aboutsummaryrefslogtreecommitdiff
path: root/third_party/abseil-cpp/absl/container/internal/raw_hash_set_test.cc
diff options
context:
space:
mode:
Diffstat (limited to 'third_party/abseil-cpp/absl/container/internal/raw_hash_set_test.cc')
-rw-r--r--third_party/abseil-cpp/absl/container/internal/raw_hash_set_test.cc451
1 files changed, 380 insertions, 71 deletions
diff --git a/third_party/abseil-cpp/absl/container/internal/raw_hash_set_test.cc b/third_party/abseil-cpp/absl/container/internal/raw_hash_set_test.cc
index a96ae68ac7..362b3caec3 100644
--- a/third_party/abseil-cpp/absl/container/internal/raw_hash_set_test.cc
+++ b/third_party/abseil-cpp/absl/container/internal/raw_hash_set_test.cc
@@ -14,6 +14,7 @@
#include "absl/container/internal/raw_hash_set.h"
+#include <atomic>
#include <cmath>
#include <cstdint>
#include <deque>
@@ -22,10 +23,13 @@
#include <numeric>
#include <random>
#include <string>
+#include <unordered_map>
+#include <unordered_set>
#include "gmock/gmock.h"
#include "gtest/gtest.h"
#include "absl/base/attributes.h"
+#include "absl/base/config.h"
#include "absl/base/internal/cycleclock.h"
#include "absl/base/internal/raw_logging.h"
#include "absl/container/internal/container_memory.h"
@@ -47,14 +51,16 @@ struct RawHashSetTestOnlyAccess {
namespace {
-using ::testing::DoubleNear;
using ::testing::ElementsAre;
+using ::testing::Eq;
using ::testing::Ge;
using ::testing::Lt;
-using ::testing::Optional;
using ::testing::Pair;
using ::testing::UnorderedElementsAre;
+// Convenience function to static cast to ctrl_t.
+ctrl_t CtrlT(int i) { return static_cast<ctrl_t>(i); }
+
TEST(Util, NormalizeCapacity) {
EXPECT_EQ(1, NormalizeCapacity(0));
EXPECT_EQ(1, NormalizeCapacity(1));
@@ -74,8 +80,14 @@ TEST(Util, GrowthAndCapacity) {
for (size_t growth = 0; growth < 10000; ++growth) {
SCOPED_TRACE(growth);
size_t capacity = NormalizeCapacity(GrowthToLowerboundCapacity(growth));
- // The capacity is large enough for `growth`
+ // The capacity is large enough for `growth`.
EXPECT_THAT(CapacityToGrowth(capacity), Ge(growth));
+ // For (capacity+1) < kWidth, growth should equal capacity.
+ if (capacity + 1 < Group::kWidth) {
+ EXPECT_THAT(CapacityToGrowth(capacity), Eq(capacity));
+ } else {
+ EXPECT_THAT(CapacityToGrowth(capacity), Lt(capacity));
+ }
if (growth != 0 && capacity > 1) {
// There is no smaller capacity that works.
EXPECT_THAT(CapacityToGrowth(capacity / 2), Lt(growth));
@@ -161,15 +173,19 @@ TEST(Group, EmptyGroup) {
TEST(Group, Match) {
if (Group::kWidth == 16) {
- ctrl_t group[] = {kEmpty, 1, kDeleted, 3, kEmpty, 5, kSentinel, 7,
- 7, 5, 3, 1, 1, 1, 1, 1};
+ ctrl_t group[] = {ctrl_t::kEmpty, CtrlT(1), ctrl_t::kDeleted, CtrlT(3),
+ ctrl_t::kEmpty, CtrlT(5), ctrl_t::kSentinel, CtrlT(7),
+ CtrlT(7), CtrlT(5), CtrlT(3), CtrlT(1),
+ CtrlT(1), CtrlT(1), CtrlT(1), CtrlT(1)};
EXPECT_THAT(Group{group}.Match(0), ElementsAre());
EXPECT_THAT(Group{group}.Match(1), ElementsAre(1, 11, 12, 13, 14, 15));
EXPECT_THAT(Group{group}.Match(3), ElementsAre(3, 10));
EXPECT_THAT(Group{group}.Match(5), ElementsAre(5, 9));
EXPECT_THAT(Group{group}.Match(7), ElementsAre(7, 8));
} else if (Group::kWidth == 8) {
- ctrl_t group[] = {kEmpty, 1, 2, kDeleted, 2, 1, kSentinel, 1};
+ ctrl_t group[] = {ctrl_t::kEmpty, CtrlT(1), CtrlT(2),
+ ctrl_t::kDeleted, CtrlT(2), CtrlT(1),
+ ctrl_t::kSentinel, CtrlT(1)};
EXPECT_THAT(Group{group}.Match(0), ElementsAre());
EXPECT_THAT(Group{group}.Match(1), ElementsAre(1, 5, 7));
EXPECT_THAT(Group{group}.Match(2), ElementsAre(2, 4));
@@ -180,11 +196,15 @@ TEST(Group, Match) {
TEST(Group, MatchEmpty) {
if (Group::kWidth == 16) {
- ctrl_t group[] = {kEmpty, 1, kDeleted, 3, kEmpty, 5, kSentinel, 7,
- 7, 5, 3, 1, 1, 1, 1, 1};
+ ctrl_t group[] = {ctrl_t::kEmpty, CtrlT(1), ctrl_t::kDeleted, CtrlT(3),
+ ctrl_t::kEmpty, CtrlT(5), ctrl_t::kSentinel, CtrlT(7),
+ CtrlT(7), CtrlT(5), CtrlT(3), CtrlT(1),
+ CtrlT(1), CtrlT(1), CtrlT(1), CtrlT(1)};
EXPECT_THAT(Group{group}.MatchEmpty(), ElementsAre(0, 4));
} else if (Group::kWidth == 8) {
- ctrl_t group[] = {kEmpty, 1, 2, kDeleted, 2, 1, kSentinel, 1};
+ ctrl_t group[] = {ctrl_t::kEmpty, CtrlT(1), CtrlT(2),
+ ctrl_t::kDeleted, CtrlT(2), CtrlT(1),
+ ctrl_t::kSentinel, CtrlT(1)};
EXPECT_THAT(Group{group}.MatchEmpty(), ElementsAre(0));
} else {
FAIL() << "No test coverage for Group::kWidth==" << Group::kWidth;
@@ -193,11 +213,15 @@ TEST(Group, MatchEmpty) {
TEST(Group, MatchEmptyOrDeleted) {
if (Group::kWidth == 16) {
- ctrl_t group[] = {kEmpty, 1, kDeleted, 3, kEmpty, 5, kSentinel, 7,
- 7, 5, 3, 1, 1, 1, 1, 1};
+ ctrl_t group[] = {ctrl_t::kEmpty, CtrlT(1), ctrl_t::kDeleted, CtrlT(3),
+ ctrl_t::kEmpty, CtrlT(5), ctrl_t::kSentinel, CtrlT(7),
+ CtrlT(7), CtrlT(5), CtrlT(3), CtrlT(1),
+ CtrlT(1), CtrlT(1), CtrlT(1), CtrlT(1)};
EXPECT_THAT(Group{group}.MatchEmptyOrDeleted(), ElementsAre(0, 2, 4));
} else if (Group::kWidth == 8) {
- ctrl_t group[] = {kEmpty, 1, 2, kDeleted, 2, 1, kSentinel, 1};
+ ctrl_t group[] = {ctrl_t::kEmpty, CtrlT(1), CtrlT(2),
+ ctrl_t::kDeleted, CtrlT(2), CtrlT(1),
+ ctrl_t::kSentinel, CtrlT(1)};
EXPECT_THAT(Group{group}.MatchEmptyOrDeleted(), ElementsAre(0, 3));
} else {
FAIL() << "No test coverage for Group::kWidth==" << Group::kWidth;
@@ -208,28 +232,32 @@ TEST(Batch, DropDeletes) {
constexpr size_t kCapacity = 63;
constexpr size_t kGroupWidth = container_internal::Group::kWidth;
std::vector<ctrl_t> ctrl(kCapacity + 1 + kGroupWidth);
- ctrl[kCapacity] = kSentinel;
- std::vector<ctrl_t> pattern = {kEmpty, 2, kDeleted, 2, kEmpty, 1, kDeleted};
+ ctrl[kCapacity] = ctrl_t::kSentinel;
+ std::vector<ctrl_t> pattern = {
+ ctrl_t::kEmpty, CtrlT(2), ctrl_t::kDeleted, CtrlT(2),
+ ctrl_t::kEmpty, CtrlT(1), ctrl_t::kDeleted};
for (size_t i = 0; i != kCapacity; ++i) {
ctrl[i] = pattern[i % pattern.size()];
if (i < kGroupWidth - 1)
ctrl[i + kCapacity + 1] = pattern[i % pattern.size()];
}
ConvertDeletedToEmptyAndFullToDeleted(ctrl.data(), kCapacity);
- ASSERT_EQ(ctrl[kCapacity], kSentinel);
- for (size_t i = 0; i < kCapacity + 1 + kGroupWidth; ++i) {
+ ASSERT_EQ(ctrl[kCapacity], ctrl_t::kSentinel);
+ for (size_t i = 0; i < kCapacity + kGroupWidth; ++i) {
ctrl_t expected = pattern[i % (kCapacity + 1) % pattern.size()];
- if (i == kCapacity) expected = kSentinel;
- if (expected == kDeleted) expected = kEmpty;
- if (IsFull(expected)) expected = kDeleted;
+ if (i == kCapacity) expected = ctrl_t::kSentinel;
+ if (expected == ctrl_t::kDeleted) expected = ctrl_t::kEmpty;
+ if (IsFull(expected)) expected = ctrl_t::kDeleted;
EXPECT_EQ(ctrl[i], expected)
- << i << " " << int{pattern[i % pattern.size()]};
+ << i << " " << static_cast<int>(pattern[i % pattern.size()]);
}
}
TEST(Group, CountLeadingEmptyOrDeleted) {
- const std::vector<ctrl_t> empty_examples = {kEmpty, kDeleted};
- const std::vector<ctrl_t> full_examples = {0, 1, 2, 3, 5, 9, 127, kSentinel};
+ const std::vector<ctrl_t> empty_examples = {ctrl_t::kEmpty, ctrl_t::kDeleted};
+ const std::vector<ctrl_t> full_examples = {
+ CtrlT(0), CtrlT(1), CtrlT(2), CtrlT(3),
+ CtrlT(5), CtrlT(9), CtrlT(127), ctrl_t::kSentinel};
for (ctrl_t empty : empty_examples) {
std::vector<ctrl_t> e(Group::kWidth, empty);
@@ -249,25 +277,44 @@ TEST(Group, CountLeadingEmptyOrDeleted) {
}
}
-struct IntPolicy {
- using slot_type = int64_t;
- using key_type = int64_t;
- using init_type = int64_t;
+template <class T>
+struct ValuePolicy {
+ using slot_type = T;
+ using key_type = T;
+ using init_type = T;
- static void construct(void*, int64_t* slot, int64_t v) { *slot = v; }
- static void destroy(void*, int64_t*) {}
- static void transfer(void*, int64_t* new_slot, int64_t* old_slot) {
- *new_slot = *old_slot;
+ template <class Allocator, class... Args>
+ static void construct(Allocator* alloc, slot_type* slot, Args&&... args) {
+ absl::allocator_traits<Allocator>::construct(*alloc, slot,
+ std::forward<Args>(args)...);
}
- static int64_t& element(slot_type* slot) { return *slot; }
+ template <class Allocator>
+ static void destroy(Allocator* alloc, slot_type* slot) {
+ absl::allocator_traits<Allocator>::destroy(*alloc, slot);
+ }
- template <class F>
- static auto apply(F&& f, int64_t x) -> decltype(std::forward<F>(f)(x, x)) {
- return std::forward<F>(f)(x, x);
+ template <class Allocator>
+ static void transfer(Allocator* alloc, slot_type* new_slot,
+ slot_type* old_slot) {
+ construct(alloc, new_slot, std::move(*old_slot));
+ destroy(alloc, old_slot);
+ }
+
+ static T& element(slot_type* slot) { return *slot; }
+
+ template <class F, class... Args>
+ static decltype(absl::container_internal::DecomposeValue(
+ std::declval<F>(), std::declval<Args>()...))
+ apply(F&& f, Args&&... args) {
+ return absl::container_internal::DecomposeValue(
+ std::forward<F>(f), std::forward<Args>(args)...);
}
};
+using IntPolicy = ValuePolicy<int64_t>;
+using Uint8Policy = ValuePolicy<uint8_t>;
+
class StringPolicy {
template <class F, class K, class V,
class = typename std::enable_if<
@@ -347,6 +394,13 @@ struct IntTable
using Base::Base;
};
+struct Uint8Table
+ : raw_hash_set<Uint8Policy, container_internal::hash_default_hash<uint8_t>,
+ std::equal_to<uint8_t>, std::allocator<uint8_t>> {
+ using Base = typename Uint8Table::raw_hash_set;
+ using Base::Base;
+};
+
template <typename T>
struct CustomAlloc : std::allocator<T> {
CustomAlloc() {}
@@ -392,6 +446,13 @@ TEST(Table, EmptyFunctorOptimization) {
size_t growth_left;
void* infoz;
};
+ struct MockTableInfozDisabled {
+ void* ctrl;
+ void* slots;
+ size_t size;
+ size_t capacity;
+ size_t growth_left;
+ };
struct StatelessHash {
size_t operator()(absl::string_view) const { return 0; }
};
@@ -399,17 +460,27 @@ TEST(Table, EmptyFunctorOptimization) {
size_t dummy;
};
- EXPECT_EQ(
- sizeof(MockTable),
- sizeof(
- raw_hash_set<StringPolicy, StatelessHash,
- std::equal_to<absl::string_view>, std::allocator<int>>));
+ if (std::is_empty<HashtablezInfoHandle>::value) {
+ EXPECT_EQ(sizeof(MockTableInfozDisabled),
+ sizeof(raw_hash_set<StringPolicy, StatelessHash,
+ std::equal_to<absl::string_view>,
+ std::allocator<int>>));
- EXPECT_EQ(
- sizeof(MockTable) + sizeof(StatefulHash),
- sizeof(
- raw_hash_set<StringPolicy, StatefulHash,
- std::equal_to<absl::string_view>, std::allocator<int>>));
+ EXPECT_EQ(sizeof(MockTableInfozDisabled) + sizeof(StatefulHash),
+ sizeof(raw_hash_set<StringPolicy, StatefulHash,
+ std::equal_to<absl::string_view>,
+ std::allocator<int>>));
+ } else {
+ EXPECT_EQ(sizeof(MockTable),
+ sizeof(raw_hash_set<StringPolicy, StatelessHash,
+ std::equal_to<absl::string_view>,
+ std::allocator<int>>));
+
+ EXPECT_EQ(sizeof(MockTable) + sizeof(StatefulHash),
+ sizeof(raw_hash_set<StringPolicy, StatefulHash,
+ std::equal_to<absl::string_view>,
+ std::allocator<int>>));
+ }
}
TEST(Table, Empty) {
@@ -497,6 +568,37 @@ TEST(Table, InsertCollisionAndFindAfterDelete) {
EXPECT_TRUE(t.empty());
}
+TEST(Table, InsertWithinCapacity) {
+ IntTable t;
+ t.reserve(10);
+ const size_t original_capacity = t.capacity();
+ const auto addr = [&](int i) {
+ return reinterpret_cast<uintptr_t>(&*t.find(i));
+ };
+ // Inserting an element does not change capacity.
+ t.insert(0);
+ EXPECT_THAT(t.capacity(), original_capacity);
+ const uintptr_t original_addr_0 = addr(0);
+ // Inserting another element does not rehash.
+ t.insert(1);
+ EXPECT_THAT(t.capacity(), original_capacity);
+ EXPECT_THAT(addr(0), original_addr_0);
+ // Inserting lots of duplicate elements does not rehash.
+ for (int i = 0; i < 100; ++i) {
+ t.insert(i % 10);
+ }
+ EXPECT_THAT(t.capacity(), original_capacity);
+ EXPECT_THAT(addr(0), original_addr_0);
+ // Inserting a range of duplicate elements does not rehash.
+ std::vector<int> dup_range;
+ for (int i = 0; i < 100; ++i) {
+ dup_range.push_back(i % 10);
+ }
+ t.insert(dup_range.begin(), dup_range.end());
+ EXPECT_THAT(t.capacity(), original_capacity);
+ EXPECT_THAT(addr(0), original_addr_0);
+}
+
TEST(Table, LazyEmplace) {
StringTable t;
bool called = false;
@@ -544,28 +646,53 @@ TEST(Table, Contains2) {
}
int decompose_constructed;
+int decompose_copy_constructed;
+int decompose_copy_assigned;
+int decompose_move_constructed;
+int decompose_move_assigned;
struct DecomposeType {
- DecomposeType(int i) : i(i) { // NOLINT
+ DecomposeType(int i = 0) : i(i) { // NOLINT
++decompose_constructed;
}
explicit DecomposeType(const char* d) : DecomposeType(*d) {}
+ DecomposeType(const DecomposeType& other) : i(other.i) {
+ ++decompose_copy_constructed;
+ }
+ DecomposeType& operator=(const DecomposeType& other) {
+ ++decompose_copy_assigned;
+ i = other.i;
+ return *this;
+ }
+ DecomposeType(DecomposeType&& other) : i(other.i) {
+ ++decompose_move_constructed;
+ }
+ DecomposeType& operator=(DecomposeType&& other) {
+ ++decompose_move_assigned;
+ i = other.i;
+ return *this;
+ }
+
int i;
};
struct DecomposeHash {
using is_transparent = void;
- size_t operator()(DecomposeType a) const { return a.i; }
+ size_t operator()(const DecomposeType& a) const { return a.i; }
size_t operator()(int a) const { return a; }
size_t operator()(const char* a) const { return *a; }
};
struct DecomposeEq {
using is_transparent = void;
- bool operator()(DecomposeType a, DecomposeType b) const { return a.i == b.i; }
- bool operator()(DecomposeType a, int b) const { return a.i == b; }
- bool operator()(DecomposeType a, const char* b) const { return a.i == *b; }
+ bool operator()(const DecomposeType& a, const DecomposeType& b) const {
+ return a.i == b.i;
+ }
+ bool operator()(const DecomposeType& a, int b) const { return a.i == b; }
+ bool operator()(const DecomposeType& a, const char* b) const {
+ return a.i == *b;
+ }
};
struct DecomposePolicy {
@@ -575,9 +702,9 @@ struct DecomposePolicy {
template <typename T>
static void construct(void*, DecomposeType* slot, T&& v) {
- *slot = DecomposeType(std::forward<T>(v));
+ ::new (slot) DecomposeType(std::forward<T>(v));
}
- static void destroy(void*, DecomposeType*) {}
+ static void destroy(void*, DecomposeType* slot) { slot->~DecomposeType(); }
static DecomposeType& element(slot_type* slot) { return *slot; }
template <class F, class T>
@@ -592,8 +719,13 @@ void TestDecompose(bool construct_three) {
const int one = 1;
const char* three_p = "3";
const auto& three = three_p;
+ const int elem_vector_count = 256;
+ std::vector<DecomposeType> elem_vector(elem_vector_count, DecomposeType{0});
+ std::iota(elem_vector.begin(), elem_vector.end(), 0);
- raw_hash_set<DecomposePolicy, Hash, Eq, std::allocator<int>> set1;
+ using DecomposeSet =
+ raw_hash_set<DecomposePolicy, Hash, Eq, std::allocator<int>>;
+ DecomposeSet set1;
decompose_constructed = 0;
int expected_constructed = 0;
@@ -651,20 +783,72 @@ void TestDecompose(bool construct_three) {
expected_constructed += construct_three;
EXPECT_EQ(expected_constructed, decompose_constructed);
}
+
+ decompose_copy_constructed = 0;
+ decompose_copy_assigned = 0;
+ decompose_move_constructed = 0;
+ decompose_move_assigned = 0;
+ int expected_copy_constructed = 0;
+ int expected_move_constructed = 0;
+ { // raw_hash_set(first, last) with random-access iterators
+ DecomposeSet set2(elem_vector.begin(), elem_vector.end());
+ // Expect exactly one copy-constructor call for each element if no
+ // rehashing is done.
+ expected_copy_constructed += elem_vector_count;
+ EXPECT_EQ(expected_copy_constructed, decompose_copy_constructed);
+ EXPECT_EQ(expected_move_constructed, decompose_move_constructed);
+ EXPECT_EQ(0, decompose_move_assigned);
+ EXPECT_EQ(0, decompose_copy_assigned);
+ }
+
+ { // raw_hash_set(first, last) with forward iterators
+ std::list<DecomposeType> elem_list(elem_vector.begin(), elem_vector.end());
+ expected_copy_constructed = decompose_copy_constructed;
+ DecomposeSet set2(elem_list.begin(), elem_list.end());
+ // Expect exactly N elements copied into set, expect at most 2*N elements
+ // moving internally for all resizing needed (for a growth factor of 2).
+ expected_copy_constructed += elem_vector_count;
+ EXPECT_EQ(expected_copy_constructed, decompose_copy_constructed);
+ expected_move_constructed += elem_vector_count;
+ EXPECT_LT(expected_move_constructed, decompose_move_constructed);
+ expected_move_constructed += elem_vector_count;
+ EXPECT_GE(expected_move_constructed, decompose_move_constructed);
+ EXPECT_EQ(0, decompose_move_assigned);
+ EXPECT_EQ(0, decompose_copy_assigned);
+ expected_copy_constructed = decompose_copy_constructed;
+ expected_move_constructed = decompose_move_constructed;
+ }
+
+ { // insert(first, last)
+ DecomposeSet set2;
+ set2.insert(elem_vector.begin(), elem_vector.end());
+ // Expect exactly N elements copied into set, expect at most 2*N elements
+ // moving internally for all resizing needed (for a growth factor of 2).
+ const int expected_new_elements = elem_vector_count;
+ const int expected_max_element_moves = 2 * elem_vector_count;
+ expected_copy_constructed += expected_new_elements;
+ EXPECT_EQ(expected_copy_constructed, decompose_copy_constructed);
+ expected_move_constructed += expected_max_element_moves;
+ EXPECT_GE(expected_move_constructed, decompose_move_constructed);
+ EXPECT_EQ(0, decompose_move_assigned);
+ EXPECT_EQ(0, decompose_copy_assigned);
+ expected_copy_constructed = decompose_copy_constructed;
+ expected_move_constructed = decompose_move_constructed;
+ }
}
TEST(Table, Decompose) {
TestDecompose<DecomposeHash, DecomposeEq>(false);
struct TransparentHashIntOverload {
- size_t operator()(DecomposeType a) const { return a.i; }
+ size_t operator()(const DecomposeType& a) const { return a.i; }
size_t operator()(int a) const { return a; }
};
struct TransparentEqIntOverload {
- bool operator()(DecomposeType a, DecomposeType b) const {
+ bool operator()(const DecomposeType& a, const DecomposeType& b) const {
return a.i == b.i;
}
- bool operator()(DecomposeType a, int b) const { return a.i == b; }
+ bool operator()(const DecomposeType& a, int b) const { return a.i == b; }
};
TestDecompose<TransparentHashIntOverload, DecomposeEq>(true);
TestDecompose<TransparentHashIntOverload, TransparentEqIntOverload>(true);
@@ -706,7 +890,7 @@ TEST(Table, RehashWithNoResize) {
const size_t capacity = t.capacity();
// Remove elements from all groups except the first and the last one.
- // All elements removed from full groups will be marked as kDeleted.
+ // All elements removed from full groups will be marked as ctrl_t::kDeleted.
const size_t erase_begin = Group::kWidth / 2;
const size_t erase_end = (t.size() / Group::kWidth - 1) * Group::kWidth;
for (size_t i = erase_begin; i < erase_end; ++i) {
@@ -846,7 +1030,8 @@ TEST(Table, EraseMaintainsValidIterator) {
std::vector<int64_t> CollectBadMergeKeys(size_t N) {
static constexpr int kGroupSize = Group::kWidth - 1;
- auto topk_range = [](size_t b, size_t e, IntTable* t) -> std::vector<int64_t> {
+ auto topk_range = [](size_t b, size_t e,
+ IntTable* t) -> std::vector<int64_t> {
for (size_t i = b; i != e; ++i) {
t->emplace(i);
}
@@ -1000,8 +1185,8 @@ using ProbeStatsPerSize = std::map<size_t, ProbeStats>;
// 1. Create new table and reserve it to keys.size() * 2
// 2. Insert all keys xored with seed
// 3. Collect ProbeStats from final table.
-ProbeStats CollectProbeStatsOnKeysXoredWithSeed(const std::vector<int64_t>& keys,
- size_t num_iters) {
+ProbeStats CollectProbeStatsOnKeysXoredWithSeed(
+ const std::vector<int64_t>& keys, size_t num_iters) {
const size_t reserve_size = keys.size() * 2;
ProbeStats stats;
@@ -1655,6 +1840,38 @@ TEST(Table, Merge) {
EXPECT_THAT(t2, UnorderedElementsAre(Pair("0", "~0")));
}
+TEST(Table, IteratorEmplaceConstructibleRequirement) {
+ struct Value {
+ explicit Value(absl::string_view view) : value(view) {}
+ std::string value;
+
+ bool operator==(const Value& other) const { return value == other.value; }
+ };
+ struct H {
+ size_t operator()(const Value& v) const {
+ return absl::Hash<std::string>{}(v.value);
+ }
+ };
+
+ struct Table : raw_hash_set<ValuePolicy<Value>, H, std::equal_to<Value>,
+ std::allocator<Value>> {
+ using Base = typename Table::raw_hash_set;
+ using Base::Base;
+ };
+
+ std::string input[3]{"A", "B", "C"};
+
+ Table t(std::begin(input), std::end(input));
+ EXPECT_THAT(t, UnorderedElementsAre(Value{"A"}, Value{"B"}, Value{"C"}));
+
+ input[0] = "D";
+ input[1] = "E";
+ input[2] = "F";
+ t.insert(std::begin(input), std::end(input));
+ EXPECT_THAT(t, UnorderedElementsAre(Value{"A"}, Value{"B"}, Value{"C"},
+ Value{"D"}, Value{"E"}, Value{"F"}));
+}
+
TEST(Nodes, EmptyNodeType) {
using node_type = StringTable::node_type;
node_type n;
@@ -1666,9 +1883,9 @@ TEST(Nodes, EmptyNodeType) {
}
TEST(Nodes, ExtractInsert) {
- constexpr char k0[] = "Very long std::string zero.";
- constexpr char k1[] = "Very long std::string one.";
- constexpr char k2[] = "Very long std::string two.";
+ constexpr char k0[] = "Very long string zero.";
+ constexpr char k1[] = "Very long string one.";
+ constexpr char k2[] = "Very long string two.";
StringTable t = {{k0, ""}, {k1, ""}, {k2, ""}};
EXPECT_THAT(t,
UnorderedElementsAre(Pair(k0, ""), Pair(k1, ""), Pair(k2, "")));
@@ -1709,6 +1926,26 @@ TEST(Nodes, ExtractInsert) {
EXPECT_FALSE(node);
}
+TEST(Nodes, HintInsert) {
+ IntTable t = {1, 2, 3};
+ auto node = t.extract(1);
+ EXPECT_THAT(t, UnorderedElementsAre(2, 3));
+ auto it = t.insert(t.begin(), std::move(node));
+ EXPECT_THAT(t, UnorderedElementsAre(1, 2, 3));
+ EXPECT_EQ(*it, 1);
+ EXPECT_FALSE(node);
+
+ node = t.extract(2);
+ EXPECT_THAT(t, UnorderedElementsAre(1, 3));
+ // reinsert 2 to make the next insert fail.
+ t.insert(2);
+ EXPECT_THAT(t, UnorderedElementsAre(1, 2, 3));
+ it = t.insert(t.begin(), std::move(node));
+ EXPECT_EQ(*it, 2);
+ // The node was not emptied by the insert call.
+ EXPECT_TRUE(node);
+}
+
IntTable MakeSimpleTable(size_t size) {
IntTable t;
while (t.size() < size) t.insert(t.size());
@@ -1791,39 +2028,81 @@ TEST(TableDeathTest, EraseOfEndAsserts) {
IntTable t;
// Extra simple "regexp" as regexp support is highly varied across platforms.
- constexpr char kDeathMsg[] = "IsFull";
+ constexpr char kDeathMsg[] = "Invalid operation on iterator";
EXPECT_DEATH_IF_SUPPORTED(t.erase(t.end()), kDeathMsg);
}
-#if defined(ABSL_HASHTABLEZ_SAMPLE)
+#if defined(ABSL_INTERNAL_HASHTABLEZ_SAMPLE)
TEST(RawHashSamplerTest, Sample) {
// Enable the feature even if the prod default is off.
SetHashtablezEnabled(true);
SetHashtablezSampleParameter(100);
- auto& sampler = HashtablezSampler::Global();
+ auto& sampler = GlobalHashtablezSampler();
size_t start_size = 0;
- start_size += sampler.Iterate([&](const HashtablezInfo&) { ++start_size; });
+ std::unordered_set<const HashtablezInfo*> preexisting_info;
+ start_size += sampler.Iterate([&](const HashtablezInfo& info) {
+ preexisting_info.insert(&info);
+ ++start_size;
+ });
std::vector<IntTable> tables;
for (int i = 0; i < 1000000; ++i) {
tables.emplace_back();
+
+ const bool do_reserve = (i % 10 > 5);
+ const bool do_rehash = !do_reserve && (i % 10 > 0);
+
+ if (do_reserve) {
+ // Don't reserve on all tables.
+ tables.back().reserve(10 * (i % 10));
+ }
+
tables.back().insert(1);
+ tables.back().insert(i % 5);
+
+ if (do_rehash) {
+ // Rehash some other tables.
+ tables.back().rehash(10 * (i % 10));
+ }
}
size_t end_size = 0;
- end_size += sampler.Iterate([&](const HashtablezInfo&) { ++end_size; });
+ std::unordered_map<size_t, int> observed_checksums;
+ std::unordered_map<ssize_t, int> reservations;
+ end_size += sampler.Iterate([&](const HashtablezInfo& info) {
+ if (preexisting_info.count(&info) == 0) {
+ observed_checksums[info.hashes_bitwise_xor.load(
+ std::memory_order_relaxed)]++;
+ reservations[info.max_reserve.load(std::memory_order_relaxed)]++;
+ }
+ EXPECT_EQ(info.inline_element_size, sizeof(int64_t));
+ ++end_size;
+ });
EXPECT_NEAR((end_size - start_size) / static_cast<double>(tables.size()),
0.01, 0.005);
+ EXPECT_EQ(observed_checksums.size(), 5);
+ for (const auto& [_, count] : observed_checksums) {
+ EXPECT_NEAR((100 * count) / static_cast<double>(tables.size()), 0.2, 0.05);
+ }
+
+ EXPECT_EQ(reservations.size(), 10);
+ for (const auto& [reservation, count] : reservations) {
+ EXPECT_GE(reservation, 0);
+ EXPECT_LT(reservation, 100);
+
+ EXPECT_NEAR((100 * count) / static_cast<double>(tables.size()), 0.1, 0.05)
+ << reservation;
+ }
}
-#endif // ABSL_HASHTABLEZ_SAMPLER
+#endif // ABSL_INTERNAL_HASHTABLEZ_SAMPLE
TEST(RawHashSamplerTest, DoNotSampleCustomAllocators) {
// Enable the feature even if the prod default is off.
SetHashtablezEnabled(true);
SetHashtablezSampleParameter(100);
- auto& sampler = HashtablezSampler::Global();
+ auto& sampler = GlobalHashtablezSampler();
size_t start_size = 0;
start_size += sampler.Iterate([&](const HashtablezInfo&) { ++start_size; });
@@ -1839,7 +2118,7 @@ TEST(RawHashSamplerTest, DoNotSampleCustomAllocators) {
0.00, 0.001);
}
-#ifdef ADDRESS_SANITIZER
+#ifdef ABSL_HAVE_ADDRESS_SANITIZER
TEST(Sanitizer, PoisoningUnused) {
IntTable t;
t.reserve(5);
@@ -1863,7 +2142,37 @@ TEST(Sanitizer, PoisoningOnErase) {
t.erase(0);
EXPECT_TRUE(__asan_address_is_poisoned(&v));
}
-#endif // ADDRESS_SANITIZER
+#endif // ABSL_HAVE_ADDRESS_SANITIZER
+
+TEST(Table, AlignOne) {
+ // We previously had a bug in which we were copying a control byte over the
+ // first slot when alignof(value_type) is 1. We test repeated
+ // insertions/erases and verify that the behavior is correct.
+ Uint8Table t;
+ std::unordered_set<uint8_t> verifier; // NOLINT
+
+ // Do repeated insertions/erases from the table.
+ for (int64_t i = 0; i < 100000; ++i) {
+ SCOPED_TRACE(i);
+ const uint8_t u = (i * -i) & 0xFF;
+ auto it = t.find(u);
+ auto verifier_it = verifier.find(u);
+ if (it == t.end()) {
+ ASSERT_EQ(verifier_it, verifier.end());
+ t.insert(u);
+ verifier.insert(u);
+ } else {
+ ASSERT_NE(verifier_it, verifier.end());
+ t.erase(it);
+ verifier.erase(verifier_it);
+ }
+ }
+
+ EXPECT_EQ(t.size(), verifier.size());
+ for (uint8_t u : t) {
+ EXPECT_EQ(verifier.count(u), 1);
+ }
+}
} // namespace
} // namespace container_internal