aboutsummaryrefslogtreecommitdiff
path: root/third_party/abseil-cpp/absl/strings/internal/cord_rep_btree.h
diff options
context:
space:
mode:
Diffstat (limited to 'third_party/abseil-cpp/absl/strings/internal/cord_rep_btree.h')
-rw-r--r--third_party/abseil-cpp/absl/strings/internal/cord_rep_btree.h939
1 files changed, 0 insertions, 939 deletions
diff --git a/third_party/abseil-cpp/absl/strings/internal/cord_rep_btree.h b/third_party/abseil-cpp/absl/strings/internal/cord_rep_btree.h
deleted file mode 100644
index bb38f0c3fe..0000000000
--- a/third_party/abseil-cpp/absl/strings/internal/cord_rep_btree.h
+++ /dev/null
@@ -1,939 +0,0 @@
-// Copyright 2021 The Abseil Authors
-//
-// Licensed under the Apache License, Version 2.0 (the "License");
-// you may not use this file except in compliance with the License.
-// You may obtain a copy of the License at
-//
-// https://www.apache.org/licenses/LICENSE-2.0
-//
-// Unless required by applicable law or agreed to in writing, software
-// distributed under the License is distributed on an "AS IS" BASIS,
-// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-// See the License for the specific language governing permissions and
-// limitations under the License.
-
-#ifndef ABSL_STRINGS_INTERNAL_CORD_REP_BTREE_H_
-#define ABSL_STRINGS_INTERNAL_CORD_REP_BTREE_H_
-
-#include <cassert>
-#include <cstdint>
-#include <iosfwd>
-
-#include "absl/base/config.h"
-#include "absl/base/internal/raw_logging.h"
-#include "absl/base/optimization.h"
-#include "absl/strings/internal/cord_internal.h"
-#include "absl/strings/internal/cord_rep_flat.h"
-#include "absl/strings/string_view.h"
-#include "absl/types/span.h"
-
-namespace absl {
-ABSL_NAMESPACE_BEGIN
-namespace cord_internal {
-
-class CordRepBtreeNavigator;
-
-// CordRepBtree is as the name implies a btree implementation of a Cordrep tree.
-// Data is stored at the leaf level only, non leaf nodes contain down pointers
-// only. Allowed types of data edges are FLAT, EXTERNAL and SUBSTRINGs of FLAT
-// or EXTERNAL nodes. The implementation allows for data to be added to either
-// end of the tree only, it does not provide any 'insert' logic. This has the
-// benefit that we can expect good fill ratios: all nodes except the outer
-// 'legs' will have 100% fill ratios for trees built using Append/Prepend
-// methods. Merged trees will typically have a fill ratio well above 50% as in a
-// similar fashion, one side of the merged tree will typically have a 100% fill
-// ratio, and the 'open' end will average 50%. All operations are O(log(n)) or
-// better, and the tree never needs balancing.
-//
-// All methods accepting a CordRep* or CordRepBtree* adopt a reference on that
-// input unless explicitly stated otherwise. All functions returning a CordRep*
-// or CordRepBtree* instance transfer a reference back to the caller.
-// Simplified, callers both 'donate' and 'consume' a reference count on each
-// call, simplifying the API. An example of building a tree:
-//
-// CordRepBtree* tree = CordRepBtree::Create(MakeFlat("Hello"));
-// tree = CordRepBtree::Append(tree, MakeFlat("world"));
-//
-// In the above example, all inputs are consumed, making each call affecting
-// `tree` reference count neutral. The returned `tree` value can be different
-// from the input if the input is shared with other threads, or if the tree
-// grows in height, but callers typically never have to concern themselves with
-// that and trust that all methods DTRT at all times.
-class CordRepBtree : public CordRep {
- public:
- // EdgeType identifies `front` and `back` enum values.
- // Various implementations in CordRepBtree such as `Add` and `Edge` are
- // generic and templated on operating on either of the boundary edges.
- // For more information on the possible edges contained in a CordRepBtree
- // instance see the documentation for `edges_`.
- enum class EdgeType { kFront, kBack };
-
- // Convenience constants into `EdgeType`
- static constexpr EdgeType kFront = EdgeType::kFront;
- static constexpr EdgeType kBack = EdgeType::kBack;
-
- // Maximum number of edges: based on experiments and performance data, we can
- // pick suitable values resulting in optimum cacheline aligned values. The
- // preferred values are based on 64-bit systems where we aim to align this
- // class onto 64 bytes, i.e.: 6 = 64 bytes, 14 = 128 bytes, etc.
- // TODO(b/192061034): experiment with alternative sizes.
- static constexpr size_t kMaxCapacity = 6;
-
- // Reasonable maximum height of the btree. We can expect a fill ratio of at
- // least 50%: trees are always expanded at the front or back. Concatenating
- // trees will then typically fold at the top most node, where the lower nodes
- // are at least at capacity on one side of joined inputs. At a lower fill
- // rate of 4 edges per node, we have capacity for ~16 million leaf nodes.
- // We will fail / abort if an application ever exceeds this height, which
- // should be extremely rare (near impossible) and be an indication of an
- // application error: we do not assume it reasonable for any application to
- // operate correctly with such monster trees.
- // Another compelling reason for the number `12` is that any contextual stack
- // required for navigation or insertion requires 12 words and 12 bytes, which
- // fits inside 2 cache lines with some room to spare, and is reasonable as a
- // local stack variable compared to Cord's current near 400 bytes stack use.
- // The maximum `height` value of a node is then `kMaxDepth - 1` as node height
- // values start with a value of 0 for leaf nodes.
- static constexpr int kMaxDepth = 12;
- static constexpr int kMaxHeight = kMaxDepth - 1;
-
- // `Action` defines the action for unwinding changes done at the btree's leaf
- // level that need to be propagated up to the parent node(s). Each operation
- // on a node has an effect / action defined as follows:
- // - kSelf
- // The operation (add / update, etc) was performed directly on the node as
- // the node is private to the current thread (i.e.: not shared directly or
- // indirectly through a refcount > 1). Changes can be propagated directly to
- // all parent nodes as all parent nodes are also then private to the current
- // thread.
- // - kCopied
- // The operation (add / update, etc) was performed on a copy of the original
- // node, as the node is (potentially) directly or indirectly shared with
- // other threads. Changes need to be propagated into the parent nodes where
- // the old down pointer must be unreffed and replaced with this new copy.
- // Such changes to parent nodes may themselves require a copy if the parent
- // node is also shared. A kCopied action can propagate all the way to the
- // top node where we then must unref the `tree` input provided by the
- // caller, and return the new copy.
- // - kPopped
- // The operation (typically add) could not be satisfied due to insufficient
- // capacity in the targeted node, and a new 'leg' was created that needs to
- // be added into the parent node. For example, adding a FLAT inside a leaf
- // node that is at capacity will create a new leaf node containing that
- // FLAT, that needs to be 'popped' up the btree. Such 'pop' actions can
- // cascade up the tree if parent nodes are also at capacity. A 'Popped'
- // action propagating all the way to the top of the tree will result in
- // the tree becoming one level higher than the current tree through a final
- // `CordRepBtree::New(tree, popped)` call, resulting in a new top node
- // referencing the old tree and the new (fully popped upwards) 'leg'.
- enum Action { kSelf, kCopied, kPopped };
-
- // Result of an operation on a node. See the `Action` enum for details.
- struct OpResult {
- CordRepBtree* tree;
- Action action;
- };
-
- // Return value of the CopyPrefix and CopySuffix methods which can
- // return a node or data edge at any height inside the tree.
- // A height of 0 defines the lowest (leaf) node, a height of -1 identifies
- // `edge` as being a plain data node: EXTERNAL / FLAT or SUBSTRING thereof.
- struct CopyResult {
- CordRep* edge;
- int height;
- };
-
- // Logical position inside a node:
- // - index: index of the edge.
- // - n: size or offset value depending on context.
- struct Position {
- size_t index;
- size_t n;
- };
-
- // Creates a btree from the given input. Adopts a ref of `rep`.
- // If the input `rep` is itself a btree, i.e., `IsBtree()`, then this
- // function immediately returns `rep->btree()`. If the input is a valid data
- // edge (see IsDataEdge()), then a new leaf node is returned containing `rep`
- // as the sole data edge. Else, the input is assumed to be a (legacy) concat
- // tree, and the input is consumed and transformed into a btree().
- static CordRepBtree* Create(CordRep* rep);
-
- // Destroys the provided tree. Should only be called by cord internal API's,
- // typically after a ref_count.Decrement() on the last reference count.
- static void Destroy(CordRepBtree* tree);
-
- // Use CordRep::Unref() as we overload for absl::Span<CordRep* const>.
- using CordRep::Unref;
-
- // Unrefs all edges in `edges` which are assumed to be 'likely one'.
- static void Unref(absl::Span<CordRep* const> edges);
-
- // Appends / Prepends an existing CordRep instance to this tree.
- // The below methods accept three types of input:
- // 1) `rep` is a data node (See `IsDataNode` for valid data edges).
- // `rep` is appended or prepended to this tree 'as is'.
- // 2) `rep` is a BTREE.
- // `rep` is merged into `tree` respecting the Append/Prepend order.
- // 3) `rep` is some other (legacy) type.
- // `rep` is converted in place and added to `tree`
- // Requires `tree` and `rep` to be not null.
- static CordRepBtree* Append(CordRepBtree* tree, CordRep* rep);
- static CordRepBtree* Prepend(CordRepBtree* tree, CordRep* rep);
-
- // Append/Prepend the data in `data` to this tree.
- // The `extra` parameter defines how much extra capacity should be allocated
- // for any additional FLAT being allocated. This is an optimization hint from
- // the caller. For example, a caller may need to add 2 string_views of data
- // "abc" and "defghi" which are not consecutive. The caller can in this case
- // invoke `AddData(tree, "abc", 6)`, and any newly added flat is allocated
- // where possible with at least 6 bytes of extra capacity beyond `length`.
- // This helps avoiding data getting fragmented over multiple flats.
- // There is no limit on the size of `data`. If `data` can not be stored inside
- // a single flat, then the function will iteratively add flats until all data
- // has been consumed and appended or prepended to the tree.
- static CordRepBtree* Append(CordRepBtree* tree, string_view data,
- size_t extra = 0);
- static CordRepBtree* Prepend(CordRepBtree* tree, string_view data,
- size_t extra = 0);
-
- // Returns a new tree, containing `n` bytes of data from this instance
- // starting at offset `offset`. Where possible, the returned tree shares
- // (re-uses) data edges and nodes with this instance to minimize the
- // combined memory footprint of both trees.
- // Requires `offset + n <= length`. Returns `nullptr` if `n` is zero.
- CordRep* SubTree(size_t offset, size_t n);
-
- // Removes `n` trailing bytes from `tree`, and returns the resulting tree
- // or data edge. Returns `tree` if n is zero, and nullptr if n == length.
- // This function is logically identical to:
- // result = tree->SubTree(0, tree->length - n);
- // Unref(tree);
- // return result;
- // However, the actual implementation will as much as possible perform 'in
- // place' modifications on the tree on all nodes and edges that are mutable.
- // For example, in a fully privately owned tree with the last edge being a
- // flat of length 12, RemoveSuffix(1) will simply set the length of that data
- // edge to 11, and reduce the length of all nodes on the edge path by 1.
- static CordRep* RemoveSuffix(CordRepBtree* tree, size_t n);
-
- // Returns the character at the given offset.
- char GetCharacter(size_t offset) const;
-
- // Returns true if this node holds a single data edge, and if so, sets
- // `fragment` to reference the contained data. `fragment` is an optional
- // output parameter and allowed to be null.
- bool IsFlat(absl::string_view* fragment) const;
-
- // Returns true if the data of `n` bytes starting at offset `offset`
- // is contained in a single data edge, and if so, sets fragment to reference
- // the contained data. `fragment` is an optional output parameter and allowed
- // to be null.
- bool IsFlat(size_t offset, size_t n, absl::string_view* fragment) const;
-
- // Returns a span (mutable range of bytes) of up to `size` bytes into the
- // last FLAT data edge inside this tree under the following conditions:
- // - none of the nodes down into the FLAT node are shared.
- // - the last data edge in this tree is a non-shared FLAT.
- // - the referenced FLAT has additional capacity available.
- // If all these conditions are met, a non-empty span is returned, and the
- // length of the flat node and involved tree nodes have been increased by
- // `span.length()`. The caller is responsible for immediately assigning values
- // to all uninitialized data reference by the returned span.
- // Requires `this->refcount.IsMutable()`: this function forces the
- // caller to do this fast path check on the top level node, as this is the
- // most commonly shared node of a cord tree.
- Span<char> GetAppendBuffer(size_t size);
-
- // Returns the `height` of the tree. The height of a tree is limited to
- // kMaxHeight. `height` is implemented as an `int` as in some places we
- // use negative (-1) values for 'data edges'.
- int height() const { return static_cast<int>(storage[0]); }
-
- // Properties: begin, back, end, front/back boundary indexes.
- size_t begin() const { return static_cast<size_t>(storage[1]); }
- size_t back() const { return static_cast<size_t>(storage[2]) - 1; }
- size_t end() const { return static_cast<size_t>(storage[2]); }
- size_t index(EdgeType edge) const {
- return edge == kFront ? begin() : back();
- }
-
- // Properties: size and capacity.
- // `capacity` contains the current capacity of this instance, where
- // `kMaxCapacity` contains the maximum capacity of a btree node.
- // For now, `capacity` and `kMaxCapacity` return the same value, but this may
- // change in the future if we see benefit in dynamically sizing 'small' nodes
- // to 'large' nodes for large data trees.
- size_t size() const { return end() - begin(); }
- size_t capacity() const { return kMaxCapacity; }
-
- // Edge access
- inline CordRep* Edge(size_t index) const;
- inline CordRep* Edge(EdgeType edge_type) const;
- inline absl::Span<CordRep* const> Edges() const;
- inline absl::Span<CordRep* const> Edges(size_t begin, size_t end) const;
-
- // Returns reference to the data edge at `index`.
- // Requires this instance to be a leaf node, and `index` to be valid index.
- inline absl::string_view Data(size_t index) const;
-
- static const char* EdgeDataPtr(const CordRep* r);
- static absl::string_view EdgeData(const CordRep* r);
-
- // Returns true if the provided rep is a FLAT, EXTERNAL or a SUBSTRING node
- // holding a FLAT or EXTERNAL child rep.
- static bool IsDataEdge(const CordRep* rep);
-
- // Diagnostics: returns true if `tree` is valid and internally consistent.
- // If `shallow` is false, then the provided top level node and all child nodes
- // below it are recursively checked. If `shallow` is true, only the provided
- // node in `tree` and the cumulative length, type and height of the direct
- // child nodes of `tree` are checked. The value of `shallow` is ignored if the
- // internal `cord_btree_exhaustive_validation` diagnostics variable is true,
- // in which case the performed validations works as if `shallow` were false.
- // This function is intended for debugging and testing purposes only.
- static bool IsValid(const CordRepBtree* tree, bool shallow = false);
-
- // Diagnostics: asserts that the provided tree is valid.
- // `AssertValid()` performs a shallow validation by default. `shallow` can be
- // set to false in which case an exhaustive validation is performed. This
- // function is implemented in terms of calling `IsValid()` and asserting the
- // return value to be true. See `IsValid()` for more information.
- // This function is intended for debugging and testing purposes only.
- static CordRepBtree* AssertValid(CordRepBtree* tree, bool shallow = true);
- static const CordRepBtree* AssertValid(const CordRepBtree* tree,
- bool shallow = true);
-
- // Diagnostics: dump the contents of this tree to `stream`.
- // This function is intended for debugging and testing purposes only.
- static void Dump(const CordRep* rep, std::ostream& stream);
- static void Dump(const CordRep* rep, absl::string_view label,
- std::ostream& stream);
- static void Dump(const CordRep* rep, absl::string_view label,
- bool include_contents, std::ostream& stream);
-
- // Adds the edge `edge` to this node if possible. `owned` indicates if the
- // current node is potentially shared or not with other threads. Returns:
- // - {kSelf, <this>}
- // The edge was directly added to this node.
- // - {kCopied, <node>}
- // The edge was added to a copy of this node.
- // - {kPopped, New(edge, height())}
- // A new leg with the edge was created as this node has no extra capacity.
- template <EdgeType edge_type>
- inline OpResult AddEdge(bool owned, CordRep* edge, size_t delta);
-
- // Replaces the front or back edge with the provided new edge. Returns:
- // - {kSelf, <this>}
- // The edge was directly set in this node. The old edge is unreffed.
- // - {kCopied, <node>}
- // A copy of this node was created with the new edge value.
- // In both cases, the function adopts a reference on `edge`.
- template <EdgeType edge_type>
- OpResult SetEdge(bool owned, CordRep* edge, size_t delta);
-
- // Creates a new empty node at the specified height.
- static CordRepBtree* New(int height = 0);
-
- // Creates a new node containing `rep`, with the height being computed
- // automatically based on the type of `rep`.
- static CordRepBtree* New(CordRep* rep);
-
- // Creates a new node containing both `front` and `back` at height
- // `front.height() + 1`. Requires `back.height() == front.height()`.
- static CordRepBtree* New(CordRepBtree* front, CordRepBtree* back);
-
- // Creates a fully balanced tree from the provided tree by rebuilding a new
- // tree from all data edges in the input. This function is automatically
- // invoked internally when the tree exceeds the maximum height.
- static CordRepBtree* Rebuild(CordRepBtree* tree);
-
- private:
- CordRepBtree() = default;
- ~CordRepBtree() = default;
-
- // Initializes the main properties `tag`, `begin`, `end`, `height`.
- inline void InitInstance(int height, size_t begin = 0, size_t end = 0);
-
- // Direct property access begin / end
- void set_begin(size_t begin) { storage[1] = static_cast<uint8_t>(begin); }
- void set_end(size_t end) { storage[2] = static_cast<uint8_t>(end); }
-
- // Decreases the value of `begin` by `n`, and returns the new value. Notice
- // how this returns the new value unlike atomic::fetch_add which returns the
- // old value. This is because this is used to prepend edges at 'begin - 1'.
- size_t sub_fetch_begin(size_t n) {
- storage[1] -= static_cast<uint8_t>(n);
- return storage[1];
- }
-
- // Increases the value of `end` by `n`, and returns the previous value. This
- // function is typically used to append edges at 'end'.
- size_t fetch_add_end(size_t n) {
- const uint8_t current = storage[2];
- storage[2] = static_cast<uint8_t>(current + n);
- return current;
- }
-
- // Returns the index of the last edge starting on, or before `offset`, with
- // `n` containing the relative offset of `offset` inside that edge.
- // Requires `offset` < length.
- Position IndexOf(size_t offset) const;
-
- // Returns the index of the last edge starting before `offset`, with `n`
- // containing the relative offset of `offset` inside that edge.
- // This function is useful to find the edges for some span of bytes ending at
- // `offset` (i.e., `n` bytes). For example:
- //
- // Position pos = IndexBefore(n)
- // edges = Edges(begin(), pos.index) // All full edges (may be empty)
- // last = Sub(Edge(pos.index), 0, pos.n) // Last partial edge (may be empty)
- //
- // Requires 0 < `offset` <= length.
- Position IndexBefore(size_t offset) const;
-
- // Returns the index of the edge ending at (or on) length `length`, and the
- // number of bytes inside that edge up to `length`. For example, if we have a
- // Node with 2 edges, one of 10 and one of 20 long, then IndexOfLength(27)
- // will return {1, 17}, and IndexOfLength(10) will return {0, 10}.
- Position IndexOfLength(size_t n) const;
-
- // Identical to the above function except starting from the position `front`.
- // This function is equivalent to `IndexBefore(front.n + offset)`, with
- // the difference that this function is optimized to start at `front.index`.
- Position IndexBefore(Position front, size_t offset) const;
-
- // Returns the index of the edge directly beyond the edge containing offset
- // `offset`, with `n` containing the distance of that edge from `offset`.
- // This function is useful for iteratively finding suffix nodes and remaining
- // partial bytes in left-most suffix nodes as for example in CopySuffix.
- // Requires `offset` < length.
- Position IndexBeyond(size_t offset) const;
-
- // Destruction
- static void DestroyLeaf(CordRepBtree* tree, size_t begin, size_t end);
- static void DestroyNonLeaf(CordRepBtree* tree, size_t begin, size_t end);
- static void DestroyTree(CordRepBtree* tree, size_t begin, size_t end);
- static void Delete(CordRepBtree* tree) { delete tree; }
-
- // Creates a new leaf node containing as much data as possible from `data`.
- // The data is added either forwards or reversed depending on `edge_type`.
- // Callers must check the length of the returned node to determine if all data
- // was copied or not.
- // See the `Append/Prepend` function for the meaning and purpose of `extra`.
- template <EdgeType edge_type>
- static CordRepBtree* NewLeaf(absl::string_view data, size_t extra);
-
- // Creates a raw copy of this Btree node, copying all properties, but
- // without adding any references to existing edges.
- CordRepBtree* CopyRaw() const;
-
- // Creates a full copy of this Btree node, adding a reference on all edges.
- CordRepBtree* Copy() const;
-
- // Creates a partial copy of this Btree node, copying all edges up to `end`,
- // adding a reference on each copied edge, and sets the length of the newly
- // created copy to `new_length`.
- CordRepBtree* CopyBeginTo(size_t end, size_t new_length) const;
-
- // Returns a tree containing the edges [tree->begin(), end) and length
- // of `new_length`. This method consumes a reference on the provided
- // tree, and logically performs the following operation:
- // result = tree->CopyBeginTo(end, new_length);
- // CordRep::Unref(tree);
- // return result;
- static CordRepBtree* ConsumeBeginTo(CordRepBtree* tree, size_t end,
- size_t new_length);
-
- // Creates a partial copy of this Btree node, copying all edges starting at
- // `begin`, adding a reference on each copied edge, and sets the length of
- // the newly created copy to `new_length`.
- CordRepBtree* CopyToEndFrom(size_t begin, size_t new_length) const;
-
- // Extracts and returns the front edge from the provided tree.
- // This method consumes a reference on the provided tree, and logically
- // performs the following operation:
- // edge = CordRep::Ref(tree->Edge(kFront));
- // CordRep::Unref(tree);
- // return edge;
- static CordRep* ExtractFront(CordRepBtree* tree);
-
- // Returns a tree containing the result of appending `right` to `left`.
- static CordRepBtree* MergeTrees(CordRepBtree* left, CordRepBtree* right);
-
- // Fallback functions for `Create()`, `Append()` and `Prepend()` which
- // deal with legacy / non conforming input, i.e.: CONCAT trees.
- static CordRepBtree* CreateSlow(CordRep* rep);
- static CordRepBtree* AppendSlow(CordRepBtree*, CordRep* rep);
- static CordRepBtree* PrependSlow(CordRepBtree*, CordRep* rep);
-
- // Recursively rebuilds `tree` into `stack`. If 'consume` is set to true, the
- // function will consume a reference on `tree`. `stack` is a null terminated
- // array containing the new tree's state, with the current leaf node at
- // stack[0], and parent nodes above that, or null for 'top of tree'.
- static void Rebuild(CordRepBtree** stack, CordRepBtree* tree, bool consume);
-
- // Aligns existing edges to start at index 0, to allow for a new edge to be
- // added to the back of the current edges.
- inline void AlignBegin();
-
- // Aligns existing edges to end at `capacity`, to allow for a new edge to be
- // added in front of the current edges.
- inline void AlignEnd();
-
- // Adds the provided edge to this node.
- // Requires this node to have capacity for the edge. Realigns / moves
- // existing edges as needed to prepend or append the new edge.
- template <EdgeType edge_type>
- inline void Add(CordRep* rep);
-
- // Adds the provided edges to this node.
- // Requires this node to have capacity for the edges. Realigns / moves
- // existing edges as needed to prepend or append the new edges.
- template <EdgeType edge_type>
- inline void Add(absl::Span<CordRep* const>);
-
- // Adds data from `data` to this node until either all data has been consumed,
- // or there is no more capacity for additional flat nodes inside this node.
- // Requires the current node to be a leaf node, data to be non empty, and the
- // current node to have capacity for at least one more data edge.
- // Returns any remaining data from `data` that was not added, which is
- // depending on the edge type (front / back) either the remaining prefix of
- // suffix of the input.
- // See the `Append/Prepend` function for the meaning and purpose of `extra`.
- template <EdgeType edge_type>
- absl::string_view AddData(absl::string_view data, size_t extra);
-
- // Replace the front or back edge with the provided value.
- // Adopts a reference on `edge` and unrefs the old edge.
- template <EdgeType edge_type>
- inline void SetEdge(CordRep* edge);
-
- // Returns a partial copy of the current tree containing the first `n` bytes
- // of data. `CopyResult` contains both the resulting edge and its height. The
- // resulting tree may be less high than the current tree, or even be a single
- // matching data edge if `allow_folding` is set to true.
- // For example, if `n == 1`, then the result will be the single data edge, and
- // height will be set to -1 (one below the owning leaf node). If n == 0, this
- // function returns null. Requires `n <= length`
- CopyResult CopyPrefix(size_t n, bool allow_folding = true);
-
- // Returns a partial copy of the current tree containing all data starting
- // after `offset`. `CopyResult` contains both the resulting edge and its
- // height. The resulting tree may be less high than the current tree, or even
- // be a single matching data edge. For example, if `n == length - 1`, then the
- // result will be a single data edge, and height will be set to -1 (one below
- // the owning leaf node).
- // Requires `offset < length`
- CopyResult CopySuffix(size_t offset);
-
- // Returns a OpResult value of {this, kSelf} or {Copy(), kCopied}
- // depending on the value of `owned`.
- inline OpResult ToOpResult(bool owned);
-
- // Adds `rep` to the specified tree, returning the modified tree.
- template <EdgeType edge_type>
- static CordRepBtree* AddCordRep(CordRepBtree* tree, CordRep* rep);
-
- // Adds `data` to the specified tree, returning the modified tree.
- // See the `Append/Prepend` function for the meaning and purpose of `extra`.
- template <EdgeType edge_type>
- static CordRepBtree* AddData(CordRepBtree* tree, absl::string_view data,
- size_t extra = 0);
-
- // Merges `src` into `dst` with `src` being added either before (kFront) or
- // after (kBack) `dst`. Requires the height of `dst` to be greater than or
- // equal to the height of `src`.
- template <EdgeType edge_type>
- static CordRepBtree* Merge(CordRepBtree* dst, CordRepBtree* src);
-
- // Fallback version of GetAppendBuffer for large trees: GetAppendBuffer()
- // implements an inlined version for trees of limited height (3 levels),
- // GetAppendBufferSlow implements the logic for large trees.
- Span<char> GetAppendBufferSlow(size_t size);
-
- // `edges_` contains all edges starting from this instance.
- // These are explicitly `child` edges only, a cord btree (or any cord tree in
- // that respect) does not store `parent` pointers anywhere: multiple trees /
- // parents can reference the same shared child edge. The type of these edges
- // depends on the height of the node. `Leaf nodes` (height == 0) contain `data
- // edges` (external or flat nodes, or sub-strings thereof). All other nodes
- // (height > 0) contain pointers to BTREE nodes with a height of `height - 1`.
- CordRep* edges_[kMaxCapacity];
-
- friend class CordRepBtreeTestPeer;
- friend class CordRepBtreeNavigator;
-};
-
-inline CordRepBtree* CordRep::btree() {
- assert(IsBtree());
- return static_cast<CordRepBtree*>(this);
-}
-
-inline const CordRepBtree* CordRep::btree() const {
- assert(IsBtree());
- return static_cast<const CordRepBtree*>(this);
-}
-
-inline void CordRepBtree::InitInstance(int height, size_t begin, size_t end) {
- tag = BTREE;
- storage[0] = static_cast<uint8_t>(height);
- storage[1] = static_cast<uint8_t>(begin);
- storage[2] = static_cast<uint8_t>(end);
-}
-
-inline CordRep* CordRepBtree::Edge(size_t index) const {
- assert(index >= begin());
- assert(index < end());
- return edges_[index];
-}
-
-inline CordRep* CordRepBtree::Edge(EdgeType edge_type) const {
- return edges_[edge_type == kFront ? begin() : back()];
-}
-
-inline absl::Span<CordRep* const> CordRepBtree::Edges() const {
- return {edges_ + begin(), size()};
-}
-
-inline absl::Span<CordRep* const> CordRepBtree::Edges(size_t begin,
- size_t end) const {
- assert(begin <= end);
- assert(begin >= this->begin());
- assert(end <= this->end());
- return {edges_ + begin, static_cast<size_t>(end - begin)};
-}
-
-inline const char* CordRepBtree::EdgeDataPtr(const CordRep* r) {
- assert(IsDataEdge(r));
- size_t offset = 0;
- if (r->tag == SUBSTRING) {
- offset = r->substring()->start;
- r = r->substring()->child;
- }
- return (r->tag >= FLAT ? r->flat()->Data() : r->external()->base) + offset;
-}
-
-inline absl::string_view CordRepBtree::EdgeData(const CordRep* r) {
- return absl::string_view(EdgeDataPtr(r), r->length);
-}
-
-inline absl::string_view CordRepBtree::Data(size_t index) const {
- assert(height() == 0);
- return EdgeData(Edge(index));
-}
-
-inline bool CordRepBtree::IsDataEdge(const CordRep* rep) {
- // The fast path is that `rep` is an EXTERNAL or FLAT node, making the below
- // if a single, well predicted branch. We then repeat the FLAT or EXTERNAL
- // check in the slow path the SUBSTRING check to optimize for the hot path.
- if (rep->tag == EXTERNAL || rep->tag >= FLAT) return true;
- if (rep->tag == SUBSTRING) rep = rep->substring()->child;
- return rep->tag == EXTERNAL || rep->tag >= FLAT;
-}
-
-inline CordRepBtree* CordRepBtree::New(int height) {
- CordRepBtree* tree = new CordRepBtree;
- tree->length = 0;
- tree->InitInstance(height);
- return tree;
-}
-
-inline CordRepBtree* CordRepBtree::New(CordRep* rep) {
- CordRepBtree* tree = new CordRepBtree;
- int height = rep->IsBtree() ? rep->btree()->height() + 1 : 0;
- tree->length = rep->length;
- tree->InitInstance(height, /*begin=*/0, /*end=*/1);
- tree->edges_[0] = rep;
- return tree;
-}
-
-inline CordRepBtree* CordRepBtree::New(CordRepBtree* front,
- CordRepBtree* back) {
- assert(front->height() == back->height());
- CordRepBtree* tree = new CordRepBtree;
- tree->length = front->length + back->length;
- tree->InitInstance(front->height() + 1, /*begin=*/0, /*end=*/2);
- tree->edges_[0] = front;
- tree->edges_[1] = back;
- return tree;
-}
-
-inline void CordRepBtree::DestroyTree(CordRepBtree* tree, size_t begin,
- size_t end) {
- if (tree->height() == 0) {
- DestroyLeaf(tree, begin, end);
- } else {
- DestroyNonLeaf(tree, begin, end);
- }
-}
-
-inline void CordRepBtree::Destroy(CordRepBtree* tree) {
- DestroyTree(tree, tree->begin(), tree->end());
-}
-
-inline void CordRepBtree::Unref(absl::Span<CordRep* const> edges) {
- for (CordRep* edge : edges) {
- if (ABSL_PREDICT_FALSE(!edge->refcount.Decrement())) {
- CordRep::Destroy(edge);
- }
- }
-}
-
-inline CordRepBtree* CordRepBtree::CopyRaw() const {
- auto* tree = static_cast<CordRepBtree*>(::operator new(sizeof(CordRepBtree)));
- memcpy(static_cast<void*>(tree), this, sizeof(CordRepBtree));
- new (&tree->refcount) RefcountAndFlags;
- return tree;
-}
-
-inline CordRepBtree* CordRepBtree::Copy() const {
- CordRepBtree* tree = CopyRaw();
- for (CordRep* rep : Edges()) CordRep::Ref(rep);
- return tree;
-}
-
-inline CordRepBtree* CordRepBtree::CopyToEndFrom(size_t begin,
- size_t new_length) const {
- assert(begin >= this->begin());
- assert(begin <= this->end());
- CordRepBtree* tree = CopyRaw();
- tree->length = new_length;
- tree->set_begin(begin);
- for (CordRep* edge : tree->Edges()) CordRep::Ref(edge);
- return tree;
-}
-
-inline CordRepBtree* CordRepBtree::CopyBeginTo(size_t end,
- size_t new_length) const {
- assert(end <= capacity());
- assert(end >= this->begin());
- CordRepBtree* tree = CopyRaw();
- tree->length = new_length;
- tree->set_end(end);
- for (CordRep* edge : tree->Edges()) CordRep::Ref(edge);
- return tree;
-}
-
-inline void CordRepBtree::AlignBegin() {
- // The below code itself does not need to be fast as typically we have
- // mono-directional append/prepend calls, and `begin` / `end` are typically
- // adjusted no more than once. But we want to avoid potential register clobber
- // effects, making the compiler emit register save/store/spills, and minimize
- // the size of code.
- const size_t delta = begin();
- if (ABSL_PREDICT_FALSE(delta != 0)) {
- const size_t new_end = end() - delta;
- set_begin(0);
- set_end(new_end);
- // TODO(mvels): we can write this using 2 loads / 2 stores depending on
- // total size for the kMaxCapacity = 6 case. I.e., we can branch (switch) on
- // size, and then do overlapping load/store of up to 4 pointers (inlined as
- // XMM, YMM or ZMM load/store) and up to 2 pointers (XMM / YMM), which is a)
- // compact and b) not clobbering any registers.
- ABSL_INTERNAL_ASSUME(new_end <= kMaxCapacity);
-#ifdef __clang__
-#pragma unroll 1
-#endif
- for (size_t i = 0; i < new_end; ++i) {
- edges_[i] = edges_[i + delta];
- }
- }
-}
-
-inline void CordRepBtree::AlignEnd() {
- // See comments in `AlignBegin` for motivation on the hand-rolled for loops.
- const size_t delta = capacity() - end();
- if (delta != 0) {
- const size_t new_begin = begin() + delta;
- const size_t new_end = end() + delta;
- set_begin(new_begin);
- set_end(new_end);
- ABSL_INTERNAL_ASSUME(new_end <= kMaxCapacity);
-#ifdef __clang__
-#pragma unroll 1
-#endif
- for (size_t i = new_end - 1; i >= new_begin; --i) {
- edges_[i] = edges_[i - delta];
- }
- }
-}
-
-template <>
-inline void CordRepBtree::Add<CordRepBtree::kBack>(CordRep* rep) {
- AlignBegin();
- edges_[fetch_add_end(1)] = rep;
-}
-
-template <>
-inline void CordRepBtree::Add<CordRepBtree::kBack>(
- absl::Span<CordRep* const> edges) {
- AlignBegin();
- size_t new_end = end();
- for (CordRep* edge : edges) edges_[new_end++] = edge;
- set_end(new_end);
-}
-
-template <>
-inline void CordRepBtree::Add<CordRepBtree::kFront>(CordRep* rep) {
- AlignEnd();
- edges_[sub_fetch_begin(1)] = rep;
-}
-
-template <>
-inline void CordRepBtree::Add<CordRepBtree::kFront>(
- absl::Span<CordRep* const> edges) {
- AlignEnd();
- size_t new_begin = begin() - edges.size();
- set_begin(new_begin);
- for (CordRep* edge : edges) edges_[new_begin++] = edge;
-}
-
-template <CordRepBtree::EdgeType edge_type>
-inline void CordRepBtree::SetEdge(CordRep* edge) {
- const int idx = edge_type == kFront ? begin() : back();
- CordRep::Unref(edges_[idx]);
- edges_[idx] = edge;
-}
-
-inline CordRepBtree::OpResult CordRepBtree::ToOpResult(bool owned) {
- return owned ? OpResult{this, kSelf} : OpResult{Copy(), kCopied};
-}
-
-inline CordRepBtree::Position CordRepBtree::IndexOf(size_t offset) const {
- assert(offset < length);
- size_t index = begin();
- while (offset >= edges_[index]->length) offset -= edges_[index++]->length;
- return {index, offset};
-}
-
-inline CordRepBtree::Position CordRepBtree::IndexBefore(size_t offset) const {
- assert(offset > 0);
- assert(offset <= length);
- size_t index = begin();
- while (offset > edges_[index]->length) offset -= edges_[index++]->length;
- return {index, offset};
-}
-
-inline CordRepBtree::Position CordRepBtree::IndexBefore(Position front,
- size_t offset) const {
- size_t index = front.index;
- offset = offset + front.n;
- while (offset > edges_[index]->length) offset -= edges_[index++]->length;
- return {index, offset};
-}
-
-inline CordRepBtree::Position CordRepBtree::IndexOfLength(size_t n) const {
- assert(n <= length);
- size_t index = back();
- size_t strip = length - n;
- while (strip >= edges_[index]->length) strip -= edges_[index--]->length;
- return {index, edges_[index]->length - strip};
-}
-
-inline CordRepBtree::Position CordRepBtree::IndexBeyond(
- const size_t offset) const {
- // We need to find the edge which `starting offset` is beyond (>=)`offset`.
- // For this we can't use the `offset -= length` logic of IndexOf. Instead, we
- // track the offset of the `current edge` in `off`, which we increase as we
- // iterate over the edges until we find the matching edge.
- size_t off = 0;
- size_t index = begin();
- while (offset > off) off += edges_[index++]->length;
- return {index, off - offset};
-}
-
-inline CordRepBtree* CordRepBtree::Create(CordRep* rep) {
- if (IsDataEdge(rep)) return New(rep);
- return CreateSlow(rep);
-}
-
-inline Span<char> CordRepBtree::GetAppendBuffer(size_t size) {
- assert(refcount.IsMutable());
- CordRepBtree* tree = this;
- const int height = this->height();
- CordRepBtree* n1 = tree;
- CordRepBtree* n2 = tree;
- CordRepBtree* n3 = tree;
- switch (height) {
- case 3:
- tree = tree->Edge(kBack)->btree();
- if (!tree->refcount.IsMutable()) return {};
- n2 = tree;
- ABSL_FALLTHROUGH_INTENDED;
- case 2:
- tree = tree->Edge(kBack)->btree();
- if (!tree->refcount.IsMutable()) return {};
- n1 = tree;
- ABSL_FALLTHROUGH_INTENDED;
- case 1:
- tree = tree->Edge(kBack)->btree();
- if (!tree->refcount.IsMutable()) return {};
- ABSL_FALLTHROUGH_INTENDED;
- case 0:
- CordRep* edge = tree->Edge(kBack);
- if (!edge->refcount.IsMutable()) return {};
- if (edge->tag < FLAT) return {};
- size_t avail = edge->flat()->Capacity() - edge->length;
- if (avail == 0) return {};
- size_t delta = (std::min)(size, avail);
- Span<char> span = {edge->flat()->Data() + edge->length, delta};
- edge->length += delta;
- switch (height) {
- case 3:
- n3->length += delta;
- ABSL_FALLTHROUGH_INTENDED;
- case 2:
- n2->length += delta;
- ABSL_FALLTHROUGH_INTENDED;
- case 1:
- n1->length += delta;
- ABSL_FALLTHROUGH_INTENDED;
- case 0:
- tree->length += delta;
- return span;
- }
- break;
- }
- return GetAppendBufferSlow(size);
-}
-
-extern template CordRepBtree* CordRepBtree::AddCordRep<CordRepBtree::kBack>(
- CordRepBtree* tree, CordRep* rep);
-
-extern template CordRepBtree* CordRepBtree::AddCordRep<CordRepBtree::kFront>(
- CordRepBtree* tree, CordRep* rep);
-
-inline CordRepBtree* CordRepBtree::Append(CordRepBtree* tree, CordRep* rep) {
- if (ABSL_PREDICT_TRUE(IsDataEdge(rep))) {
- return CordRepBtree::AddCordRep<kBack>(tree, rep);
- }
- return AppendSlow(tree, rep);
-}
-
-inline CordRepBtree* CordRepBtree::Prepend(CordRepBtree* tree, CordRep* rep) {
- if (ABSL_PREDICT_TRUE(IsDataEdge(rep))) {
- return CordRepBtree::AddCordRep<kFront>(tree, rep);
- }
- return PrependSlow(tree, rep);
-}
-
-#ifdef NDEBUG
-
-inline CordRepBtree* CordRepBtree::AssertValid(CordRepBtree* tree,
- bool /* shallow */) {
- return tree;
-}
-
-inline const CordRepBtree* CordRepBtree::AssertValid(const CordRepBtree* tree,
- bool /* shallow */) {
- return tree;
-}
-
-#endif
-
-} // namespace cord_internal
-ABSL_NAMESPACE_END
-} // namespace absl
-
-#endif // ABSL_STRINGS_INTERNAL_CORD_REP_BTREE_H_