aboutsummaryrefslogtreecommitdiff
path: root/third_party/abseil-cpp/absl/strings/internal/cordz_info.cc
diff options
context:
space:
mode:
Diffstat (limited to 'third_party/abseil-cpp/absl/strings/internal/cordz_info.cc')
-rw-r--r--third_party/abseil-cpp/absl/strings/internal/cordz_info.cc445
1 files changed, 445 insertions, 0 deletions
diff --git a/third_party/abseil-cpp/absl/strings/internal/cordz_info.cc b/third_party/abseil-cpp/absl/strings/internal/cordz_info.cc
new file mode 100644
index 0000000000..5c18bbc566
--- /dev/null
+++ b/third_party/abseil-cpp/absl/strings/internal/cordz_info.cc
@@ -0,0 +1,445 @@
+// Copyright 2019 The Abseil Authors.
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// https://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+
+#include "absl/strings/internal/cordz_info.h"
+
+#include "absl/base/config.h"
+#include "absl/base/internal/spinlock.h"
+#include "absl/container/inlined_vector.h"
+#include "absl/debugging/stacktrace.h"
+#include "absl/strings/internal/cord_internal.h"
+#include "absl/strings/internal/cord_rep_btree.h"
+#include "absl/strings/internal/cord_rep_ring.h"
+#include "absl/strings/internal/cordz_handle.h"
+#include "absl/strings/internal/cordz_statistics.h"
+#include "absl/strings/internal/cordz_update_tracker.h"
+#include "absl/synchronization/mutex.h"
+#include "absl/types/span.h"
+
+namespace absl {
+ABSL_NAMESPACE_BEGIN
+namespace cord_internal {
+
+using ::absl::base_internal::SpinLockHolder;
+
+constexpr int CordzInfo::kMaxStackDepth;
+
+ABSL_CONST_INIT CordzInfo::List CordzInfo::global_list_{absl::kConstInit};
+
+namespace {
+
+// CordRepAnalyzer performs the analysis of a cord.
+//
+// It computes absolute node counts and total memory usage, and an 'estimated
+// fair share memory usage` statistic.
+// Conceptually, it divides the 'memory usage' at each location in the 'cord
+// graph' by the cumulative reference count of that location. The cumulative
+// reference count is the factored total of all edges leading into that node.
+//
+// The top level node is treated specially: we assume the current thread
+// (typically called from the CordzHandler) to hold a reference purely to
+// perform a safe analysis, and not being part of the application. So we
+// substract 1 from the reference count of the top node to compute the
+// 'application fair share' excluding the reference of the current thread.
+//
+// An example of fair sharing, and why we multiply reference counts:
+// Assume we have 2 CordReps, both being a Substring referencing a Flat:
+// CordSubstring A (refcount = 5) --> child Flat C (refcount = 2)
+// CordSubstring B (refcount = 9) --> child Flat C (refcount = 2)
+//
+// Flat C has 2 incoming edges from the 2 substrings (refcount = 2) and is not
+// referenced directly anywhere else. Translated into a 'fair share', we then
+// attribute 50% of the memory (memory / refcount = 2) to each incoming edge.
+// Rep A has a refcount of 5, so we attribute each incoming edge 1 / 5th of the
+// memory cost below it, i.e.: the fair share of Rep A of the memory used by C
+// is then 'memory C / (refcount C * refcount A) + (memory A / refcount A)'.
+// It is also easy to see how all incoming edges add up to 100%.
+class CordRepAnalyzer {
+ public:
+ // Creates an analyzer instance binding to `statistics`.
+ explicit CordRepAnalyzer(CordzStatistics& statistics)
+ : statistics_(statistics) {}
+
+ // Analyzes the memory statistics and node counts for the provided `rep`, and
+ // adds the results to `statistics`. Note that node counts and memory sizes
+ // are not initialized, computed values are added to any existing values.
+ void AnalyzeCordRep(const CordRep* rep) {
+ // Process all linear nodes.
+ // As per the class comments, use refcout - 1 on the top level node, as the
+ // top level node is assumed to be referenced only for analysis purposes.
+ size_t refcount = rep->refcount.Get();
+ RepRef repref{rep, (refcount > 1) ? refcount - 1 : 1};
+
+ // Process all top level linear nodes (substrings and flats).
+ repref = CountLinearReps(repref, memory_usage_);
+
+ if (repref.rep != nullptr) {
+ if (repref.rep->tag == RING) {
+ AnalyzeRing(repref);
+ } else if (repref.rep->tag == BTREE) {
+ AnalyzeBtree(repref);
+ } else if (repref.rep->tag == CONCAT) {
+ AnalyzeConcat(repref);
+ } else {
+ // We should have either a concat, btree, or ring node if not null.
+ assert(false);
+ }
+ }
+
+ // Adds values to output
+ statistics_.estimated_memory_usage += memory_usage_.total;
+ statistics_.estimated_fair_share_memory_usage +=
+ static_cast<size_t>(memory_usage_.fair_share);
+ }
+
+ private:
+ // RepRef identifies a CordRep* inside the Cord tree with its cumulative
+ // refcount including itself. For example, a tree consisting of a substring
+ // with a refcount of 3 and a child flat with a refcount of 4 will have RepRef
+ // refcounts of 3 and 12 respectively.
+ struct RepRef {
+ const CordRep* rep;
+ size_t refcount;
+
+ // Returns a 'child' RepRef which contains the cumulative reference count of
+ // this instance multiplied by the child's reference count.
+ RepRef Child(const CordRep* child) const {
+ return RepRef{child, refcount * child->refcount.Get()};
+ }
+ };
+
+ // Memory usage values
+ struct MemoryUsage {
+ size_t total = 0;
+ double fair_share = 0.0;
+
+ // Adds 'size` memory usage to this class, with a cumulative (recursive)
+ // reference count of `refcount`
+ void Add(size_t size, size_t refcount) {
+ total += size;
+ fair_share += static_cast<double>(size) / refcount;
+ }
+ };
+
+ // Returns `rr` if `rr.rep` is not null and a CONCAT type.
+ // Asserts that `rr.rep` is a concat node or null.
+ static RepRef AssertConcat(RepRef repref) {
+ const CordRep* rep = repref.rep;
+ assert(rep == nullptr || rep->tag == CONCAT);
+ return (rep != nullptr && rep->tag == CONCAT) ? repref : RepRef{nullptr, 0};
+ }
+
+ // Counts a flat of the provide allocated size
+ void CountFlat(size_t size) {
+ statistics_.node_count++;
+ statistics_.node_counts.flat++;
+ if (size <= 64) {
+ statistics_.node_counts.flat_64++;
+ } else if (size <= 128) {
+ statistics_.node_counts.flat_128++;
+ } else if (size <= 256) {
+ statistics_.node_counts.flat_256++;
+ } else if (size <= 512) {
+ statistics_.node_counts.flat_512++;
+ } else if (size <= 1024) {
+ statistics_.node_counts.flat_1k++;
+ }
+ }
+
+ // Processes 'linear' reps (substring, flat, external) not requiring iteration
+ // or recursion. Returns RefRep{null} if all reps were processed, else returns
+ // the top-most non-linear concat or ring cordrep.
+ // Node counts are updated into `statistics_`, memory usage is update into
+ // `memory_usage`, which typically references `memory_usage_` except for ring
+ // buffers where we count children unrounded.
+ RepRef CountLinearReps(RepRef rep, MemoryUsage& memory_usage) {
+ // Consume all substrings
+ while (rep.rep->tag == SUBSTRING) {
+ statistics_.node_count++;
+ statistics_.node_counts.substring++;
+ memory_usage.Add(sizeof(CordRepSubstring), rep.refcount);
+ rep = rep.Child(rep.rep->substring()->child);
+ }
+
+ // Consume possible FLAT
+ if (rep.rep->tag >= FLAT) {
+ size_t size = rep.rep->flat()->AllocatedSize();
+ CountFlat(size);
+ memory_usage.Add(size, rep.refcount);
+ return RepRef{nullptr, 0};
+ }
+
+ // Consume possible external
+ if (rep.rep->tag == EXTERNAL) {
+ statistics_.node_count++;
+ statistics_.node_counts.external++;
+ size_t size = rep.rep->length + sizeof(CordRepExternalImpl<intptr_t>);
+ memory_usage.Add(size, rep.refcount);
+ return RepRef{nullptr, 0};
+ }
+
+ return rep;
+ }
+
+ // Analyzes the provided concat node in a flattened recursive way.
+ void AnalyzeConcat(RepRef rep) {
+ absl::InlinedVector<RepRef, 47> pending;
+
+ while (rep.rep != nullptr) {
+ const CordRepConcat* concat = rep.rep->concat();
+ RepRef left = rep.Child(concat->left);
+ RepRef right = rep.Child(concat->right);
+
+ statistics_.node_count++;
+ statistics_.node_counts.concat++;
+ memory_usage_.Add(sizeof(CordRepConcat), rep.refcount);
+
+ right = AssertConcat(CountLinearReps(right, memory_usage_));
+ rep = AssertConcat(CountLinearReps(left, memory_usage_));
+ if (rep.rep != nullptr) {
+ if (right.rep != nullptr) {
+ pending.push_back(right);
+ }
+ } else if (right.rep != nullptr) {
+ rep = right;
+ } else if (!pending.empty()) {
+ rep = pending.back();
+ pending.pop_back();
+ }
+ }
+ }
+
+ // Analyzes the provided ring.
+ void AnalyzeRing(RepRef rep) {
+ statistics_.node_count++;
+ statistics_.node_counts.ring++;
+ const CordRepRing* ring = rep.rep->ring();
+ memory_usage_.Add(CordRepRing::AllocSize(ring->capacity()), rep.refcount);
+ ring->ForEach([&](CordRepRing::index_type pos) {
+ CountLinearReps(rep.Child(ring->entry_child(pos)), memory_usage_);
+ });
+ }
+
+ // Analyzes the provided btree.
+ void AnalyzeBtree(RepRef rep) {
+ statistics_.node_count++;
+ statistics_.node_counts.btree++;
+ memory_usage_.Add(sizeof(CordRepBtree), rep.refcount);
+ const CordRepBtree* tree = rep.rep->btree();
+ if (tree->height() > 0) {
+ for (CordRep* edge : tree->Edges()) {
+ AnalyzeBtree(rep.Child(edge));
+ }
+ } else {
+ for (CordRep* edge : tree->Edges()) {
+ CountLinearReps(rep.Child(edge), memory_usage_);
+ }
+ }
+ }
+
+ CordzStatistics& statistics_;
+ MemoryUsage memory_usage_;
+};
+
+} // namespace
+
+CordzInfo* CordzInfo::Head(const CordzSnapshot& snapshot) {
+ ABSL_ASSERT(snapshot.is_snapshot());
+
+ // We can do an 'unsafe' load of 'head', as we are guaranteed that the
+ // instance it points to is kept alive by the provided CordzSnapshot, so we
+ // can simply return the current value using an acquire load.
+ // We do enforce in DEBUG builds that the 'head' value is present in the
+ // delete queue: ODR violations may lead to 'snapshot' and 'global_list_'
+ // being in different libraries / modules.
+ CordzInfo* head = global_list_.head.load(std::memory_order_acquire);
+ ABSL_ASSERT(snapshot.DiagnosticsHandleIsSafeToInspect(head));
+ return head;
+}
+
+CordzInfo* CordzInfo::Next(const CordzSnapshot& snapshot) const {
+ ABSL_ASSERT(snapshot.is_snapshot());
+
+ // Similar to the 'Head()' function, we do not need a mutex here.
+ CordzInfo* next = ci_next_.load(std::memory_order_acquire);
+ ABSL_ASSERT(snapshot.DiagnosticsHandleIsSafeToInspect(this));
+ ABSL_ASSERT(snapshot.DiagnosticsHandleIsSafeToInspect(next));
+ return next;
+}
+
+void CordzInfo::TrackCord(InlineData& cord, MethodIdentifier method) {
+ assert(cord.is_tree());
+ assert(!cord.is_profiled());
+ CordzInfo* cordz_info = new CordzInfo(cord.as_tree(), nullptr, method);
+ cord.set_cordz_info(cordz_info);
+ cordz_info->Track();
+}
+
+void CordzInfo::TrackCord(InlineData& cord, const InlineData& src,
+ MethodIdentifier method) {
+ assert(cord.is_tree());
+ assert(src.is_tree());
+
+ // Unsample current as we the current cord is being replaced with 'src',
+ // so any method history is no longer relevant.
+ CordzInfo* cordz_info = cord.cordz_info();
+ if (cordz_info != nullptr) cordz_info->Untrack();
+
+ // Start new cord sample
+ cordz_info = new CordzInfo(cord.as_tree(), src.cordz_info(), method);
+ cord.set_cordz_info(cordz_info);
+ cordz_info->Track();
+}
+
+void CordzInfo::MaybeTrackCordImpl(InlineData& cord, const InlineData& src,
+ MethodIdentifier method) {
+ if (src.is_profiled()) {
+ TrackCord(cord, src, method);
+ } else if (cord.is_profiled()) {
+ cord.cordz_info()->Untrack();
+ cord.clear_cordz_info();
+ }
+}
+
+CordzInfo::MethodIdentifier CordzInfo::GetParentMethod(const CordzInfo* src) {
+ if (src == nullptr) return MethodIdentifier::kUnknown;
+ return src->parent_method_ != MethodIdentifier::kUnknown ? src->parent_method_
+ : src->method_;
+}
+
+int CordzInfo::FillParentStack(const CordzInfo* src, void** stack) {
+ assert(stack);
+ if (src == nullptr) return 0;
+ if (src->parent_stack_depth_) {
+ memcpy(stack, src->parent_stack_, src->parent_stack_depth_ * sizeof(void*));
+ return src->parent_stack_depth_;
+ }
+ memcpy(stack, src->stack_, src->stack_depth_ * sizeof(void*));
+ return src->stack_depth_;
+}
+
+CordzInfo::CordzInfo(CordRep* rep, const CordzInfo* src,
+ MethodIdentifier method)
+ : rep_(rep),
+ stack_depth_(absl::GetStackTrace(stack_, /*max_depth=*/kMaxStackDepth,
+ /*skip_count=*/1)),
+ parent_stack_depth_(FillParentStack(src, parent_stack_)),
+ method_(method),
+ parent_method_(GetParentMethod(src)),
+ create_time_(absl::Now()) {
+ update_tracker_.LossyAdd(method);
+ if (src) {
+ // Copy parent counters.
+ update_tracker_.LossyAdd(src->update_tracker_);
+ }
+}
+
+CordzInfo::~CordzInfo() {
+ // `rep_` is potentially kept alive if CordzInfo is included
+ // in a collection snapshot (which should be rare).
+ if (ABSL_PREDICT_FALSE(rep_)) {
+ CordRep::Unref(rep_);
+ }
+}
+
+void CordzInfo::Track() {
+ SpinLockHolder l(&list_->mutex);
+
+ CordzInfo* const head = list_->head.load(std::memory_order_acquire);
+ if (head != nullptr) {
+ head->ci_prev_.store(this, std::memory_order_release);
+ }
+ ci_next_.store(head, std::memory_order_release);
+ list_->head.store(this, std::memory_order_release);
+}
+
+void CordzInfo::Untrack() {
+ ODRCheck();
+ {
+ SpinLockHolder l(&list_->mutex);
+
+ CordzInfo* const head = list_->head.load(std::memory_order_acquire);
+ CordzInfo* const next = ci_next_.load(std::memory_order_acquire);
+ CordzInfo* const prev = ci_prev_.load(std::memory_order_acquire);
+
+ if (next) {
+ ABSL_ASSERT(next->ci_prev_.load(std::memory_order_acquire) == this);
+ next->ci_prev_.store(prev, std::memory_order_release);
+ }
+ if (prev) {
+ ABSL_ASSERT(head != this);
+ ABSL_ASSERT(prev->ci_next_.load(std::memory_order_acquire) == this);
+ prev->ci_next_.store(next, std::memory_order_release);
+ } else {
+ ABSL_ASSERT(head == this);
+ list_->head.store(next, std::memory_order_release);
+ }
+ }
+
+ // We can no longer be discovered: perform a fast path check if we are not
+ // listed on any delete queue, so we can directly delete this instance.
+ if (SafeToDelete()) {
+ UnsafeSetCordRep(nullptr);
+ delete this;
+ return;
+ }
+
+ // We are likely part of a snapshot, extend the life of the CordRep
+ {
+ absl::MutexLock lock(&mutex_);
+ if (rep_) CordRep::Ref(rep_);
+ }
+ CordzHandle::Delete(this);
+}
+
+void CordzInfo::Lock(MethodIdentifier method)
+ ABSL_EXCLUSIVE_LOCK_FUNCTION(mutex_) {
+ mutex_.Lock();
+ update_tracker_.LossyAdd(method);
+ assert(rep_);
+}
+
+void CordzInfo::Unlock() ABSL_UNLOCK_FUNCTION(mutex_) {
+ bool tracked = rep_ != nullptr;
+ mutex_.Unlock();
+ if (!tracked) {
+ Untrack();
+ }
+}
+
+absl::Span<void* const> CordzInfo::GetStack() const {
+ return absl::MakeConstSpan(stack_, stack_depth_);
+}
+
+absl::Span<void* const> CordzInfo::GetParentStack() const {
+ return absl::MakeConstSpan(parent_stack_, parent_stack_depth_);
+}
+
+CordzStatistics CordzInfo::GetCordzStatistics() const {
+ CordzStatistics stats;
+ stats.method = method_;
+ stats.parent_method = parent_method_;
+ stats.update_tracker = update_tracker_;
+ if (CordRep* rep = RefCordRep()) {
+ stats.size = rep->length;
+ CordRepAnalyzer analyzer(stats);
+ analyzer.AnalyzeCordRep(rep);
+ CordRep::Unref(rep);
+ }
+ return stats;
+}
+
+} // namespace cord_internal
+ABSL_NAMESPACE_END
+} // namespace absl