btree(other.key_comp(), alloc) {
+ if (alloc == other.allocator()) {
+ swap(other);
+ } else {
+ // Move values from `other` one at a time when allocators are different.
+ copy_or_move_values_in_order(other);
+ }
}
~btree() {
@@ -1059,9 +1216,9 @@ class btree {
clear();
}
- // Assign the contents of x to *this.
- btree &operator=(const btree &x);
- btree &operator=(btree &&x) noexcept;
+ // Assign the contents of other to *this.
+ btree &operator=(const btree &other);
+ btree &operator=(btree &&other) noexcept;
iterator begin() { return iterator(leftmost()); }
const_iterator begin() const { return const_iterator(leftmost()); }
@@ -1078,17 +1235,22 @@ class btree {
return const_reverse_iterator(begin());
}
- // Finds the first element whose key is not less than key.
+ // Finds the first element whose key is not less than `key`.
template <typename K>
iterator lower_bound(const K &key) {
- return internal_end(internal_lower_bound(key));
+ return internal_end(internal_lower_bound(key).value);
}
template <typename K>
const_iterator lower_bound(const K &key) const {
- return internal_end(internal_lower_bound(key));
+ return internal_end(internal_lower_bound(key).value);
}
- // Finds the first element whose key is greater than key.
+ // Finds the first element whose key is not less than `key` and also returns
+ // whether that element is equal to `key`.
+ template <typename K>
+ std::pair<iterator, bool> lower_bound_equal(const K &key) const;
+
+ // Finds the first element whose key is greater than `key`.
template <typename K>
iterator upper_bound(const K &key) {
return internal_end(internal_upper_bound(key));
@@ -1099,23 +1261,21 @@ class btree {
}
// Finds the range of values which compare equal to key. The first member of
- // the returned pair is equal to lower_bound(key). The second member pair of
- // the pair is equal to upper_bound(key).
+ // the returned pair is equal to lower_bound(key). The second member of the
+ // pair is equal to upper_bound(key).
template <typename K>
- std::pair<iterator, iterator> equal_range(const K &key) {
- return {lower_bound(key), upper_bound(key)};
- }
+ std::pair<iterator, iterator> equal_range(const K &key);
template <typename K>
std::pair<const_iterator, const_iterator> equal_range(const K &key) const {
- return {lower_bound(key), upper_bound(key)};
+ return const_cast<btree *>(this)->equal_range(key);
}
// Inserts a value into the btree only if it does not already exist. The
// boolean return value indicates whether insertion succeeded or failed.
// Requirement: if `key` already exists in the btree, does not consume `args`.
// Requirement: `key` is never referenced after consuming `args`.
- template <typename... Args>
- std::pair<iterator, bool> insert_unique(const key_type &key, Args &&... args);
+ template <typename K, typename... Args>
+ std::pair<iterator, bool> insert_unique(const K &key, Args &&... args);
// Inserts with hint. Checks to see if the value should be placed immediately
// before `position` in the tree. If so, then the insertion will take
@@ -1123,14 +1283,23 @@ class btree {
// logarithmic time as if a call to insert_unique() were made.
// Requirement: if `key` already exists in the btree, does not consume `args`.
// Requirement: `key` is never referenced after consuming `args`.
- template <typename... Args>
+ template <typename K, typename... Args>
std::pair<iterator, bool> insert_hint_unique(iterator position,
- const key_type &key,
+ const K &key,
Args &&... args);
// Insert a range of values into the btree.
+ // Note: the first overload avoids constructing a value_type if the key
+ // already exists in the btree.
+ template <typename InputIterator,
+ typename = decltype(std::declval<const key_compare &>()(
+ params_type::key(*std::declval<InputIterator>()),
+ std::declval<const key_type &>()))>
+ void insert_iterator_unique(InputIterator b, InputIterator e, int);
+ // We need the second overload for cases in which we need to construct a
+ // value_type in order to compare it with the keys already in the btree.
template <typename InputIterator>
- void insert_iterator_unique(InputIterator b, InputIterator e);
+ void insert_iterator_unique(InputIterator b, InputIterator e, char);
// Inserts a value into the btree.
template <typename ValueType>
@@ -1163,18 +1332,8 @@ class btree {
// to the element after the last erased element.
std::pair<size_type, iterator> erase_range(iterator begin, iterator end);
- // Erases the specified key from the btree. Returns 1 if an element was
- // erased and 0 otherwise.
- template <typename K>
- size_type erase_unique(const K &key);
-
- // Erases all of the entries matching the specified key from the
- // btree. Returns the number of elements erased.
- template <typename K>
- size_type erase_multi(const K &key);
-
- // Finds the iterator corresponding to a key or returns end() if the key is
- // not present.
+ // Finds an element with key equivalent to `key` or returns `end()` if `key`
+ // is not present.
template <typename K>
iterator find(const K &key) {
return internal_end(internal_find(key));
@@ -1184,38 +1343,23 @@ class btree {
return internal_end(internal_find(key));
}
- // Returns a count of the number of times the key appears in the btree.
- template <typename K>
- size_type count_unique(const K &key) const {
- const iterator begin = internal_find(key);
- if (begin.node == nullptr) {
- // The key doesn't exist in the tree.
- return 0;
- }
- return 1;
- }
- // Returns a count of the number of times the key appears in the btree.
- template <typename K>
- size_type count_multi(const K &key) const {
- const auto range = equal_range(key);
- return std::distance(range.first, range.second);
- }
-
// Clear the btree, deleting all of the values it contains.
void clear();
- // Swap the contents of *this and x.
- void swap(btree &x);
+ // Swaps the contents of `this` and `other`.
+ void swap(btree &other);
const key_compare &key_comp() const noexcept {
return root_.template get<0>();
}
- template <typename K, typename LK>
- bool compare_keys(const K &x, const LK &y) const {
- return compare_internal::compare_result_as_less_than(key_comp()(x, y));
+ template <typename K1, typename K2>
+ bool compare_keys(const K1 &a, const K2 &b) const {
+ return compare_internal::compare_result_as_less_than(key_comp()(a, b));
}
- value_compare value_comp() const { return value_compare(key_comp()); }
+ value_compare value_comp() const {
+ return value_compare(original_key_compare(key_comp()));
+ }
// Verifies the structure of the btree.
void verify() const;
@@ -1263,12 +1407,14 @@ class btree {
}
}
- // The average number of bytes used per value stored in the btree.
+ // The average number of bytes used per value stored in the btree assuming
+ // random insertion order.
static double average_bytes_per_value() {
- // Returns the number of bytes per value on a leaf node that is 75%
- // full. Experimentally, this matches up nicely with the computed number of
- // bytes per value in trees that had their values inserted in random order.
- return node_type::LeafSize() / (kNodeValues * 0.75);
+ // The expected number of values per node with random insertion order is the
+ // average of the maximum and minimum numbers of values per node.
+ const double expected_values_per_node =
+ (kNodeSlots + kMinNodeValues) / 2.0;
+ return node_type::LeafSize() / expected_values_per_node;
}
// The fullness of the btree. Computed as the number of elements in the btree
@@ -1278,7 +1424,7 @@ class btree {
// Returns 0 for empty trees.
double fullness() const {
if (empty()) return 0.0;
- return static_cast<double>(size()) / (nodes() * kNodeValues);
+ return static_cast<double>(size()) / (nodes() * kNodeSlots);
}
// The overhead of the btree structure in bytes per node. Computed as the
// total number of bytes used by the btree minus the number of bytes used for
@@ -1322,38 +1468,24 @@ class btree {
// Node creation/deletion routines.
node_type *new_internal_node(node_type *parent) {
- node_type *p = allocate(node_type::InternalSize());
- return node_type::init_internal(p, parent);
+ node_type *n = allocate(node_type::InternalSize());
+ n->init_internal(parent);
+ return n;
}
node_type *new_leaf_node(node_type *parent) {
- node_type *p = allocate(node_type::LeafSize());
- return node_type::init_leaf(p, parent, kNodeValues);
+ node_type *n = allocate(node_type::LeafSize());
+ n->init_leaf(parent, kNodeSlots);
+ return n;
}
node_type *new_leaf_root_node(const int max_count) {
- node_type *p = allocate(node_type::LeafSize(max_count));
- return node_type::init_leaf(p, p, max_count);
+ node_type *n = allocate(node_type::LeafSize(max_count));
+ n->init_leaf(/*parent=*/n, max_count);
+ return n;
}
// Deletion helper routines.
- void erase_same_node(iterator begin, iterator end);
- iterator erase_from_leaf_node(iterator begin, size_type to_erase);
iterator rebalance_after_delete(iterator iter);
- // Deallocates a node of a certain size in bytes using the allocator.
- void deallocate(const size_type size, node_type *node) {
- absl::container_internal::Deallocate<node_type::Alignment()>(
- mutable_allocator(), node, size);
- }
-
- void delete_internal_node(node_type *node) {
- node->destroy(mutable_allocator());
- deallocate(node_type::InternalSize(), node);
- }
- void delete_leaf_node(node_type *node) {
- node->destroy(mutable_allocator());
- deallocate(node_type::LeafSize(node->max_count()), node);
- }
-
// Rebalances or splits the node iter points to.
void rebalance_or_split(iterator *iter);
@@ -1391,28 +1523,19 @@ class btree {
static IterType internal_last(IterType iter);
// Returns an iterator pointing to the leaf position at which key would
- // reside in the tree. We provide 2 versions of internal_locate. The first
- // version uses a less-than comparator and is incapable of distinguishing when
- // there is an exact match. The second version is for the key-compare-to
- // specialization and distinguishes exact matches. The key-compare-to
- // specialization allows the caller to avoid a subsequent comparison to
- // determine if an exact match was made, which is important for keys with
- // expensive comparison, such as strings.
+ // reside in the tree, unless there is an exact match - in which case, the
+ // result may not be on a leaf. When there's a three-way comparator, we can
+ // return whether there was an exact match. This allows the caller to avoid a
+ // subsequent comparison to determine if an exact match was made, which is
+ // important for keys with expensive comparison, such as strings.
template <typename K>
SearchResult<iterator, is_key_compare_to::value> internal_locate(
const K &key) const;
- template <typename K>
- SearchResult<iterator, false> internal_locate_impl(
- const K &key, std::false_type /* IsCompareTo */) const;
-
- template <typename K>
- SearchResult<iterator, true> internal_locate_impl(
- const K &key, std::true_type /* IsCompareTo */) const;
-
// Internal routine which implements lower_bound().
template <typename K>
- iterator internal_lower_bound(const K &key) const;
+ SearchResult<iterator, is_key_compare_to::value> internal_lower_bound(
+ const K &key) const;
// Internal routine which implements upper_bound().
template <typename K>
@@ -1422,9 +1545,6 @@ class btree {
template <typename K>
iterator internal_find(const K &key) const;
- // Deletes a node and all of its children.
- void internal_clear(node_type *node);
-
// Verifies the tree structure of node.
int internal_verify(const node_type *node, const key_type *lo,
const key_type *hi) const;
@@ -1444,13 +1564,6 @@ class btree {
return res;
}
- public:
- // Exposed only for tests.
- static bool testonly_uses_linear_node_search() {
- return node_type::testonly_uses_linear_node_search();
- }
-
- private:
// We use compressed tuple in order to save space because key_compare and
// allocator_type are usually empty.
absl::container_internal::CompressedTuple<key_compare, allocator_type,
@@ -1477,10 +1590,8 @@ inline void btree_node<P>::emplace_value(const size_type i,
// Shift old values to create space for new value and then construct it in
// place.
if (i < finish()) {
- value_init(finish(), alloc, slot(finish() - 1));
- for (size_type j = finish() - 1; j > i; --j)
- params_type::move(alloc, slot(j - 1), slot(j));
- value_destroy(i, alloc);
+ transfer_n_backward(finish() - i, /*dest_i=*/i + 1, /*src_i=*/i, this,
+ alloc);
}
value_init(i, alloc, std::forward<Args>(args)...);
set_finish(finish() + 1);
@@ -1494,24 +1605,27 @@ inline void btree_node<P>::emplace_value(const size_type i,
}
template <typename P>
-inline void btree_node<P>::remove_value(const int i, allocator_type *alloc) {
- if (!leaf() && finish() > i + 1) {
- assert(child(i + 1)->count() == 0);
- for (size_type j = i + 1; j < finish(); ++j) {
- set_child(j, child(j + 1));
+inline void btree_node<P>::remove_values(const field_type i,
+ const field_type to_erase,
+ allocator_type *alloc) {
+ // Transfer values after the removed range into their new places.
+ value_destroy_n(i, to_erase, alloc);
+ const field_type orig_finish = finish();
+ const field_type src_i = i + to_erase;
+ transfer_n(orig_finish - src_i, i, src_i, this, alloc);
+
+ if (!leaf()) {
+ // Delete all children between begin and end.
+ for (int j = 0; j < to_erase; ++j) {
+ clear_and_delete(child(i + j + 1), alloc);
+ }
+ // Rotate children after end into new positions.
+ for (int j = i + to_erase + 1; j <= orig_finish; ++j) {
+ set_child(j - to_erase, child(j));
+ clear_child(j);
}
- clear_child(finish());
}
-
- remove_values_ignore_children(i, /*to_erase=*/1, alloc);
-}
-
-template <typename P>
-inline void btree_node<P>::remove_values_ignore_children(
- const int i, const int to_erase, allocator_type *alloc) {
- params_type::move(alloc, slot(i + to_erase), finish_slot(), slot(i));
- value_destroy_n(finish() - to_erase, to_erase, alloc);
- set_finish(finish() - to_erase);
+ set_finish(orig_finish - to_erase);
}
template <typename P>
@@ -1525,22 +1639,17 @@ void btree_node<P>::rebalance_right_to_left(const int to_move,
assert(to_move <= right->count());
// 1) Move the delimiting value in the parent to the left node.
- value_init(finish(), alloc, parent()->slot(position()));
+ transfer(finish(), position(), parent(), alloc);
// 2) Move the (to_move - 1) values from the right node to the left node.
- right->uninitialized_move_n(to_move - 1, right->start(), finish() + 1, this,
- alloc);
+ transfer_n(to_move - 1, finish() + 1, right->start(), right, alloc);
// 3) Move the new delimiting value to the parent from the right node.
- params_type::move(alloc, right->slot(to_move - 1),
- parent()->slot(position()));
+ parent()->transfer(position(), right->start() + to_move - 1, right, alloc);
- // 4) Shift the values in the right node to their correct position.
- params_type::move(alloc, right->slot(to_move), right->finish_slot(),
- right->start_slot());
-
- // 5) Destroy the now-empty to_move entries in the right node.
- right->value_destroy_n(right->finish() - to_move, to_move, alloc);
+ // 4) Shift the values in the right node to their correct positions.
+ right->transfer_n(right->count() - to_move, right->start(),
+ right->start() + to_move, right, alloc);
if (!leaf()) {
// Move the child pointers from the right to the left node.
@@ -1575,54 +1684,19 @@ void btree_node<P>::rebalance_left_to_right(const int to_move,
// Lastly, a new delimiting value is moved from the left node into the
// parent, and the remaining empty left node entries are destroyed.
- if (right->count() >= to_move) {
- // The original location of the right->count() values are sufficient to hold
- // the new to_move entries from the parent and left node.
-
- // 1) Shift existing values in the right node to their correct positions.
- right->uninitialized_move_n(to_move, right->finish() - to_move,
- right->finish(), right, alloc);
- for (slot_type *src = right->slot(right->finish() - to_move - 1),
- *dest = right->slot(right->finish() - 1),
- *end = right->start_slot();
- src >= end; --src, --dest) {
- params_type::move(alloc, src, dest);
- }
-
- // 2) Move the delimiting value in the parent to the right node.
- params_type::move(alloc, parent()->slot(position()),
- right->slot(to_move - 1));
-
- // 3) Move the (to_move - 1) values from the left node to the right node.
- params_type::move(alloc, slot(finish() - (to_move - 1)), finish_slot(),
- right->start_slot());
- } else {
- // The right node does not have enough initialized space to hold the new
- // to_move entries, so part of them will move to uninitialized space.
+ // 1) Shift existing values in the right node to their correct positions.
+ right->transfer_n_backward(right->count(), right->start() + to_move,
+ right->start(), right, alloc);
- // 1) Shift existing values in the right node to their correct positions.
- right->uninitialized_move_n(right->count(), right->start(),
- right->start() + to_move, right, alloc);
+ // 2) Move the delimiting value in the parent to the right node.
+ right->transfer(right->start() + to_move - 1, position(), parent(), alloc);
- // 2) Move the delimiting value in the parent to the right node.
- right->value_init(to_move - 1, alloc, parent()->slot(position()));
-
- // 3) Move the (to_move - 1) values from the left node to the right node.
- const size_type uninitialized_remaining = to_move - right->count() - 1;
- uninitialized_move_n(uninitialized_remaining,
- finish() - uninitialized_remaining, right->finish(),
- right, alloc);
- params_type::move(alloc, slot(finish() - (to_move - 1)),
- slot(finish() - uninitialized_remaining),
- right->start_slot());
- }
+ // 3) Move the (to_move - 1) values from the left node to the right node.
+ right->transfer_n(to_move - 1, right->start(), finish() - (to_move - 1), this,
+ alloc);
// 4) Move the new delimiting value to the parent from the left node.
- params_type::move(alloc, slot(finish() - to_move),
- parent()->slot(position()));
-
- // 5) Destroy the now-empty to_move entries in the left node.
- value_destroy_n(finish() - to_move, to_move, alloc);
+ parent()->transfer(position(), finish() - to_move, this, alloc);
if (!leaf()) {
// Move the child pointers from the left to the right node.
@@ -1645,7 +1719,7 @@ template <typename P>
void btree_node<P>::split(const int insert_position, btree_node *dest,
allocator_type *alloc) {
assert(dest->count() == 0);
- assert(max_count() == kNodeValues);
+ assert(max_count() == kNodeSlots);
// We bias the split based on the position being inserted. If we're
// inserting at the beginning of the left node then bias the split to put
@@ -1653,7 +1727,7 @@ void btree_node<P>::split(const int insert_position, btree_node *dest,
// right node then bias the split to put more values on the left node.
if (insert_position == start()) {
dest->set_finish(dest->start() + finish() - 1);
- } else if (insert_position == kNodeValues) {
+ } else if (insert_position == kNodeSlots) {
dest->set_finish(dest->start());
} else {
dest->set_finish(dest->start() + count() / 2);
@@ -1662,10 +1736,7 @@ void btree_node<P>::split(const int insert_position, btree_node *dest,
assert(count() >= 1);
// Move values from the left sibling to the right sibling.
- uninitialized_move_n(dest->count(), finish(), dest->start(), dest, alloc);
-
- // Destroy the now-empty entries in the left node.
- value_destroy_n(finish(), dest->count(), alloc);
+ dest->transfer_n(dest->count(), dest->start(), finish(), this, alloc);
// The split key is the largest value in the left sibling.
--mutable_finish();
@@ -1692,11 +1763,7 @@ void btree_node<P>::merge(btree_node *src, allocator_type *alloc) {
value_init(finish(), alloc, parent()->slot(position()));
// Move the values from the right to the left node.
- src->uninitialized_move_n(src->count(), src->start(), finish() + 1, this,
- alloc);
-
- // Destroy the now-empty entries in the right node.
- src->value_destroy_n(src->start(), src->count(), alloc);
+ transfer_n(src->count(), finish() + 1, src->start(), src, alloc);
if (!leaf()) {
// Move the child pointers from the right to the left node.
@@ -1710,56 +1777,59 @@ void btree_node<P>::merge(btree_node *src, allocator_type *alloc) {
set_finish(start() + 1 + count() + src->count());
src->set_finish(src->start());
- // Remove the value on the parent node.
- parent()->remove_value(position(), alloc);
+ // Remove the value on the parent node and delete the src node.
+ parent()->remove_values(position(), /*to_erase=*/1, alloc);
}
template <typename P>
-void btree_node<P>::swap(btree_node *x, allocator_type *alloc) {
- using std::swap;
- assert(leaf() == x->leaf());
-
- // Determine which is the smaller/larger node.
- btree_node *smaller = this, *larger = x;
- if (smaller->count() > larger->count()) {
- swap(smaller, larger);
+void btree_node<P>::clear_and_delete(btree_node *node, allocator_type *alloc) {
+ if (node->leaf()) {
+ node->value_destroy_n(node->start(), node->count(), alloc);
+ deallocate(LeafSize(node->max_count()), node, alloc);
+ return;
}
-
- // Swap the values.
- for (slot_type *a = smaller->start_slot(), *b = larger->start_slot(),
- *end = smaller->finish_slot();
- a != end; ++a, ++b) {
- params_type::swap(alloc, a, b);
+ if (node->count() == 0) {
+ deallocate(InternalSize(), node, alloc);
+ return;
}
- // Move values that can't be swapped.
- const size_type to_move = larger->count() - smaller->count();
- larger->uninitialized_move_n(to_move, smaller->finish(), smaller->finish(),
- smaller, alloc);
- larger->value_destroy_n(smaller->finish(), to_move, alloc);
+ // The parent of the root of the subtree we are deleting.
+ btree_node *delete_root_parent = node->parent();
- if (!leaf()) {
- // Swap the child pointers.
- std::swap_ranges(&smaller->mutable_child(smaller->start()),
- &smaller->mutable_child(smaller->finish() + 1),
- &larger->mutable_child(larger->start()));
- // Update swapped children's parent pointers.
- int i = smaller->start();
- int j = larger->start();
- for (; i <= smaller->finish(); ++i, ++j) {
- smaller->child(i)->set_parent(smaller);
- larger->child(j)->set_parent(larger);
- }
- // Move the child pointers that couldn't be swapped.
- for (; j <= larger->finish(); ++i, ++j) {
- smaller->init_child(i, larger->child(j));
- larger->clear_child(j);
- }
+ // Navigate to the leftmost leaf under node, and then delete upwards.
+ while (!node->leaf()) node = node->start_child();
+ // Use `int` because `pos` needs to be able to hold `kNodeSlots+1`, which
+ // isn't guaranteed to be a valid `field_type`.
+ int pos = node->position();
+ btree_node *parent = node->parent();
+ for (;;) {
+ // In each iteration of the next loop, we delete one leaf node and go right.
+ assert(pos <= parent->finish());
+ do {
+ node = parent->child(pos);
+ if (!node->leaf()) {
+ // Navigate to the leftmost leaf under node.
+ while (!node->leaf()) node = node->start_child();
+ pos = node->position();
+ parent = node->parent();
+ }
+ node->value_destroy_n(node->start(), node->count(), alloc);
+ deallocate(LeafSize(node->max_count()), node, alloc);
+ ++pos;
+ } while (pos <= parent->finish());
+
+ // Once we've deleted all children of parent, delete parent and go up/right.
+ assert(pos > parent->finish());
+ do {
+ node = parent;
+ pos = node->position();
+ parent = node->parent();
+ node->value_destroy_n(node->start(), node->count(), alloc);
+ deallocate(InternalSize(), node, alloc);
+ if (parent == delete_root_parent) return;
+ ++pos;
+ } while (pos > parent->finish());
}
-
- // Swap the `finish`s.
- // TODO(ezb): with floating storage, will also need to swap starts.
- swap(mutable_finish(), x->mutable_finish());
}
////
@@ -1774,6 +1844,7 @@ void btree_iterator<N, R, P>::increment_slow() {
position = node->position();
node = node->parent();
}
+ // TODO(ezb): assert we aren't incrementing end() instead of handling.
if (position == node->finish()) {
*this = save;
}
@@ -1797,6 +1868,7 @@ void btree_iterator<N, R, P>::decrement_slow() {
position = node->position() - 1;
node = node->parent();
}
+ // TODO(ezb): assert we aren't decrementing begin() instead of handling.
if (position < node->start()) {
*this = save;
}
@@ -1814,7 +1886,7 @@ void btree_iterator<N, R, P>::decrement_slow() {
// btree methods
template <typename P>
template <typename Btree>
-void btree<P>::copy_or_move_values_in_order(Btree *x) {
+void btree<P>::copy_or_move_values_in_order(Btree &other) {
static_assert(std::is_same<btree, Btree>::value ||
std::is_same<const btree, Btree>::value,
"Btree type must be same or const.");
@@ -1822,11 +1894,11 @@ void btree<P>::copy_or_move_values_in_order(Btree *x) {
// We can avoid key comparisons because we know the order of the
// values is the same order we'll store them in.
- auto iter = x->begin();
- if (iter == x->end()) return;
+ auto iter = other.begin();
+ if (iter == other.end()) return;
insert_multi(maybe_move_from_iterator(iter));
++iter;
- for (; iter != x->end(); ++iter) {
+ for (; iter != other.end(); ++iter) {
// If the btree is not empty, we can just insert the new value at the end
// of the tree.
internal_emplace(end(), maybe_move_from_iterator(iter));
@@ -1845,7 +1917,7 @@ constexpr bool btree<P>::static_assert_validation() {
// Note: We assert that kTargetValues, which is computed from
// Params::kTargetNodeSize, must fit the node_type::field_type.
static_assert(
- kNodeValues < (1 << (8 * sizeof(typename node_type::field_type))),
+ kNodeSlots < (1 << (8 * sizeof(typename node_type::field_type))),
"target node size too large");
// Verify that key_compare returns an absl::{weak,strong}_ordering or bool.
@@ -1865,24 +1937,57 @@ constexpr bool btree<P>::static_assert_validation() {
}
template <typename P>
-btree<P>::btree(const key_compare &comp, const allocator_type &alloc)
- : root_(comp, alloc, EmptyNode()), rightmost_(EmptyNode()), size_(0) {}
+template <typename K>
+auto btree<P>::lower_bound_equal(const K &key) const
+ -> std::pair<iterator, bool> {
+ const SearchResult<iterator, is_key_compare_to::value> res =
+ internal_lower_bound(key);
+ const iterator lower = iterator(internal_end(res.value));
+ const bool equal = res.HasMatch()
+ ? res.IsEq()
+ : lower != end() && !compare_keys(key, lower.key());
+ return {lower, equal};
+}
template <typename P>
-btree<P>::btree(const btree &x) : btree(x.key_comp(), x.allocator()) {
- copy_or_move_values_in_order(&x);
+template <typename K>
+auto btree<P>::equal_range(const K &key) -> std::pair<iterator, iterator> {
+ const std::pair<iterator, bool> lower_and_equal = lower_bound_equal(key);
+ const iterator lower = lower_and_equal.first;
+ if (!lower_and_equal.second) {
+ return {lower, lower};
+ }
+
+ const iterator next = std::next(lower);
+ if (!params_type::template can_have_multiple_equivalent_keys<K>()) {
+ // The next iterator after lower must point to a key greater than `key`.
+ // Note: if this assert fails, then it may indicate that the comparator does
+ // not meet the equivalence requirements for Compare
+ // (see https://en.cppreference.com/w/cpp/named_req/Compare).
+ assert(next == end() || compare_keys(key, next.key()));
+ return {lower, next};
+ }
+ // Try once more to avoid the call to upper_bound() if there's only one
+ // equivalent key. This should prevent all calls to upper_bound() in cases of
+ // unique-containers with heterogeneous comparators in which all comparison
+ // operators have the same equivalence classes.
+ if (next == end() || compare_keys(key, next.key())) return {lower, next};
+
+ // In this case, we need to call upper_bound() to avoid worst case O(N)
+ // behavior if we were to iterate over equal keys.
+ return {lower, upper_bound(key)};
}
template <typename P>
-template <typename... Args>
-auto btree<P>::insert_unique(const key_type &key, Args &&... args)
+template <typename K, typename... Args>
+auto btree<P>::insert_unique(const K &key, Args &&... args)
-> std::pair<iterator, bool> {
if (empty()) {
mutable_root() = rightmost_ = new_leaf_root_node(1);
}
- auto res = internal_locate(key);
- iterator &iter = res.value;
+ SearchResult<iterator, is_key_compare_to::value> res = internal_locate(key);
+ iterator iter = res.value;
if (res.HasMatch()) {
if (res.IsEq()) {
@@ -1900,8 +2005,8 @@ auto btree<P>::insert_unique(const key_type &key, Args &&... args)
}
template <typename P>
-template <typename... Args>
-inline auto btree<P>::insert_hint_unique(iterator position, const key_type &key,
+template <typename K, typename... Args>
+inline auto btree<P>::insert_hint_unique(iterator position, const K &key,
Args &&... args)
-> std::pair<iterator, bool> {
if (!empty()) {
@@ -1925,14 +2030,23 @@ inline auto btree<P>::insert_hint_unique(iterator position, const key_type &key,
}
template <typename P>
-template <typename InputIterator>
-void btree<P>::insert_iterator_unique(InputIterator b, InputIterator e) {
+template <typename InputIterator, typename>
+void btree<P>::insert_iterator_unique(InputIterator b, InputIterator e, int) {
for (; b != e; ++b) {
insert_hint_unique(end(), params_type::key(*b), *b);
}
}
template <typename P>
+template <typename InputIterator>
+void btree<P>::insert_iterator_unique(InputIterator b, InputIterator e, char) {
+ for (; b != e; ++b) {
+ init_type value(*b);
+ insert_hint_unique(end(), params_type::key(value), std::move(value));
+ }
+}
+
+template <typename P>
template <typename ValueType>
auto btree<P>::insert_multi(const key_type &key, ValueType &&v) -> iterator {
if (empty()) {
@@ -1977,46 +2091,47 @@ void btree<P>::insert_iterator_multi(InputIterator b, InputIterator e) {
}
template <typename P>
-auto btree<P>::operator=(const btree &x) -> btree & {
- if (this != &x) {
+auto btree<P>::operator=(const btree &other) -> btree & {
+ if (this != &other) {
clear();
- *mutable_key_comp() = x.key_comp();
+ *mutable_key_comp() = other.key_comp();
if (absl::allocator_traits<
allocator_type>::propagate_on_container_copy_assignment::value) {
- *mutable_allocator() = x.allocator();
+ *mutable_allocator() = other.allocator();
}
- copy_or_move_values_in_order(&x);
+ copy_or_move_values_in_order(other);
}
return *this;
}
template <typename P>
-auto btree<P>::operator=(btree &&x) noexcept -> btree & {
- if (this != &x) {
+auto btree<P>::operator=(btree &&other) noexcept -> btree & {
+ if (this != &other) {
clear();
using std::swap;
if (absl::allocator_traits<
allocator_type>::propagate_on_container_copy_assignment::value) {
// Note: `root_` also contains the allocator and the key comparator.
- swap(root_, x.root_);
- swap(rightmost_, x.rightmost_);
- swap(size_, x.size_);
+ swap(root_, other.root_);
+ swap(rightmost_, other.rightmost_);
+ swap(size_, other.size_);
} else {
- if (allocator() == x.allocator()) {
- swap(mutable_root(), x.mutable_root());
- swap(*mutable_key_comp(), *x.mutable_key_comp());
- swap(rightmost_, x.rightmost_);
- swap(size_, x.size_);
+ if (allocator() == other.allocator()) {
+ swap(mutable_root(), other.mutable_root());
+ swap(*mutable_key_comp(), *other.mutable_key_comp());
+ swap(rightmost_, other.rightmost_);
+ swap(size_, other.size_);
} else {
// We aren't allowed to propagate the allocator and the allocator is
// different so we can't take over its memory. We must move each element
- // individually. We need both `x` and `this` to have `x`s key comparator
- // while moving the values so we can't swap the key comparators.
- *mutable_key_comp() = x.key_comp();
- copy_or_move_values_in_order(&x);
+ // individually. We need both `other` and `this` to have `other`s key
+ // comparator while moving the values so we can't swap the key
+ // comparators.
+ *mutable_key_comp() = other.key_comp();
+ copy_or_move_values_in_order(other);
}
}
}
@@ -2028,7 +2143,7 @@ auto btree<P>::erase(iterator iter) -> iterator {
bool internal_delete = false;
if (!iter.node->leaf()) {
// Deletion of a value on an internal node. First, move the largest value
- // from our left child here, then delete that position (in remove_value()
+ // from our left child here, then delete that position (in remove_values()
// below). We can get to the largest value from our left child by
// decrementing iter.
iterator internal_iter(iter);
@@ -2040,7 +2155,7 @@ auto btree<P>::erase(iterator iter) -> iterator {
}
// Delete the key from the leaf.
- iter.node->remove_value(iter.position, mutable_allocator());
+ iter.node->remove_values(iter.position, /*to_erase=*/1, mutable_allocator());
--size_;
// We want to return the next value after the one we just erased. If we
@@ -2115,7 +2230,9 @@ auto btree<P>::erase_range(iterator begin, iterator end)
}
if (begin.node == end.node) {
- erase_same_node(begin, end);
+ assert(end.position > begin.position);
+ begin.node->remove_values(begin.position, end.position - begin.position,
+ mutable_allocator());
size_ -= count;
return {count, rebalance_after_delete(begin)};
}
@@ -2125,8 +2242,11 @@ auto btree<P>::erase_range(iterator begin, iterator end)
if (begin.node->leaf()) {
const size_type remaining_to_erase = size_ - target_size;
const size_type remaining_in_node = begin.node->finish() - begin.position;
- begin = erase_from_leaf_node(
- begin, (std::min)(remaining_to_erase, remaining_in_node));
+ const size_type to_erase =
+ (std::min)(remaining_to_erase, remaining_in_node);
+ begin.node->remove_values(begin.position, to_erase, mutable_allocator());
+ size_ -= to_erase;
+ begin = rebalance_after_delete(begin);
} else {
begin = erase(begin);
}
@@ -2135,79 +2255,9 @@ auto btree<P>::erase_range(iterator begin, iterator end)
}
template <typename P>
-void btree<P>::erase_same_node(iterator begin, iterator end) {
- assert(begin.node == end.node);
- assert(end.position > begin.position);
-
- node_type *node = begin.node;
- size_type to_erase = end.position - begin.position;
- if (!node->leaf()) {
- // Delete all children between begin and end.
- for (size_type i = 0; i < to_erase; ++i) {
- internal_clear(node->child(begin.position + i + 1));
- }
- // Rotate children after end into new positions.
- for (size_type i = begin.position + to_erase + 1; i <= node->finish();
- ++i) {
- node->set_child(i - to_erase, node->child(i));
- node->clear_child(i);
- }
- }
- node->remove_values_ignore_children(begin.position, to_erase,
- mutable_allocator());
-
- // Do not need to update rightmost_, because
- // * either end == this->end(), and therefore node == rightmost_, and still
- // exists
- // * or end != this->end(), and therefore rightmost_ hasn't been erased, since
- // it wasn't covered in [begin, end)
-}
-
-template <typename P>
-auto btree<P>::erase_from_leaf_node(iterator begin, size_type to_erase)
- -> iterator {
- node_type *node = begin.node;
- assert(node->leaf());
- assert(node->finish() > begin.position);
- assert(begin.position + to_erase <= node->finish());
-
- node->remove_values_ignore_children(begin.position, to_erase,
- mutable_allocator());
-
- size_ -= to_erase;
-
- return rebalance_after_delete(begin);
-}
-
-template <typename P>
-template <typename K>
-auto btree<P>::erase_unique(const K &key) -> size_type {
- const iterator iter = internal_find(key);
- if (iter.node == nullptr) {
- // The key doesn't exist in the tree, return nothing done.
- return 0;
- }
- erase(iter);
- return 1;
-}
-
-template <typename P>
-template <typename K>
-auto btree<P>::erase_multi(const K &key) -> size_type {
- const iterator begin = internal_lower_bound(key);
- if (begin.node == nullptr) {
- // The key doesn't exist in the tree, return nothing done.
- return 0;
- }
- // Delete all of the keys between begin and upper_bound(key).
- const iterator end = internal_end(internal_upper_bound(key));
- return erase_range(begin, end).first;
-}
-
-template <typename P>
void btree<P>::clear() {
if (!empty()) {
- internal_clear(root());
+ node_type::clear_and_delete(root(), mutable_allocator());
}
mutable_root() = EmptyNode();
rightmost_ = EmptyNode();
@@ -2215,20 +2265,20 @@ void btree<P>::clear() {
}
template <typename P>
-void btree<P>::swap(btree &x) {
+void btree<P>::swap(btree &other) {
using std::swap;
if (absl::allocator_traits<
allocator_type>::propagate_on_container_swap::value) {
// Note: `root_` also contains the allocator and the key comparator.
- swap(root_, x.root_);
+ swap(root_, other.root_);
} else {
// It's undefined behavior if the allocators are unequal here.
- assert(allocator() == x.allocator());
- swap(mutable_root(), x.mutable_root());
- swap(*mutable_key_comp(), *x.mutable_key_comp());
+ assert(allocator() == other.allocator());
+ swap(mutable_root(), other.mutable_root());
+ swap(*mutable_key_comp(), *other.mutable_key_comp());
}
- swap(rightmost_, x.rightmost_);
- swap(size_, x.size_);
+ swap(rightmost_, other.rightmost_);
+ swap(size_, other.size_);
}
template <typename P>
@@ -2248,7 +2298,7 @@ void btree<P>::rebalance_or_split(iterator *iter) {
node_type *&node = iter->node;
int &insert_position = iter->position;
assert(node->count() == node->max_count());
- assert(kNodeValues == node->max_count());
+ assert(kNodeSlots == node->max_count());
// First try to make room on the node by rebalancing.
node_type *parent = node->parent();
@@ -2256,17 +2306,17 @@ void btree<P>::rebalance_or_split(iterator *iter) {
if (node->position() > parent->start()) {
// Try rebalancing with our left sibling.
node_type *left = parent->child(node->position() - 1);
- assert(left->max_count() == kNodeValues);
- if (left->count() < kNodeValues) {
+ assert(left->max_count() == kNodeSlots);
+ if (left->count() < kNodeSlots) {
// We bias rebalancing based on the position being inserted. If we're
// inserting at the end of the right node then we bias rebalancing to
// fill up the left node.
- int to_move = (kNodeValues - left->count()) /
- (1 + (insert_position < kNodeValues));
+ int to_move = (kNodeSlots - left->count()) /
+ (1 + (insert_position < static_cast<int>(kNodeSlots)));
to_move = (std::max)(1, to_move);
if (insert_position - to_move >= node->start() ||
- left->count() + to_move < kNodeValues) {
+ left->count() + to_move < static_cast<int>(kNodeSlots)) {
left->rebalance_right_to_left(to_move, node, mutable_allocator());
assert(node->max_count() - node->count() == to_move);
@@ -2285,17 +2335,17 @@ void btree<P>::rebalance_or_split(iterator *iter) {
if (node->position() < parent->finish()) {
// Try rebalancing with our right sibling.
node_type *right = parent->child(node->position() + 1);
- assert(right->max_count() == kNodeValues);
- if (right->count() < kNodeValues) {
+ assert(right->max_count() == kNodeSlots);
+ if (right->count() < kNodeSlots) {
// We bias rebalancing based on the position being inserted. If we're
// inserting at the beginning of the left node then we bias rebalancing
// to fill up the right node.
- int to_move = (kNodeValues - right->count()) /
+ int to_move = (static_cast<int>(kNodeSlots) - right->count()) /
(1 + (insert_position > node->start()));
to_move = (std::max)(1, to_move);
if (insert_position <= node->finish() - to_move ||
- right->count() + to_move < kNodeValues) {
+ right->count() + to_move < static_cast<int>(kNodeSlots)) {
node->rebalance_left_to_right(to_move, right, mutable_allocator());
if (insert_position > node->finish()) {
@@ -2311,8 +2361,8 @@ void btree<P>::rebalance_or_split(iterator *iter) {
// Rebalancing failed, make sure there is room on the parent node for a new
// value.
- assert(parent->max_count() == kNodeValues);
- if (parent->count() == kNodeValues) {
+ assert(parent->max_count() == kNodeSlots);
+ if (parent->count() == kNodeSlots) {
iterator parent_iter(node->parent(), node->position());
rebalance_or_split(&parent_iter);
}
@@ -2348,12 +2398,7 @@ void btree<P>::rebalance_or_split(iterator *iter) {
template <typename P>
void btree<P>::merge_nodes(node_type *left, node_type *right) {
left->merge(right, mutable_allocator());
- if (right->leaf()) {
- if (rightmost_ == right) rightmost_ = left;
- delete_leaf_node(right);
- } else {
- delete_internal_node(right);
- }
+ if (rightmost_ == right) rightmost_ = left;
}
template <typename P>
@@ -2362,8 +2407,8 @@ bool btree<P>::try_merge_or_rebalance(iterator *iter) {
if (iter->node->position() > parent->start()) {
// Try merging with our left sibling.
node_type *left = parent->child(iter->node->position() - 1);
- assert(left->max_count() == kNodeValues);
- if (1 + left->count() + iter->node->count() <= kNodeValues) {
+ assert(left->max_count() == kNodeSlots);
+ if (1U + left->count() + iter->node->count() <= kNodeSlots) {
iter->position += 1 + left->count();
merge_nodes(left, iter->node);
iter->node = left;
@@ -2373,8 +2418,8 @@ bool btree<P>::try_merge_or_rebalance(iterator *iter) {
if (iter->node->position() < parent->finish()) {
// Try merging with our right sibling.
node_type *right = parent->child(iter->node->position() + 1);
- assert(right->max_count() == kNodeValues);
- if (1 + iter->node->count() + right->count() <= kNodeValues) {
+ assert(right->max_count() == kNodeSlots);
+ if (1U + iter->node->count() + right->count() <= kNodeSlots) {
merge_nodes(iter->node, right);
return true;
}
@@ -2410,21 +2455,20 @@ bool btree<P>::try_merge_or_rebalance(iterator *iter) {
template <typename P>
void btree<P>::try_shrink() {
- if (root()->count() > 0) {
+ node_type *orig_root = root();
+ if (orig_root->count() > 0) {
return;
}
// Deleted the last item on the root node, shrink the height of the tree.
- if (root()->leaf()) {
+ if (orig_root->leaf()) {
assert(size() == 0);
- delete_leaf_node(root());
- mutable_root() = EmptyNode();
- rightmost_ = EmptyNode();
+ mutable_root() = rightmost_ = EmptyNode();
} else {
- node_type *child = root()->start_child();
+ node_type *child = orig_root->start_child();
child->make_root();
- delete_internal_node(root());
mutable_root() = child;
}
+ node_type::clear_and_delete(orig_root, mutable_allocator());
}
template <typename P>
@@ -2452,25 +2496,30 @@ inline auto btree<P>::internal_emplace(iterator iter, Args &&... args)
--iter;
++iter.position;
}
- const int max_count = iter.node->max_count();
+ const field_type max_count = iter.node->max_count();
+ allocator_type *alloc = mutable_allocator();
if (iter.node->count() == max_count) {
// Make room in the leaf for the new item.
- if (max_count < kNodeValues) {
+ if (max_count < kNodeSlots) {
// Insertion into the root where the root is smaller than the full node
// size. Simply grow the size of the root node.
assert(iter.node == root());
iter.node =
- new_leaf_root_node((std::min<int>)(kNodeValues, 2 * max_count));
- iter.node->swap(root(), mutable_allocator());
- delete_leaf_node(root());
- mutable_root() = iter.node;
- rightmost_ = iter.node;
+ new_leaf_root_node((std::min<int>)(kNodeSlots, 2 * max_count));
+ // Transfer the values from the old root to the new root.
+ node_type *old_root = root();
+ node_type *new_root = iter.node;
+ new_root->transfer_n(old_root->count(), new_root->start(),
+ old_root->start(), old_root, alloc);
+ new_root->set_finish(old_root->finish());
+ old_root->set_finish(old_root->start());
+ node_type::clear_and_delete(old_root, alloc);
+ mutable_root() = rightmost_ = new_root;
} else {
rebalance_or_split(&iter);
}
}
- iter.node->emplace_value(iter.position, mutable_allocator(),
- std::forward<Args>(args)...);
+ iter.node->emplace_value(iter.position, alloc, std::forward<Args>(args)...);
++size_;
return iter;
}
@@ -2479,61 +2528,51 @@ template <typename P>
template <typename K>
inline auto btree<P>::internal_locate(const K &key) const
-> SearchResult<iterator, is_key_compare_to::value> {
- return internal_locate_impl(key, is_key_compare_to());
-}
-
-template <typename P>
-template <typename K>
-inline auto btree<P>::internal_locate_impl(
- const K &key, std::false_type /* IsCompareTo */) const
- -> SearchResult<iterator, false> {
- iterator iter(const_cast<node_type *>(root()));
- for (;;) {
- iter.position = iter.node->lower_bound(key, key_comp()).value;
- // NOTE: we don't need to walk all the way down the tree if the keys are
- // equal, but determining equality would require doing an extra comparison
- // on each node on the way down, and we will need to go all the way to the
- // leaf node in the expected case.
- if (iter.node->leaf()) {
- break;
- }
- iter.node = iter.node->child(iter.position);
- }
- return {iter};
-}
-
-template <typename P>
-template <typename K>
-inline auto btree<P>::internal_locate_impl(
- const K &key, std::true_type /* IsCompareTo */) const
- -> SearchResult<iterator, true> {
iterator iter(const_cast<node_type *>(root()));
for (;;) {
- SearchResult<int, true> res = iter.node->lower_bound(key, key_comp());
+ SearchResult<int, is_key_compare_to::value> res =
+ iter.node->lower_bound(key, key_comp());
iter.position = res.value;
- if (res.match == MatchKind::kEq) {
+ if (res.IsEq()) {
return {iter, MatchKind::kEq};
}
+ // Note: in the non-key-compare-to case, we don't need to walk all the way
+ // down the tree if the keys are equal, but determining equality would
+ // require doing an extra comparison on each node on the way down, and we
+ // will need to go all the way to the leaf node in the expected case.
if (iter.node->leaf()) {
break;
}
iter.node = iter.node->child(iter.position);
}
+ // Note: in the non-key-compare-to case, the key may actually be equivalent
+ // here (and the MatchKind::kNe is ignored).
return {iter, MatchKind::kNe};
}
template <typename P>
template <typename K>
-auto btree<P>::internal_lower_bound(const K &key) const -> iterator {
+auto btree<P>::internal_lower_bound(const K &key) const
+ -> SearchResult<iterator, is_key_compare_to::value> {
+ if (!params_type::template can_have_multiple_equivalent_keys<K>()) {
+ SearchResult<iterator, is_key_compare_to::value> ret = internal_locate(key);
+ ret.value = internal_last(ret.value);
+ return ret;
+ }
iterator iter(const_cast<node_type *>(root()));
+ SearchResult<int, is_key_compare_to::value> res;
+ bool seen_eq = false;
for (;;) {
- iter.position = iter.node->lower_bound(key, key_comp()).value;
+ res = iter.node->lower_bound(key, key_comp());
+ iter.position = res.value;
if (iter.node->leaf()) {
break;
}
+ seen_eq = seen_eq || res.IsEq();
iter.node = iter.node->child(iter.position);
}
- return internal_last(iter);
+ if (res.IsEq()) return {iter, MatchKind::kEq};
+ return {internal_last(iter), seen_eq ? MatchKind::kEq : MatchKind::kNe};
}
template <typename P>
@@ -2553,7 +2592,7 @@ auto btree<P>::internal_upper_bound(const K &key) const -> iterator {
template <typename P>
template <typename K>
auto btree<P>::internal_find(const K &key) const -> iterator {
- auto res = internal_locate(key);
+ SearchResult<iterator, is_key_compare_to::value> res = internal_locate(key);
if (res.HasMatch()) {
if (res.IsEq()) {
return res.value;
@@ -2568,18 +2607,6 @@ auto btree<P>::internal_find(const K &key) const -> iterator {
}
template <typename P>
-void btree<P>::internal_clear(node_type *node) {
- if (!node->leaf()) {
- for (int i = node->start(); i <= node->finish(); ++i) {
- internal_clear(node->child(i));
- }
- delete_internal_node(node);
- } else {
- delete_leaf_node(node);
- }
-}
-
-template <typename P>
int btree<P>::internal_verify(const node_type *node, const key_type *lo,
const key_type *hi) const {
assert(node->count() > 0);