aboutsummaryrefslogtreecommitdiff
path: root/third_party/abseil-cpp/absl/container/internal/raw_hash_set.h
diff options
context:
space:
mode:
Diffstat (limited to 'third_party/abseil-cpp/absl/container/internal/raw_hash_set.h')
-rw-r--r--third_party/abseil-cpp/absl/container/internal/raw_hash_set.h696
1 files changed, 424 insertions, 272 deletions
diff --git a/third_party/abseil-cpp/absl/container/internal/raw_hash_set.h b/third_party/abseil-cpp/absl/container/internal/raw_hash_set.h
index ca7be8d868..12682b3532 100644
--- a/third_party/abseil-cpp/absl/container/internal/raw_hash_set.h
+++ b/third_party/abseil-cpp/absl/container/internal/raw_hash_set.h
@@ -87,6 +87,17 @@
//
// This probing function guarantees that after N probes, all the groups of the
// table will be probed exactly once.
+//
+// The control state and slot array are stored contiguously in a shared heap
+// allocation. The layout of this allocation is: `capacity()` control bytes,
+// one sentinel control byte, `Group::kWidth - 1` cloned control bytes,
+// <possible padding>, `capacity()` slots. The sentinel control byte is used in
+// iteration so we know when we reach the end of the table. The cloned control
+// bytes at the end of the table are cloned from the beginning of the table so
+// groups that begin near the end of the table can see a full group. In cases in
+// which there are more than `capacity()` cloned control bytes, the extra bytes
+// are `kEmpty`, and these ensure that we always see at least one empty slot and
+// can stop an unsuccessful search.
#ifndef ABSL_CONTAINER_INTERNAL_RAW_HASH_SET_H_
#define ABSL_CONTAINER_INTERNAL_RAW_HASH_SET_H_
@@ -102,8 +113,8 @@
#include <type_traits>
#include <utility>
-#include "absl/base/internal/bits.h"
#include "absl/base/internal/endian.h"
+#include "absl/base/optimization.h"
#include "absl/base/port.h"
#include "absl/container/internal/common.h"
#include "absl/container/internal/compressed_tuple.h"
@@ -112,15 +123,25 @@
#include "absl/container/internal/hashtable_debug_hooks.h"
#include "absl/container/internal/hashtablez_sampler.h"
#include "absl/container/internal/have_sse.h"
-#include "absl/container/internal/layout.h"
#include "absl/memory/memory.h"
#include "absl/meta/type_traits.h"
+#include "absl/numeric/bits.h"
#include "absl/utility/utility.h"
namespace absl {
ABSL_NAMESPACE_BEGIN
namespace container_internal {
+template <typename AllocType>
+void SwapAlloc(AllocType& lhs, AllocType& rhs,
+ std::true_type /* propagate_on_container_swap */) {
+ using std::swap;
+ swap(lhs, rhs);
+}
+template <typename AllocType>
+void SwapAlloc(AllocType& /*lhs*/, AllocType& /*rhs*/,
+ std::false_type /* propagate_on_container_swap */) {}
+
template <size_t Width>
class probe_seq {
public:
@@ -168,24 +189,19 @@ struct IsDecomposable<
// TODO(alkis): Switch to std::is_nothrow_swappable when gcc/clang supports it.
template <class T>
-constexpr bool IsNoThrowSwappable() {
+constexpr bool IsNoThrowSwappable(std::true_type = {} /* is_swappable */) {
using std::swap;
return noexcept(swap(std::declval<T&>(), std::declval<T&>()));
}
-
-template <typename T>
-int TrailingZeros(T x) {
- return sizeof(T) == 8 ? base_internal::CountTrailingZerosNonZero64(
- static_cast<uint64_t>(x))
- : base_internal::CountTrailingZerosNonZero32(
- static_cast<uint32_t>(x));
+template <class T>
+constexpr bool IsNoThrowSwappable(std::false_type /* is_swappable */) {
+ return false;
}
template <typename T>
-int LeadingZeros(T x) {
- return sizeof(T) == 8
- ? base_internal::CountLeadingZeros64(static_cast<uint64_t>(x))
- : base_internal::CountLeadingZeros32(static_cast<uint32_t>(x));
+uint32_t TrailingZeros(T x) {
+ ABSL_INTERNAL_ASSUME(x != 0);
+ return countr_zero(x);
}
// An abstraction over a bitmask. It provides an easy way to iterate through the
@@ -215,26 +231,24 @@ class BitMask {
}
explicit operator bool() const { return mask_ != 0; }
int operator*() const { return LowestBitSet(); }
- int LowestBitSet() const {
+ uint32_t LowestBitSet() const {
return container_internal::TrailingZeros(mask_) >> Shift;
}
- int HighestBitSet() const {
- return (sizeof(T) * CHAR_BIT - container_internal::LeadingZeros(mask_) -
- 1) >>
- Shift;
+ uint32_t HighestBitSet() const {
+ return static_cast<uint32_t>((bit_width(mask_) - 1) >> Shift);
}
BitMask begin() const { return *this; }
BitMask end() const { return BitMask(0); }
- int TrailingZeros() const {
+ uint32_t TrailingZeros() const {
return container_internal::TrailingZeros(mask_) >> Shift;
}
- int LeadingZeros() const {
+ uint32_t LeadingZeros() const {
constexpr int total_significant_bits = SignificantBits << Shift;
constexpr int extra_bits = sizeof(T) * 8 - total_significant_bits;
- return container_internal::LeadingZeros(mask_ << extra_bits) >> Shift;
+ return countl_zero(mask_ << extra_bits) >> Shift;
}
private:
@@ -248,48 +262,53 @@ class BitMask {
T mask_;
};
-using ctrl_t = signed char;
using h2_t = uint8_t;
// The values here are selected for maximum performance. See the static asserts
-// below for details.
-enum Ctrl : ctrl_t {
+// below for details. We use an enum class so that when strict aliasing is
+// enabled, the compiler knows ctrl_t doesn't alias other types.
+enum class ctrl_t : int8_t {
kEmpty = -128, // 0b10000000
kDeleted = -2, // 0b11111110
kSentinel = -1, // 0b11111111
};
static_assert(
- kEmpty & kDeleted & kSentinel & 0x80,
+ (static_cast<int8_t>(ctrl_t::kEmpty) &
+ static_cast<int8_t>(ctrl_t::kDeleted) &
+ static_cast<int8_t>(ctrl_t::kSentinel) & 0x80) != 0,
"Special markers need to have the MSB to make checking for them efficient");
-static_assert(kEmpty < kSentinel && kDeleted < kSentinel,
- "kEmpty and kDeleted must be smaller than kSentinel to make the "
- "SIMD test of IsEmptyOrDeleted() efficient");
-static_assert(kSentinel == -1,
- "kSentinel must be -1 to elide loading it from memory into SIMD "
- "registers (pcmpeqd xmm, xmm)");
-static_assert(kEmpty == -128,
- "kEmpty must be -128 to make the SIMD check for its "
+static_assert(
+ ctrl_t::kEmpty < ctrl_t::kSentinel && ctrl_t::kDeleted < ctrl_t::kSentinel,
+ "ctrl_t::kEmpty and ctrl_t::kDeleted must be smaller than "
+ "ctrl_t::kSentinel to make the SIMD test of IsEmptyOrDeleted() efficient");
+static_assert(
+ ctrl_t::kSentinel == static_cast<ctrl_t>(-1),
+ "ctrl_t::kSentinel must be -1 to elide loading it from memory into SIMD "
+ "registers (pcmpeqd xmm, xmm)");
+static_assert(ctrl_t::kEmpty == static_cast<ctrl_t>(-128),
+ "ctrl_t::kEmpty must be -128 to make the SIMD check for its "
"existence efficient (psignb xmm, xmm)");
-static_assert(~kEmpty & ~kDeleted & kSentinel & 0x7F,
- "kEmpty and kDeleted must share an unset bit that is not shared "
- "by kSentinel to make the scalar test for MatchEmptyOrDeleted() "
- "efficient");
-static_assert(kDeleted == -2,
- "kDeleted must be -2 to make the implementation of "
+static_assert(
+ (~static_cast<int8_t>(ctrl_t::kEmpty) &
+ ~static_cast<int8_t>(ctrl_t::kDeleted) &
+ static_cast<int8_t>(ctrl_t::kSentinel) & 0x7F) != 0,
+ "ctrl_t::kEmpty and ctrl_t::kDeleted must share an unset bit that is not "
+ "shared by ctrl_t::kSentinel to make the scalar test for "
+ "MatchEmptyOrDeleted() efficient");
+static_assert(ctrl_t::kDeleted == static_cast<ctrl_t>(-2),
+ "ctrl_t::kDeleted must be -2 to make the implementation of "
"ConvertSpecialToEmptyAndFullToDeleted efficient");
// A single block of empty control bytes for tables without any slots allocated.
// This enables removing a branch in the hot path of find().
+ABSL_DLL extern const ctrl_t kEmptyGroup[16];
inline ctrl_t* EmptyGroup() {
- alignas(16) static constexpr ctrl_t empty_group[] = {
- kSentinel, kEmpty, kEmpty, kEmpty, kEmpty, kEmpty, kEmpty, kEmpty,
- kEmpty, kEmpty, kEmpty, kEmpty, kEmpty, kEmpty, kEmpty, kEmpty};
- return const_cast<ctrl_t*>(empty_group);
+ return const_cast<ctrl_t*>(kEmptyGroup);
}
// Mixes a randomly generated per-process seed with `hash` and `ctrl` to
// randomize insertion order within groups.
-bool ShouldInsertBackwards(size_t hash, ctrl_t* ctrl);
+bool ShouldInsertBackwards(size_t hash, const ctrl_t* ctrl);
// Returns a hash seed.
//
@@ -305,14 +324,14 @@ inline size_t HashSeed(const ctrl_t* ctrl) {
inline size_t H1(size_t hash, const ctrl_t* ctrl) {
return (hash >> 7) ^ HashSeed(ctrl);
}
-inline ctrl_t H2(size_t hash) { return hash & 0x7F; }
+inline h2_t H2(size_t hash) { return hash & 0x7F; }
-inline bool IsEmpty(ctrl_t c) { return c == kEmpty; }
-inline bool IsFull(ctrl_t c) { return c >= 0; }
-inline bool IsDeleted(ctrl_t c) { return c == kDeleted; }
-inline bool IsEmptyOrDeleted(ctrl_t c) { return c < kSentinel; }
+inline bool IsEmpty(ctrl_t c) { return c == ctrl_t::kEmpty; }
+inline bool IsFull(ctrl_t c) { return c >= static_cast<ctrl_t>(0); }
+inline bool IsDeleted(ctrl_t c) { return c == ctrl_t::kDeleted; }
+inline bool IsEmptyOrDeleted(ctrl_t c) { return c < ctrl_t::kSentinel; }
-#if SWISSTABLE_HAVE_SSE2
+#if ABSL_INTERNAL_RAW_HASH_SET_HAVE_SSE2
// https://github.com/abseil/abseil-cpp/issues/209
// https://gcc.gnu.org/bugzilla/show_bug.cgi?id=87853
@@ -346,33 +365,33 @@ struct GroupSse2Impl {
// Returns a bitmask representing the positions of empty slots.
BitMask<uint32_t, kWidth> MatchEmpty() const {
-#if SWISSTABLE_HAVE_SSSE3
- // This only works because kEmpty is -128.
+#if ABSL_INTERNAL_RAW_HASH_SET_HAVE_SSSE3
+ // This only works because ctrl_t::kEmpty is -128.
return BitMask<uint32_t, kWidth>(
_mm_movemask_epi8(_mm_sign_epi8(ctrl, ctrl)));
#else
- return Match(static_cast<h2_t>(kEmpty));
+ return Match(static_cast<h2_t>(ctrl_t::kEmpty));
#endif
}
// Returns a bitmask representing the positions of empty or deleted slots.
BitMask<uint32_t, kWidth> MatchEmptyOrDeleted() const {
- auto special = _mm_set1_epi8(kSentinel);
+ auto special = _mm_set1_epi8(static_cast<int8_t>(ctrl_t::kSentinel));
return BitMask<uint32_t, kWidth>(
_mm_movemask_epi8(_mm_cmpgt_epi8_fixed(special, ctrl)));
}
// Returns the number of trailing empty or deleted elements in the group.
uint32_t CountLeadingEmptyOrDeleted() const {
- auto special = _mm_set1_epi8(kSentinel);
- return TrailingZeros(
- _mm_movemask_epi8(_mm_cmpgt_epi8_fixed(special, ctrl)) + 1);
+ auto special = _mm_set1_epi8(static_cast<int8_t>(ctrl_t::kSentinel));
+ return TrailingZeros(static_cast<uint32_t>(
+ _mm_movemask_epi8(_mm_cmpgt_epi8_fixed(special, ctrl)) + 1));
}
void ConvertSpecialToEmptyAndFullToDeleted(ctrl_t* dst) const {
auto msbs = _mm_set1_epi8(static_cast<char>(-128));
auto x126 = _mm_set1_epi8(126);
-#if SWISSTABLE_HAVE_SSSE3
+#if ABSL_INTERNAL_RAW_HASH_SET_HAVE_SSSE3
auto res = _mm_or_si128(_mm_shuffle_epi8(x126, ctrl), msbs);
#else
auto zero = _mm_setzero_si128();
@@ -384,7 +403,7 @@ struct GroupSse2Impl {
__m128i ctrl;
};
-#endif // SWISSTABLE_HAVE_SSE2
+#endif // ABSL_INTERNAL_RAW_HASH_SET_HAVE_SSE2
struct GroupPortableImpl {
static constexpr size_t kWidth = 8;
@@ -399,7 +418,7 @@ struct GroupPortableImpl {
//
// Caveat: there are false positives but:
// - they only occur if there is a real match
- // - they never occur on kEmpty, kDeleted, kSentinel
+ // - they never occur on ctrl_t::kEmpty, ctrl_t::kDeleted, ctrl_t::kSentinel
// - they will be handled gracefully by subsequent checks in code
//
// Example:
@@ -438,12 +457,16 @@ struct GroupPortableImpl {
uint64_t ctrl;
};
-#if SWISSTABLE_HAVE_SSE2
+#if ABSL_INTERNAL_RAW_HASH_SET_HAVE_SSE2
using Group = GroupSse2Impl;
#else
using Group = GroupPortableImpl;
#endif
+// The number of cloned control bytes that we copy from the beginning to the
+// end of the control bytes array.
+constexpr size_t NumClonedBytes() { return Group::kWidth - 1; }
+
template <class Policy, class Hash, class Eq, class Alloc>
class raw_hash_set;
@@ -451,31 +474,29 @@ inline bool IsValidCapacity(size_t n) { return ((n + 1) & n) == 0 && n > 0; }
// PRECONDITION:
// IsValidCapacity(capacity)
-// ctrl[capacity] == kSentinel
-// ctrl[i] != kSentinel for all i < capacity
+// ctrl[capacity] == ctrl_t::kSentinel
+// ctrl[i] != ctrl_t::kSentinel for all i < capacity
// Applies mapping for every byte in ctrl:
// DELETED -> EMPTY
// EMPTY -> EMPTY
// FULL -> DELETED
-inline void ConvertDeletedToEmptyAndFullToDeleted(
- ctrl_t* ctrl, size_t capacity) {
- assert(ctrl[capacity] == kSentinel);
- assert(IsValidCapacity(capacity));
- for (ctrl_t* pos = ctrl; pos != ctrl + capacity + 1; pos += Group::kWidth) {
- Group{pos}.ConvertSpecialToEmptyAndFullToDeleted(pos);
- }
- // Copy the cloned ctrl bytes.
- std::memcpy(ctrl + capacity + 1, ctrl, Group::kWidth);
- ctrl[capacity] = kSentinel;
-}
+void ConvertDeletedToEmptyAndFullToDeleted(ctrl_t* ctrl, size_t capacity);
// Rounds up the capacity to the next power of 2 minus 1, with a minimum of 1.
inline size_t NormalizeCapacity(size_t n) {
- return n ? ~size_t{} >> LeadingZeros(n) : 1;
+ return n ? ~size_t{} >> countl_zero(n) : 1;
}
-// We use 7/8th as maximum load factor.
-// For 16-wide groups, that gives an average of two empty slots per group.
+// General notes on capacity/growth methods below:
+// - We use 7/8th as maximum load factor. For 16-wide groups, that gives an
+// average of two empty slots per group.
+// - For (capacity+1) >= Group::kWidth, growth is 7/8*capacity.
+// - For (capacity+1) < Group::kWidth, growth == capacity. In this case, we
+// never need to probe (the whole table fits in one group) so we don't need a
+// load factor less than 1.
+
+// Given `capacity` of the table, returns the size (i.e. number of full slots)
+// at which we should grow the capacity.
inline size_t CapacityToGrowth(size_t capacity) {
assert(IsValidCapacity(capacity));
// `capacity*7/8`
@@ -486,7 +507,7 @@ inline size_t CapacityToGrowth(size_t capacity) {
return capacity - capacity / 8;
}
// From desired "growth" to a lowerbound of the necessary capacity.
-// Might not be a valid one and required NormalizeCapacity().
+// Might not be a valid one and requires NormalizeCapacity().
inline size_t GrowthToLowerboundCapacity(size_t growth) {
// `growth*8/7`
if (Group::kWidth == 8 && growth == 7) {
@@ -496,6 +517,144 @@ inline size_t GrowthToLowerboundCapacity(size_t growth) {
return growth + static_cast<size_t>((static_cast<int64_t>(growth) - 1) / 7);
}
+template <class InputIter>
+size_t SelectBucketCountForIterRange(InputIter first, InputIter last,
+ size_t bucket_count) {
+ if (bucket_count != 0) {
+ return bucket_count;
+ }
+ using InputIterCategory =
+ typename std::iterator_traits<InputIter>::iterator_category;
+ if (std::is_base_of<std::random_access_iterator_tag,
+ InputIterCategory>::value) {
+ return GrowthToLowerboundCapacity(
+ static_cast<size_t>(std::distance(first, last)));
+ }
+ return 0;
+}
+
+inline void AssertIsFull(ctrl_t* ctrl) {
+ ABSL_HARDENING_ASSERT((ctrl != nullptr && IsFull(*ctrl)) &&
+ "Invalid operation on iterator. The element might have "
+ "been erased, or the table might have rehashed.");
+}
+
+inline void AssertIsValid(ctrl_t* ctrl) {
+ ABSL_HARDENING_ASSERT((ctrl == nullptr || IsFull(*ctrl)) &&
+ "Invalid operation on iterator. The element might have "
+ "been erased, or the table might have rehashed.");
+}
+
+struct FindInfo {
+ size_t offset;
+ size_t probe_length;
+};
+
+// The representation of the object has two modes:
+// - small: For capacities < kWidth-1
+// - large: For the rest.
+//
+// Differences:
+// - In small mode we are able to use the whole capacity. The extra control
+// bytes give us at least one "empty" control byte to stop the iteration.
+// This is important to make 1 a valid capacity.
+//
+// - In small mode only the first `capacity()` control bytes after the
+// sentinel are valid. The rest contain dummy ctrl_t::kEmpty values that do not
+// represent a real slot. This is important to take into account on
+// find_first_non_full(), where we never try ShouldInsertBackwards() for
+// small tables.
+inline bool is_small(size_t capacity) { return capacity < Group::kWidth - 1; }
+
+inline probe_seq<Group::kWidth> probe(const ctrl_t* ctrl, size_t hash,
+ size_t capacity) {
+ return probe_seq<Group::kWidth>(H1(hash, ctrl), capacity);
+}
+
+// Probes the raw_hash_set with the probe sequence for hash and returns the
+// pointer to the first empty or deleted slot.
+// NOTE: this function must work with tables having both ctrl_t::kEmpty and
+// ctrl_t::kDeleted in one group. Such tables appears during
+// drop_deletes_without_resize.
+//
+// This function is very useful when insertions happen and:
+// - the input is already a set
+// - there are enough slots
+// - the element with the hash is not in the table
+template <typename = void>
+inline FindInfo find_first_non_full(const ctrl_t* ctrl, size_t hash,
+ size_t capacity) {
+ auto seq = probe(ctrl, hash, capacity);
+ while (true) {
+ Group g{ctrl + seq.offset()};
+ auto mask = g.MatchEmptyOrDeleted();
+ if (mask) {
+#if !defined(NDEBUG)
+ // We want to add entropy even when ASLR is not enabled.
+ // In debug build we will randomly insert in either the front or back of
+ // the group.
+ // TODO(kfm,sbenza): revisit after we do unconditional mixing
+ if (!is_small(capacity) && ShouldInsertBackwards(hash, ctrl)) {
+ return {seq.offset(mask.HighestBitSet()), seq.index()};
+ }
+#endif
+ return {seq.offset(mask.LowestBitSet()), seq.index()};
+ }
+ seq.next();
+ assert(seq.index() <= capacity && "full table!");
+ }
+}
+
+// Extern template for inline function keep possibility of inlining.
+// When compiler decided to not inline, no symbols will be added to the
+// corresponding translation unit.
+extern template FindInfo find_first_non_full(const ctrl_t*, size_t, size_t);
+
+// Reset all ctrl bytes back to ctrl_t::kEmpty, except the sentinel.
+inline void ResetCtrl(size_t capacity, ctrl_t* ctrl, const void* slot,
+ size_t slot_size) {
+ std::memset(ctrl, static_cast<int8_t>(ctrl_t::kEmpty),
+ capacity + 1 + NumClonedBytes());
+ ctrl[capacity] = ctrl_t::kSentinel;
+ SanitizerPoisonMemoryRegion(slot, slot_size * capacity);
+}
+
+// Sets the control byte, and if `i < NumClonedBytes()`, set the cloned byte
+// at the end too.
+inline void SetCtrl(size_t i, ctrl_t h, size_t capacity, ctrl_t* ctrl,
+ const void* slot, size_t slot_size) {
+ assert(i < capacity);
+
+ auto* slot_i = static_cast<const char*>(slot) + i * slot_size;
+ if (IsFull(h)) {
+ SanitizerUnpoisonMemoryRegion(slot_i, slot_size);
+ } else {
+ SanitizerPoisonMemoryRegion(slot_i, slot_size);
+ }
+
+ ctrl[i] = h;
+ ctrl[((i - NumClonedBytes()) & capacity) + (NumClonedBytes() & capacity)] = h;
+}
+
+inline void SetCtrl(size_t i, h2_t h, size_t capacity, ctrl_t* ctrl,
+ const void* slot, size_t slot_size) {
+ SetCtrl(i, static_cast<ctrl_t>(h), capacity, ctrl, slot, slot_size);
+}
+
+// The allocated block consists of `capacity + 1 + NumClonedBytes()` control
+// bytes followed by `capacity` slots, which must be aligned to `slot_align`.
+// SlotOffset returns the offset of the slots into the allocated block.
+inline size_t SlotOffset(size_t capacity, size_t slot_align) {
+ assert(IsValidCapacity(capacity));
+ const size_t num_control_bytes = capacity + 1 + NumClonedBytes();
+ return (num_control_bytes + slot_align - 1) & (~slot_align + 1);
+}
+
+// Returns the size of the allocated block. See also above comment.
+inline size_t AllocSize(size_t capacity, size_t slot_size, size_t slot_align) {
+ return SlotOffset(capacity, slot_align) + capacity * slot_size;
+}
+
// Policy: a policy defines how to perform different operations on
// the slots of the hashtable (see hash_policy_traits.h for the full interface
// of policy).
@@ -510,7 +669,8 @@ inline size_t GrowthToLowerboundCapacity(size_t growth) {
// if they are equal, false if they are not. If two keys compare equal, then
// their hash values as defined by Hash MUST be equal.
//
-// Allocator: an Allocator [https://devdocs.io/cpp/concept/allocator] with which
+// Allocator: an Allocator
+// [https://en.cppreference.com/w/cpp/named_req/Allocator] with which
// the storage of the hashtable will be allocated and the elements will be
// constructed and destroyed.
template <class Policy, class Hash, class Eq, class Alloc>
@@ -551,13 +711,6 @@ class raw_hash_set {
auto KeyTypeCanBeHashed(const Hash& h, const key_type& k) -> decltype(h(k));
auto KeyTypeCanBeEq(const Eq& eq, const key_type& k) -> decltype(eq(k, k));
- using Layout = absl::container_internal::Layout<ctrl_t, slot_type>;
-
- static Layout MakeLayout(size_t capacity) {
- assert(IsValidCapacity(capacity));
- return Layout(capacity + Group::kWidth + 1, capacity);
- }
-
using AllocTraits = absl::allocator_traits<allocator_type>;
using SlotAlloc = typename absl::allocator_traits<
allocator_type>::template rebind_alloc<slot_type>;
@@ -616,7 +769,7 @@ class raw_hash_set {
// PRECONDITION: not an end() iterator.
reference operator*() const {
- assert_is_full();
+ AssertIsFull(ctrl_);
return PolicyTraits::element(slot_);
}
@@ -625,7 +778,7 @@ class raw_hash_set {
// PRECONDITION: not an end() iterator.
iterator& operator++() {
- assert_is_full();
+ AssertIsFull(ctrl_);
++ctrl_;
++slot_;
skip_empty_or_deleted();
@@ -639,8 +792,8 @@ class raw_hash_set {
}
friend bool operator==(const iterator& a, const iterator& b) {
- a.assert_is_valid();
- b.assert_is_valid();
+ AssertIsValid(a.ctrl_);
+ AssertIsValid(b.ctrl_);
return a.ctrl_ == b.ctrl_;
}
friend bool operator!=(const iterator& a, const iterator& b) {
@@ -648,24 +801,19 @@ class raw_hash_set {
}
private:
- iterator(ctrl_t* ctrl) : ctrl_(ctrl) {} // for end()
- iterator(ctrl_t* ctrl, slot_type* slot) : ctrl_(ctrl), slot_(slot) {}
-
- void assert_is_full() const { assert(IsFull(*ctrl_)); }
- void assert_is_valid() const {
- assert(!ctrl_ || IsFull(*ctrl_) || *ctrl_ == kSentinel);
+ iterator(ctrl_t* ctrl, slot_type* slot) : ctrl_(ctrl), slot_(slot) {
+ // This assumption helps the compiler know that any non-end iterator is
+ // not equal to any end iterator.
+ ABSL_INTERNAL_ASSUME(ctrl != nullptr);
}
void skip_empty_or_deleted() {
while (IsEmptyOrDeleted(*ctrl_)) {
- // ctrl is not necessarily aligned to Group::kWidth. It is also likely
- // to read past the space for ctrl bytes and into slots. This is ok
- // because ctrl has sizeof() == 1 and slot has sizeof() >= 1 so there
- // is no way to read outside the combined slot array.
uint32_t shift = Group{ctrl_}.CountLeadingEmptyOrDeleted();
ctrl_ += shift;
slot_ += shift;
}
+ if (ABSL_PREDICT_FALSE(*ctrl_ == ctrl_t::kSentinel)) ctrl_ = nullptr;
}
ctrl_t* ctrl_ = nullptr;
@@ -724,10 +872,10 @@ class raw_hash_set {
explicit raw_hash_set(size_t bucket_count, const hasher& hash = hasher(),
const key_equal& eq = key_equal(),
const allocator_type& alloc = allocator_type())
- : ctrl_(EmptyGroup()), settings_(0, hash, eq, alloc) {
+ : ctrl_(EmptyGroup()),
+ settings_(0, HashtablezInfoHandle(), hash, eq, alloc) {
if (bucket_count) {
capacity_ = NormalizeCapacity(bucket_count);
- reset_growth_left();
initialize_slots();
}
}
@@ -746,7 +894,8 @@ class raw_hash_set {
raw_hash_set(InputIter first, InputIter last, size_t bucket_count = 0,
const hasher& hash = hasher(), const key_equal& eq = key_equal(),
const allocator_type& alloc = allocator_type())
- : raw_hash_set(bucket_count, hash, eq, alloc) {
+ : raw_hash_set(SelectBucketCountForIterRange(first, last, bucket_count),
+ hash, eq, alloc) {
insert(first, last);
}
@@ -833,10 +982,11 @@ class raw_hash_set {
// than a full `insert`.
for (const auto& v : that) {
const size_t hash = PolicyTraits::apply(HashElement{hash_ref()}, v);
- auto target = find_first_non_full(hash);
- set_ctrl(target.offset, H2(hash));
+ auto target = find_first_non_full(ctrl_, hash, capacity_);
+ SetCtrl(target.offset, H2(hash), capacity_, ctrl_, slots_,
+ sizeof(slot_type));
emplace_at(target.offset, v);
- infoz_.RecordInsert(hash, target.probe_length);
+ infoz().RecordInsert(hash, target.probe_length);
}
size_ = that.size();
growth_left() -= that.size();
@@ -850,28 +1000,27 @@ class raw_hash_set {
slots_(absl::exchange(that.slots_, nullptr)),
size_(absl::exchange(that.size_, 0)),
capacity_(absl::exchange(that.capacity_, 0)),
- infoz_(absl::exchange(that.infoz_, HashtablezInfoHandle())),
// Hash, equality and allocator are copied instead of moved because
// `that` must be left valid. If Hash is std::function<Key>, moving it
// would create a nullptr functor that cannot be called.
- settings_(that.settings_) {
- // growth_left was copied above, reset the one from `that`.
- that.growth_left() = 0;
- }
+ settings_(absl::exchange(that.growth_left(), 0),
+ absl::exchange(that.infoz(), HashtablezInfoHandle()),
+ that.hash_ref(), that.eq_ref(), that.alloc_ref()) {}
raw_hash_set(raw_hash_set&& that, const allocator_type& a)
: ctrl_(EmptyGroup()),
slots_(nullptr),
size_(0),
capacity_(0),
- settings_(0, that.hash_ref(), that.eq_ref(), a) {
+ settings_(0, HashtablezInfoHandle(), that.hash_ref(), that.eq_ref(),
+ a) {
if (a == that.alloc_ref()) {
std::swap(ctrl_, that.ctrl_);
std::swap(slots_, that.slots_);
std::swap(size_, that.size_);
std::swap(capacity_, that.capacity_);
std::swap(growth_left(), that.growth_left());
- std::swap(infoz_, that.infoz_);
+ std::swap(infoz(), that.infoz());
} else {
reserve(that.size());
// Note: this will copy elements of dense_set and unordered_set instead of
@@ -907,12 +1056,12 @@ class raw_hash_set {
it.skip_empty_or_deleted();
return it;
}
- iterator end() { return {ctrl_ + capacity_}; }
+ iterator end() { return {}; }
const_iterator begin() const {
return const_cast<raw_hash_set*>(this)->begin();
}
- const_iterator end() const { return const_cast<raw_hash_set*>(this)->end(); }
+ const_iterator end() const { return {}; }
const_iterator cbegin() const { return begin(); }
const_iterator cend() const { return end(); }
@@ -931,6 +1080,8 @@ class raw_hash_set {
// past that we simply deallocate the array.
if (capacity_ > 127) {
destroy_slots();
+
+ infoz().RecordClearedReservation();
} else if (capacity_) {
for (size_t i = 0; i != capacity_; ++i) {
if (IsFull(ctrl_[i])) {
@@ -938,11 +1089,11 @@ class raw_hash_set {
}
}
size_ = 0;
- reset_ctrl();
+ ResetCtrl(capacity_, ctrl_, slots_, sizeof(slot_type));
reset_growth_left();
}
assert(empty());
- infoz_.RecordStorageChanged(0, capacity_);
+ infoz().RecordStorageChanged(0, capacity_);
}
// This overload kicks in when the argument is an rvalue of insertable and
@@ -1015,7 +1166,7 @@ class raw_hash_set {
template <class InputIt>
void insert(InputIt first, InputIt last) {
- for (; first != last; ++first) insert(*first);
+ for (; first != last; ++first) emplace(*first);
}
template <class T, RequiresNotInit<T> = 0, RequiresInsertable<const T&> = 0>
@@ -1042,7 +1193,9 @@ class raw_hash_set {
}
iterator insert(const_iterator, node_type&& node) {
- return insert(std::move(node)).first;
+ auto res = insert(std::move(node));
+ node = std::move(res.node);
+ return res.position;
}
// This overload kicks in if we can deduce the key from args. This enables us
@@ -1171,7 +1324,7 @@ class raw_hash_set {
// This overload is necessary because otherwise erase<K>(const K&) would be
// a better match if non-const iterator is passed as an argument.
void erase(iterator it) {
- it.assert_is_full();
+ AssertIsFull(it.ctrl_);
PolicyTraits::destroy(&alloc_ref(), it.slot_);
erase_meta_only(it);
}
@@ -1205,7 +1358,7 @@ class raw_hash_set {
}
node_type extract(const_iterator position) {
- position.inner_.assert_is_full();
+ AssertIsFull(position.inner_.ctrl_);
auto node =
CommonAccess::Transfer<node_type>(alloc_ref(), position.inner_.slot_);
erase_meta_only(position);
@@ -1222,8 +1375,8 @@ class raw_hash_set {
void swap(raw_hash_set& that) noexcept(
IsNoThrowSwappable<hasher>() && IsNoThrowSwappable<key_equal>() &&
- (!AllocTraits::propagate_on_container_swap::value ||
- IsNoThrowSwappable<allocator_type>())) {
+ IsNoThrowSwappable<allocator_type>(
+ typename AllocTraits::propagate_on_container_swap{})) {
using std::swap;
swap(ctrl_, that.ctrl_);
swap(slots_, that.slots_);
@@ -1232,32 +1385,43 @@ class raw_hash_set {
swap(growth_left(), that.growth_left());
swap(hash_ref(), that.hash_ref());
swap(eq_ref(), that.eq_ref());
- swap(infoz_, that.infoz_);
- if (AllocTraits::propagate_on_container_swap::value) {
- swap(alloc_ref(), that.alloc_ref());
- } else {
- // If the allocators do not compare equal it is officially undefined
- // behavior. We choose to do nothing.
- }
+ swap(infoz(), that.infoz());
+ SwapAlloc(alloc_ref(), that.alloc_ref(),
+ typename AllocTraits::propagate_on_container_swap{});
}
void rehash(size_t n) {
if (n == 0 && capacity_ == 0) return;
if (n == 0 && size_ == 0) {
destroy_slots();
- infoz_.RecordStorageChanged(0, 0);
+ infoz().RecordStorageChanged(0, 0);
+ infoz().RecordClearedReservation();
return;
}
+
// bitor is a faster way of doing `max` here. We will round up to the next
// power-of-2-minus-1, so bitor is good enough.
auto m = NormalizeCapacity(n | GrowthToLowerboundCapacity(size()));
// n == 0 unconditionally rehashes as per the standard.
if (n == 0 || m > capacity_) {
resize(m);
+
+ // This is after resize, to ensure that we have completed the allocation
+ // and have potentially sampled the hashtable.
+ infoz().RecordReservation(n);
}
}
- void reserve(size_t n) { rehash(GrowthToLowerboundCapacity(n)); }
+ void reserve(size_t n) {
+ if (n > size() + growth_left()) {
+ size_t m = GrowthToLowerboundCapacity(n);
+ resize(NormalizeCapacity(m));
+
+ // This is after resize, to ensure that we have completed the allocation
+ // and have potentially sampled the hashtable.
+ infoz().RecordReservation(n);
+ }
+ }
// Extension API: support for heterogeneous keys.
//
@@ -1282,7 +1446,8 @@ class raw_hash_set {
void prefetch(const key_arg<K>& key) const {
(void)key;
#if defined(__GNUC__)
- auto seq = probe(hash_ref()(key));
+ prefetch_heap_block();
+ auto seq = probe(ctrl_, hash_ref()(key), capacity_);
__builtin_prefetch(static_cast<const void*>(ctrl_ + seq.offset()));
__builtin_prefetch(static_cast<const void*>(slots_ + seq.offset()));
#endif // __GNUC__
@@ -1297,7 +1462,7 @@ class raw_hash_set {
// called heterogeneous key support.
template <class K = key_type>
iterator find(const key_arg<K>& key, size_t hash) {
- auto seq = probe(hash);
+ auto seq = probe(ctrl_, hash, capacity_);
while (true) {
Group g{ctrl_ + seq.offset()};
for (int i : g.Match(H2(hash))) {
@@ -1308,10 +1473,12 @@ class raw_hash_set {
}
if (ABSL_PREDICT_TRUE(g.MatchEmpty())) return end();
seq.next();
+ assert(seq.index() <= capacity_ && "full table!");
}
}
template <class K = key_type>
iterator find(const key_arg<K>& key) {
+ prefetch_heap_block();
return find(key, hash_ref()(key));
}
@@ -1321,6 +1488,7 @@ class raw_hash_set {
}
template <class K = key_type>
const_iterator find(const key_arg<K>& key) const {
+ prefetch_heap_block();
return find(key, hash_ref()(key));
}
@@ -1455,9 +1623,10 @@ class raw_hash_set {
static_cast<size_t>(empty_after.TrailingZeros() +
empty_before.LeadingZeros()) < Group::kWidth;
- set_ctrl(index, was_never_full ? kEmpty : kDeleted);
+ SetCtrl(index, was_never_full ? ctrl_t::kEmpty : ctrl_t::kDeleted,
+ capacity_, ctrl_, slots_, sizeof(slot_type));
growth_left() += was_never_full;
- infoz_.RecordErase();
+ infoz().RecordErase();
}
void initialize_slots() {
@@ -1474,17 +1643,18 @@ class raw_hash_set {
// bound more carefully.
if (std::is_same<SlotAlloc, std::allocator<slot_type>>::value &&
slots_ == nullptr) {
- infoz_ = Sample();
+ infoz() = Sample(sizeof(slot_type));
}
- auto layout = MakeLayout(capacity_);
- char* mem = static_cast<char*>(
- Allocate<Layout::Alignment()>(&alloc_ref(), layout.AllocSize()));
- ctrl_ = reinterpret_cast<ctrl_t*>(layout.template Pointer<0>(mem));
- slots_ = layout.template Pointer<1>(mem);
- reset_ctrl();
+ char* mem = static_cast<char*>(Allocate<alignof(slot_type)>(
+ &alloc_ref(),
+ AllocSize(capacity_, sizeof(slot_type), alignof(slot_type))));
+ ctrl_ = reinterpret_cast<ctrl_t*>(mem);
+ slots_ = reinterpret_cast<slot_type*>(
+ mem + SlotOffset(capacity_, alignof(slot_type)));
+ ResetCtrl(capacity_, ctrl_, slots_, sizeof(slot_type));
reset_growth_left();
- infoz_.RecordStorageChanged(size_, capacity_);
+ infoz().RecordStorageChanged(size_, capacity_);
}
void destroy_slots() {
@@ -1494,10 +1664,12 @@ class raw_hash_set {
PolicyTraits::destroy(&alloc_ref(), slots_ + i);
}
}
- auto layout = MakeLayout(capacity_);
+
// Unpoison before returning the memory to the allocator.
SanitizerUnpoisonMemoryRegion(slots_, sizeof(slot_type) * capacity_);
- Deallocate<Layout::Alignment()>(&alloc_ref(), ctrl_, layout.AllocSize());
+ Deallocate<alignof(slot_type)>(
+ &alloc_ref(), ctrl_,
+ AllocSize(capacity_, sizeof(slot_type), alignof(slot_type)));
ctrl_ = EmptyGroup();
slots_ = nullptr;
size_ = 0;
@@ -1518,26 +1690,26 @@ class raw_hash_set {
if (IsFull(old_ctrl[i])) {
size_t hash = PolicyTraits::apply(HashElement{hash_ref()},
PolicyTraits::element(old_slots + i));
- auto target = find_first_non_full(hash);
+ auto target = find_first_non_full(ctrl_, hash, capacity_);
size_t new_i = target.offset;
total_probe_length += target.probe_length;
- set_ctrl(new_i, H2(hash));
+ SetCtrl(new_i, H2(hash), capacity_, ctrl_, slots_, sizeof(slot_type));
PolicyTraits::transfer(&alloc_ref(), slots_ + new_i, old_slots + i);
}
}
if (old_capacity) {
SanitizerUnpoisonMemoryRegion(old_slots,
sizeof(slot_type) * old_capacity);
- auto layout = MakeLayout(old_capacity);
- Deallocate<Layout::Alignment()>(&alloc_ref(), old_ctrl,
- layout.AllocSize());
+ Deallocate<alignof(slot_type)>(
+ &alloc_ref(), old_ctrl,
+ AllocSize(old_capacity, sizeof(slot_type), alignof(slot_type)));
}
- infoz_.RecordRehash(total_probe_length);
+ infoz().RecordRehash(total_probe_length);
}
void drop_deletes_without_resize() ABSL_ATTRIBUTE_NOINLINE {
assert(IsValidCapacity(capacity_));
- assert(!is_small());
+ assert(!is_small(capacity_));
// Algorithm:
// - mark all DELETED slots as EMPTY
// - mark all FULL slots as DELETED
@@ -1560,34 +1732,35 @@ class raw_hash_set {
slot_type* slot = reinterpret_cast<slot_type*>(&raw);
for (size_t i = 0; i != capacity_; ++i) {
if (!IsDeleted(ctrl_[i])) continue;
- size_t hash = PolicyTraits::apply(HashElement{hash_ref()},
- PolicyTraits::element(slots_ + i));
- auto target = find_first_non_full(hash);
- size_t new_i = target.offset;
+ const size_t hash = PolicyTraits::apply(
+ HashElement{hash_ref()}, PolicyTraits::element(slots_ + i));
+ const FindInfo target = find_first_non_full(ctrl_, hash, capacity_);
+ const size_t new_i = target.offset;
total_probe_length += target.probe_length;
// Verify if the old and new i fall within the same group wrt the hash.
// If they do, we don't need to move the object as it falls already in the
// best probe we can.
- const auto probe_index = [&](size_t pos) {
- return ((pos - probe(hash).offset()) & capacity_) / Group::kWidth;
+ const size_t probe_offset = probe(ctrl_, hash, capacity_).offset();
+ const auto probe_index = [probe_offset, this](size_t pos) {
+ return ((pos - probe_offset) & capacity_) / Group::kWidth;
};
// Element doesn't move.
if (ABSL_PREDICT_TRUE(probe_index(new_i) == probe_index(i))) {
- set_ctrl(i, H2(hash));
+ SetCtrl(i, H2(hash), capacity_, ctrl_, slots_, sizeof(slot_type));
continue;
}
if (IsEmpty(ctrl_[new_i])) {
// Transfer element to the empty spot.
- // set_ctrl poisons/unpoisons the slots so we have to call it at the
+ // SetCtrl poisons/unpoisons the slots so we have to call it at the
// right time.
- set_ctrl(new_i, H2(hash));
+ SetCtrl(new_i, H2(hash), capacity_, ctrl_, slots_, sizeof(slot_type));
PolicyTraits::transfer(&alloc_ref(), slots_ + new_i, slots_ + i);
- set_ctrl(i, kEmpty);
+ SetCtrl(i, ctrl_t::kEmpty, capacity_, ctrl_, slots_, sizeof(slot_type));
} else {
assert(IsDeleted(ctrl_[new_i]));
- set_ctrl(new_i, H2(hash));
+ SetCtrl(new_i, H2(hash), capacity_, ctrl_, slots_, sizeof(slot_type));
// Until we are done rehashing, DELETED marks previously FULL slots.
// Swap i and new_i elements.
PolicyTraits::transfer(&alloc_ref(), slot, slots_ + i);
@@ -1597,14 +1770,56 @@ class raw_hash_set {
}
}
reset_growth_left();
- infoz_.RecordRehash(total_probe_length);
+ infoz().RecordRehash(total_probe_length);
}
void rehash_and_grow_if_necessary() {
if (capacity_ == 0) {
resize(1);
- } else if (size() <= CapacityToGrowth(capacity()) / 2) {
+ } else if (capacity_ > Group::kWidth &&
+ // Do these calcuations in 64-bit to avoid overflow.
+ size() * uint64_t{32} <= capacity_ * uint64_t{25}) {
// Squash DELETED without growing if there is enough capacity.
+ //
+ // Rehash in place if the current size is <= 25/32 of capacity_.
+ // Rationale for such a high factor: 1) drop_deletes_without_resize() is
+ // faster than resize, and 2) it takes quite a bit of work to add
+ // tombstones. In the worst case, seems to take approximately 4
+ // insert/erase pairs to create a single tombstone and so if we are
+ // rehashing because of tombstones, we can afford to rehash-in-place as
+ // long as we are reclaiming at least 1/8 the capacity without doing more
+ // than 2X the work. (Where "work" is defined to be size() for rehashing
+ // or rehashing in place, and 1 for an insert or erase.) But rehashing in
+ // place is faster per operation than inserting or even doubling the size
+ // of the table, so we actually afford to reclaim even less space from a
+ // resize-in-place. The decision is to rehash in place if we can reclaim
+ // at about 1/8th of the usable capacity (specifically 3/28 of the
+ // capacity) which means that the total cost of rehashing will be a small
+ // fraction of the total work.
+ //
+ // Here is output of an experiment using the BM_CacheInSteadyState
+ // benchmark running the old case (where we rehash-in-place only if we can
+ // reclaim at least 7/16*capacity_) vs. this code (which rehashes in place
+ // if we can recover 3/32*capacity_).
+ //
+ // Note that although in the worst-case number of rehashes jumped up from
+ // 15 to 190, but the number of operations per second is almost the same.
+ //
+ // Abridged output of running BM_CacheInSteadyState benchmark from
+ // raw_hash_set_benchmark. N is the number of insert/erase operations.
+ //
+ // | OLD (recover >= 7/16 | NEW (recover >= 3/32)
+ // size | N/s LoadFactor NRehashes | N/s LoadFactor NRehashes
+ // 448 | 145284 0.44 18 | 140118 0.44 19
+ // 493 | 152546 0.24 11 | 151417 0.48 28
+ // 538 | 151439 0.26 11 | 151152 0.53 38
+ // 583 | 151765 0.28 11 | 150572 0.57 50
+ // 628 | 150241 0.31 11 | 150853 0.61 66
+ // 672 | 149602 0.33 12 | 150110 0.66 90
+ // 717 | 149998 0.35 12 | 149531 0.70 129
+ // 762 | 149836 0.37 13 | 148559 0.74 190
+ // 807 | 149736 0.39 14 | 151107 0.39 14
+ // 852 | 150204 0.42 15 | 151019 0.42 15
drop_deletes_without_resize();
} else {
// Otherwise grow the container.
@@ -1614,7 +1829,7 @@ class raw_hash_set {
bool has_element(const value_type& elem) const {
size_t hash = PolicyTraits::apply(HashElement{hash_ref()}, elem);
- auto seq = probe(hash);
+ auto seq = probe(ctrl_, hash, capacity_);
while (true) {
Group g{ctrl_ + seq.offset()};
for (int i : g.Match(H2(hash))) {
@@ -1624,46 +1839,11 @@ class raw_hash_set {
}
if (ABSL_PREDICT_TRUE(g.MatchEmpty())) return false;
seq.next();
- assert(seq.index() < capacity_ && "full table!");
+ assert(seq.index() <= capacity_ && "full table!");
}
return false;
}
- // Probes the raw_hash_set with the probe sequence for hash and returns the
- // pointer to the first empty or deleted slot.
- // NOTE: this function must work with tables having both kEmpty and kDelete
- // in one group. Such tables appears during drop_deletes_without_resize.
- //
- // This function is very useful when insertions happen and:
- // - the input is already a set
- // - there are enough slots
- // - the element with the hash is not in the table
- struct FindInfo {
- size_t offset;
- size_t probe_length;
- };
- FindInfo find_first_non_full(size_t hash) {
- auto seq = probe(hash);
- while (true) {
- Group g{ctrl_ + seq.offset()};
- auto mask = g.MatchEmptyOrDeleted();
- if (mask) {
-#if !defined(NDEBUG)
- // We want to add entropy even when ASLR is not enabled.
- // In debug build we will randomly insert in either the front or back of
- // the group.
- // TODO(kfm,sbenza): revisit after we do unconditional mixing
- if (!is_small() && ShouldInsertBackwards(hash, ctrl_)) {
- return {seq.offset(mask.HighestBitSet()), seq.index()};
- }
-#endif
- return {seq.offset(mask.LowestBitSet()), seq.index()};
- }
- assert(seq.index() < capacity_ && "full table!");
- seq.next();
- }
- }
-
// TODO(alkis): Optimize this assuming *this and that don't overlap.
raw_hash_set& move_assign(raw_hash_set&& that, std::true_type) {
raw_hash_set tmp(std::move(that));
@@ -1679,8 +1859,9 @@ class raw_hash_set {
protected:
template <class K>
std::pair<size_t, bool> find_or_prepare_insert(const K& key) {
+ prefetch_heap_block();
auto hash = hash_ref()(key);
- auto seq = probe(hash);
+ auto seq = probe(ctrl_, hash, capacity_);
while (true) {
Group g{ctrl_ + seq.offset()};
for (int i : g.Match(H2(hash))) {
@@ -1691,21 +1872,23 @@ class raw_hash_set {
}
if (ABSL_PREDICT_TRUE(g.MatchEmpty())) break;
seq.next();
+ assert(seq.index() <= capacity_ && "full table!");
}
return {prepare_insert(hash), true};
}
size_t prepare_insert(size_t hash) ABSL_ATTRIBUTE_NOINLINE {
- auto target = find_first_non_full(hash);
+ auto target = find_first_non_full(ctrl_, hash, capacity_);
if (ABSL_PREDICT_FALSE(growth_left() == 0 &&
!IsDeleted(ctrl_[target.offset]))) {
rehash_and_grow_if_necessary();
- target = find_first_non_full(hash);
+ target = find_first_non_full(ctrl_, hash, capacity_);
}
++size_;
growth_left() -= IsEmpty(ctrl_[target.offset]);
- set_ctrl(target.offset, H2(hash));
- infoz_.RecordInsert(hash, target.probe_length);
+ SetCtrl(target.offset, H2(hash), capacity_, ctrl_, slots_,
+ sizeof(slot_type));
+ infoz().RecordInsert(hash, target.probe_length);
return target.offset;
}
@@ -1733,84 +1916,54 @@ class raw_hash_set {
private:
friend struct RawHashSetTestOnlyAccess;
- probe_seq<Group::kWidth> probe(size_t hash) const {
- return probe_seq<Group::kWidth>(H1(hash, ctrl_), capacity_);
- }
-
- // Reset all ctrl bytes back to kEmpty, except the sentinel.
- void reset_ctrl() {
- std::memset(ctrl_, kEmpty, capacity_ + Group::kWidth);
- ctrl_[capacity_] = kSentinel;
- SanitizerPoisonMemoryRegion(slots_, sizeof(slot_type) * capacity_);
- }
-
void reset_growth_left() {
growth_left() = CapacityToGrowth(capacity()) - size_;
}
- // Sets the control byte, and if `i < Group::kWidth`, set the cloned byte at
- // the end too.
- void set_ctrl(size_t i, ctrl_t h) {
- assert(i < capacity_);
-
- if (IsFull(h)) {
- SanitizerUnpoisonObject(slots_ + i);
- } else {
- SanitizerPoisonObject(slots_ + i);
- }
+ size_t& growth_left() { return settings_.template get<0>(); }
- ctrl_[i] = h;
- ctrl_[((i - Group::kWidth) & capacity_) + 1 +
- ((Group::kWidth - 1) & capacity_)] = h;
+ void prefetch_heap_block() const {
+ // Prefetch the heap-allocated memory region to resolve potential TLB
+ // misses. This is intended to overlap with execution of calculating the
+ // hash for a key.
+#if defined(__GNUC__)
+ __builtin_prefetch(static_cast<const void*>(ctrl_), 0, 1);
+#endif // __GNUC__
}
- size_t& growth_left() { return settings_.template get<0>(); }
+ HashtablezInfoHandle& infoz() { return settings_.template get<1>(); }
- // The representation of the object has two modes:
- // - small: For capacities < kWidth-1
- // - large: For the rest.
- //
- // Differences:
- // - In small mode we are able to use the whole capacity. The extra control
- // bytes give us at least one "empty" control byte to stop the iteration.
- // This is important to make 1 a valid capacity.
- //
- // - In small mode only the first `capacity()` control bytes after the
- // sentinel are valid. The rest contain dummy kEmpty values that do not
- // represent a real slot. This is important to take into account on
- // find_first_non_full(), where we never try ShouldInsertBackwards() for
- // small tables.
- bool is_small() const { return capacity_ < Group::kWidth - 1; }
-
- hasher& hash_ref() { return settings_.template get<1>(); }
- const hasher& hash_ref() const { return settings_.template get<1>(); }
- key_equal& eq_ref() { return settings_.template get<2>(); }
- const key_equal& eq_ref() const { return settings_.template get<2>(); }
- allocator_type& alloc_ref() { return settings_.template get<3>(); }
+ hasher& hash_ref() { return settings_.template get<2>(); }
+ const hasher& hash_ref() const { return settings_.template get<2>(); }
+ key_equal& eq_ref() { return settings_.template get<3>(); }
+ const key_equal& eq_ref() const { return settings_.template get<3>(); }
+ allocator_type& alloc_ref() { return settings_.template get<4>(); }
const allocator_type& alloc_ref() const {
- return settings_.template get<3>();
+ return settings_.template get<4>();
}
// TODO(alkis): Investigate removing some of these fields:
// - ctrl/slots can be derived from each other
// - size can be moved into the slot array
- ctrl_t* ctrl_ = EmptyGroup(); // [(capacity + 1) * ctrl_t]
- slot_type* slots_ = nullptr; // [capacity * slot_type]
- size_t size_ = 0; // number of full slots
- size_t capacity_ = 0; // total number of slots
- HashtablezInfoHandle infoz_;
- absl::container_internal::CompressedTuple<size_t /* growth_left */, hasher,
+ ctrl_t* ctrl_ = EmptyGroup(); // [(capacity + 1 + NumClonedBytes()) * ctrl_t]
+ slot_type* slots_ = nullptr; // [capacity * slot_type]
+ size_t size_ = 0; // number of full slots
+ size_t capacity_ = 0; // total number of slots
+ absl::container_internal::CompressedTuple<size_t /* growth_left */,
+ HashtablezInfoHandle, hasher,
key_equal, allocator_type>
- settings_{0, hasher{}, key_equal{}, allocator_type{}};
+ settings_{0, HashtablezInfoHandle{}, hasher{}, key_equal{},
+ allocator_type{}};
};
// Erases all elements that satisfy the predicate `pred` from the container `c`.
template <typename P, typename H, typename E, typename A, typename Predicate>
-void EraseIf(Predicate pred, raw_hash_set<P, H, E, A>* c) {
+void EraseIf(Predicate& pred, raw_hash_set<P, H, E, A>* c) {
for (auto it = c->begin(), last = c->end(); it != last;) {
- auto copy_it = it++;
- if (pred(*copy_it)) {
- c->erase(copy_it);
+ if (pred(*it)) {
+ c->erase(it++);
+ } else {
+ ++it;
}
}
}
@@ -1825,7 +1978,7 @@ struct HashtableDebugAccess<Set, absl::void_t<typename Set::raw_hash_set>> {
const typename Set::key_type& key) {
size_t num_probes = 0;
size_t hash = set.hash_ref()(key);
- auto seq = set.probe(hash);
+ auto seq = probe(set.ctrl_, hash, set.capacity_);
while (true) {
container_internal::Group g{set.ctrl_ + seq.offset()};
for (int i : g.Match(container_internal::H2(hash))) {
@@ -1845,8 +1998,7 @@ struct HashtableDebugAccess<Set, absl::void_t<typename Set::raw_hash_set>> {
static size_t AllocatedByteSize(const Set& c) {
size_t capacity = c.capacity_;
if (capacity == 0) return 0;
- auto layout = Set::MakeLayout(capacity);
- size_t m = layout.AllocSize();
+ size_t m = AllocSize(capacity, sizeof(Slot), alignof(Slot));
size_t per_slot = Traits::space_used(static_cast<const Slot*>(nullptr));
if (per_slot != ~size_t{}) {
@@ -1864,8 +2016,8 @@ struct HashtableDebugAccess<Set, absl::void_t<typename Set::raw_hash_set>> {
static size_t LowerBoundAllocatedByteSize(size_t size) {
size_t capacity = GrowthToLowerboundCapacity(size);
if (capacity == 0) return 0;
- auto layout = Set::MakeLayout(NormalizeCapacity(capacity));
- size_t m = layout.AllocSize();
+ size_t m =
+ AllocSize(NormalizeCapacity(capacity), sizeof(Slot), alignof(Slot));
size_t per_slot = Traits::space_used(static_cast<const Slot*>(nullptr));
if (per_slot != ~size_t{}) {
m += per_slot * size;