aboutsummaryrefslogtreecommitdiff
path: root/webrtc/modules/video_coding/main/source/qm_select.cc
diff options
context:
space:
mode:
Diffstat (limited to 'webrtc/modules/video_coding/main/source/qm_select.cc')
-rw-r--r--webrtc/modules/video_coding/main/source/qm_select.cc958
1 files changed, 0 insertions, 958 deletions
diff --git a/webrtc/modules/video_coding/main/source/qm_select.cc b/webrtc/modules/video_coding/main/source/qm_select.cc
deleted file mode 100644
index e86d0755c0..0000000000
--- a/webrtc/modules/video_coding/main/source/qm_select.cc
+++ /dev/null
@@ -1,958 +0,0 @@
-/*
- * Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
- *
- * Use of this source code is governed by a BSD-style license
- * that can be found in the LICENSE file in the root of the source
- * tree. An additional intellectual property rights grant can be found
- * in the file PATENTS. All contributing project authors may
- * be found in the AUTHORS file in the root of the source tree.
- */
-
-#include "webrtc/modules/video_coding/main/source/qm_select.h"
-
-#include <math.h>
-
-#include "webrtc/modules/interface/module_common_types.h"
-#include "webrtc/modules/video_coding/main/interface/video_coding_defines.h"
-#include "webrtc/modules/video_coding/main/source/internal_defines.h"
-#include "webrtc/modules/video_coding/main/source/qm_select_data.h"
-#include "webrtc/system_wrappers/include/trace.h"
-
-namespace webrtc {
-
-// QM-METHOD class
-
-VCMQmMethod::VCMQmMethod()
- : content_metrics_(NULL),
- width_(0),
- height_(0),
- user_frame_rate_(0.0f),
- native_width_(0),
- native_height_(0),
- native_frame_rate_(0.0f),
- image_type_(kVGA),
- framerate_level_(kFrameRateHigh),
- init_(false) {
- ResetQM();
-}
-
-VCMQmMethod::~VCMQmMethod() {
-}
-
-void VCMQmMethod::ResetQM() {
- aspect_ratio_ = 1.0f;
- motion_.Reset();
- spatial_.Reset();
- content_class_ = 0;
-}
-
-uint8_t VCMQmMethod::ComputeContentClass() {
- ComputeMotionNFD();
- ComputeSpatial();
- return content_class_ = 3 * motion_.level + spatial_.level;
-}
-
-void VCMQmMethod::UpdateContent(const VideoContentMetrics* contentMetrics) {
- content_metrics_ = contentMetrics;
-}
-
-void VCMQmMethod::ComputeMotionNFD() {
- if (content_metrics_) {
- motion_.value = content_metrics_->motion_magnitude;
- }
- // Determine motion level.
- if (motion_.value < kLowMotionNfd) {
- motion_.level = kLow;
- } else if (motion_.value > kHighMotionNfd) {
- motion_.level = kHigh;
- } else {
- motion_.level = kDefault;
- }
-}
-
-void VCMQmMethod::ComputeSpatial() {
- float spatial_err = 0.0;
- float spatial_err_h = 0.0;
- float spatial_err_v = 0.0;
- if (content_metrics_) {
- spatial_err = content_metrics_->spatial_pred_err;
- spatial_err_h = content_metrics_->spatial_pred_err_h;
- spatial_err_v = content_metrics_->spatial_pred_err_v;
- }
- // Spatial measure: take average of 3 prediction errors.
- spatial_.value = (spatial_err + spatial_err_h + spatial_err_v) / 3.0f;
-
- // Reduce thresholds for large scenes/higher pixel correlation.
- float scale2 = image_type_ > kVGA ? kScaleTexture : 1.0;
-
- if (spatial_.value > scale2 * kHighTexture) {
- spatial_.level = kHigh;
- } else if (spatial_.value < scale2 * kLowTexture) {
- spatial_.level = kLow;
- } else {
- spatial_.level = kDefault;
- }
-}
-
-ImageType VCMQmMethod::GetImageType(uint16_t width,
- uint16_t height) {
- // Get the image type for the encoder frame size.
- uint32_t image_size = width * height;
- if (image_size == kSizeOfImageType[kQCIF]) {
- return kQCIF;
- } else if (image_size == kSizeOfImageType[kHCIF]) {
- return kHCIF;
- } else if (image_size == kSizeOfImageType[kQVGA]) {
- return kQVGA;
- } else if (image_size == kSizeOfImageType[kCIF]) {
- return kCIF;
- } else if (image_size == kSizeOfImageType[kHVGA]) {
- return kHVGA;
- } else if (image_size == kSizeOfImageType[kVGA]) {
- return kVGA;
- } else if (image_size == kSizeOfImageType[kQFULLHD]) {
- return kQFULLHD;
- } else if (image_size == kSizeOfImageType[kWHD]) {
- return kWHD;
- } else if (image_size == kSizeOfImageType[kFULLHD]) {
- return kFULLHD;
- } else {
- // No exact match, find closet one.
- return FindClosestImageType(width, height);
- }
-}
-
-ImageType VCMQmMethod::FindClosestImageType(uint16_t width, uint16_t height) {
- float size = static_cast<float>(width * height);
- float min = size;
- int isel = 0;
- for (int i = 0; i < kNumImageTypes; ++i) {
- float dist = fabs(size - kSizeOfImageType[i]);
- if (dist < min) {
- min = dist;
- isel = i;
- }
- }
- return static_cast<ImageType>(isel);
-}
-
-FrameRateLevelClass VCMQmMethod::FrameRateLevel(float avg_framerate) {
- if (avg_framerate <= kLowFrameRate) {
- return kFrameRateLow;
- } else if (avg_framerate <= kMiddleFrameRate) {
- return kFrameRateMiddle1;
- } else if (avg_framerate <= kHighFrameRate) {
- return kFrameRateMiddle2;
- } else {
- return kFrameRateHigh;
- }
-}
-
-// RESOLUTION CLASS
-
-VCMQmResolution::VCMQmResolution()
- : qm_(new VCMResolutionScale()) {
- Reset();
-}
-
-VCMQmResolution::~VCMQmResolution() {
- delete qm_;
-}
-
-void VCMQmResolution::ResetRates() {
- sum_target_rate_ = 0.0f;
- sum_incoming_framerate_ = 0.0f;
- sum_rate_MM_ = 0.0f;
- sum_rate_MM_sgn_ = 0.0f;
- sum_packet_loss_ = 0.0f;
- buffer_level_ = kInitBufferLevel * target_bitrate_;
- frame_cnt_ = 0;
- frame_cnt_delta_ = 0;
- low_buffer_cnt_ = 0;
- update_rate_cnt_ = 0;
-}
-
-void VCMQmResolution::ResetDownSamplingState() {
- state_dec_factor_spatial_ = 1.0;
- state_dec_factor_temporal_ = 1.0;
- for (int i = 0; i < kDownActionHistorySize; i++) {
- down_action_history_[i].spatial = kNoChangeSpatial;
- down_action_history_[i].temporal = kNoChangeTemporal;
- }
-}
-
-void VCMQmResolution::Reset() {
- target_bitrate_ = 0.0f;
- incoming_framerate_ = 0.0f;
- buffer_level_ = 0.0f;
- per_frame_bandwidth_ = 0.0f;
- avg_target_rate_ = 0.0f;
- avg_incoming_framerate_ = 0.0f;
- avg_ratio_buffer_low_ = 0.0f;
- avg_rate_mismatch_ = 0.0f;
- avg_rate_mismatch_sgn_ = 0.0f;
- avg_packet_loss_ = 0.0f;
- encoder_state_ = kStableEncoding;
- num_layers_ = 1;
- ResetRates();
- ResetDownSamplingState();
- ResetQM();
-}
-
-EncoderState VCMQmResolution::GetEncoderState() {
- return encoder_state_;
-}
-
-// Initialize state after re-initializing the encoder,
-// i.e., after SetEncodingData() in mediaOpt.
-int VCMQmResolution::Initialize(float bitrate,
- float user_framerate,
- uint16_t width,
- uint16_t height,
- int num_layers) {
- if (user_framerate == 0.0f || width == 0 || height == 0) {
- return VCM_PARAMETER_ERROR;
- }
- Reset();
- target_bitrate_ = bitrate;
- incoming_framerate_ = user_framerate;
- UpdateCodecParameters(user_framerate, width, height);
- native_width_ = width;
- native_height_ = height;
- native_frame_rate_ = user_framerate;
- num_layers_ = num_layers;
- // Initial buffer level.
- buffer_level_ = kInitBufferLevel * target_bitrate_;
- // Per-frame bandwidth.
- per_frame_bandwidth_ = target_bitrate_ / user_framerate;
- init_ = true;
- return VCM_OK;
-}
-
-void VCMQmResolution::UpdateCodecParameters(float frame_rate, uint16_t width,
- uint16_t height) {
- width_ = width;
- height_ = height;
- // |user_frame_rate| is the target frame rate for VPM frame dropper.
- user_frame_rate_ = frame_rate;
- image_type_ = GetImageType(width, height);
-}
-
-// Update rate data after every encoded frame.
-void VCMQmResolution::UpdateEncodedSize(size_t encoded_size) {
- frame_cnt_++;
- // Convert to Kbps.
- float encoded_size_kbits = 8.0f * static_cast<float>(encoded_size) / 1000.0f;
-
- // Update the buffer level:
- // Note this is not the actual encoder buffer level.
- // |buffer_level_| is reset to an initial value after SelectResolution is
- // called, and does not account for frame dropping by encoder or VCM.
- buffer_level_ += per_frame_bandwidth_ - encoded_size_kbits;
-
- // Counter for occurrences of low buffer level:
- // low/negative values means encoder is likely dropping frames.
- if (buffer_level_ <= kPercBufferThr * kInitBufferLevel * target_bitrate_) {
- low_buffer_cnt_++;
- }
-}
-
-// Update various quantities after SetTargetRates in MediaOpt.
-void VCMQmResolution::UpdateRates(float target_bitrate,
- float encoder_sent_rate,
- float incoming_framerate,
- uint8_t packet_loss) {
- // Sum the target bitrate: this is the encoder rate from previous update
- // (~1sec), i.e, before the update for next ~1sec.
- sum_target_rate_ += target_bitrate_;
- update_rate_cnt_++;
-
- // Sum the received (from RTCP reports) packet loss rates.
- sum_packet_loss_ += static_cast<float>(packet_loss / 255.0);
-
- // Sum the sequence rate mismatch:
- // Mismatch here is based on the difference between the target rate
- // used (in previous ~1sec) and the average actual encoding rate measured
- // at previous ~1sec.
- float diff = target_bitrate_ - encoder_sent_rate;
- if (target_bitrate_ > 0.0)
- sum_rate_MM_ += fabs(diff) / target_bitrate_;
- int sgnDiff = diff > 0 ? 1 : (diff < 0 ? -1 : 0);
- // To check for consistent under(+)/over_shooting(-) of target rate.
- sum_rate_MM_sgn_ += sgnDiff;
-
- // Update with the current new target and frame rate:
- // these values are ones the encoder will use for the current/next ~1sec.
- target_bitrate_ = target_bitrate;
- incoming_framerate_ = incoming_framerate;
- sum_incoming_framerate_ += incoming_framerate_;
- // Update the per_frame_bandwidth:
- // this is the per_frame_bw for the current/next ~1sec.
- per_frame_bandwidth_ = 0.0f;
- if (incoming_framerate_ > 0.0f) {
- per_frame_bandwidth_ = target_bitrate_ / incoming_framerate_;
- }
-}
-
-// Select the resolution factors: frame size and frame rate change (qm scales).
-// Selection is for going down in resolution, or for going back up
-// (if a previous down-sampling action was taken).
-
-// In the current version the following constraints are imposed:
-// 1) We only allow for one action, either down or up, at a given time.
-// 2) The possible down-sampling actions are: spatial by 1/2x1/2, 3/4x3/4;
-// temporal/frame rate reduction by 1/2 and 2/3.
-// 3) The action for going back up is the reverse of last (spatial or temporal)
-// down-sampling action. The list of down-sampling actions from the
-// Initialize() state are kept in |down_action_history_|.
-// 4) The total amount of down-sampling (spatial and/or temporal) from the
-// Initialize() state (native resolution) is limited by various factors.
-int VCMQmResolution::SelectResolution(VCMResolutionScale** qm) {
- if (!init_) {
- return VCM_UNINITIALIZED;
- }
- if (content_metrics_ == NULL) {
- Reset();
- *qm = qm_;
- return VCM_OK;
- }
-
- // Check conditions on down-sampling state.
- assert(state_dec_factor_spatial_ >= 1.0f);
- assert(state_dec_factor_temporal_ >= 1.0f);
- assert(state_dec_factor_spatial_ <= kMaxSpatialDown);
- assert(state_dec_factor_temporal_ <= kMaxTempDown);
- assert(state_dec_factor_temporal_ * state_dec_factor_spatial_ <=
- kMaxTotalDown);
-
- // Compute content class for selection.
- content_class_ = ComputeContentClass();
- // Compute various rate quantities for selection.
- ComputeRatesForSelection();
-
- // Get the encoder state.
- ComputeEncoderState();
-
- // Default settings: no action.
- SetDefaultAction();
- *qm = qm_;
-
- // Check for going back up in resolution, if we have had some down-sampling
- // relative to native state in Initialize().
- if (down_action_history_[0].spatial != kNoChangeSpatial ||
- down_action_history_[0].temporal != kNoChangeTemporal) {
- if (GoingUpResolution()) {
- *qm = qm_;
- return VCM_OK;
- }
- }
-
- // Check for going down in resolution.
- if (GoingDownResolution()) {
- *qm = qm_;
- return VCM_OK;
- }
- return VCM_OK;
-}
-
-void VCMQmResolution::SetDefaultAction() {
- qm_->codec_width = width_;
- qm_->codec_height = height_;
- qm_->frame_rate = user_frame_rate_;
- qm_->change_resolution_spatial = false;
- qm_->change_resolution_temporal = false;
- qm_->spatial_width_fact = 1.0f;
- qm_->spatial_height_fact = 1.0f;
- qm_->temporal_fact = 1.0f;
- action_.spatial = kNoChangeSpatial;
- action_.temporal = kNoChangeTemporal;
-}
-
-void VCMQmResolution::ComputeRatesForSelection() {
- avg_target_rate_ = 0.0f;
- avg_incoming_framerate_ = 0.0f;
- avg_ratio_buffer_low_ = 0.0f;
- avg_rate_mismatch_ = 0.0f;
- avg_rate_mismatch_sgn_ = 0.0f;
- avg_packet_loss_ = 0.0f;
- if (frame_cnt_ > 0) {
- avg_ratio_buffer_low_ = static_cast<float>(low_buffer_cnt_) /
- static_cast<float>(frame_cnt_);
- }
- if (update_rate_cnt_ > 0) {
- avg_rate_mismatch_ = static_cast<float>(sum_rate_MM_) /
- static_cast<float>(update_rate_cnt_);
- avg_rate_mismatch_sgn_ = static_cast<float>(sum_rate_MM_sgn_) /
- static_cast<float>(update_rate_cnt_);
- avg_target_rate_ = static_cast<float>(sum_target_rate_) /
- static_cast<float>(update_rate_cnt_);
- avg_incoming_framerate_ = static_cast<float>(sum_incoming_framerate_) /
- static_cast<float>(update_rate_cnt_);
- avg_packet_loss_ = static_cast<float>(sum_packet_loss_) /
- static_cast<float>(update_rate_cnt_);
- }
- // For selection we may want to weight some quantities more heavily
- // with the current (i.e., next ~1sec) rate values.
- avg_target_rate_ = kWeightRate * avg_target_rate_ +
- (1.0 - kWeightRate) * target_bitrate_;
- avg_incoming_framerate_ = kWeightRate * avg_incoming_framerate_ +
- (1.0 - kWeightRate) * incoming_framerate_;
- // Use base layer frame rate for temporal layers: this will favor spatial.
- assert(num_layers_ > 0);
- framerate_level_ = FrameRateLevel(
- avg_incoming_framerate_ / static_cast<float>(1 << (num_layers_ - 1)));
-}
-
-void VCMQmResolution::ComputeEncoderState() {
- // Default.
- encoder_state_ = kStableEncoding;
-
- // Assign stressed state if:
- // 1) occurrences of low buffer levels is high, or
- // 2) rate mis-match is high, and consistent over-shooting by encoder.
- if ((avg_ratio_buffer_low_ > kMaxBufferLow) ||
- ((avg_rate_mismatch_ > kMaxRateMisMatch) &&
- (avg_rate_mismatch_sgn_ < -kRateOverShoot))) {
- encoder_state_ = kStressedEncoding;
- }
- // Assign easy state if:
- // 1) rate mis-match is high, and
- // 2) consistent under-shooting by encoder.
- if ((avg_rate_mismatch_ > kMaxRateMisMatch) &&
- (avg_rate_mismatch_sgn_ > kRateUnderShoot)) {
- encoder_state_ = kEasyEncoding;
- }
-}
-
-bool VCMQmResolution::GoingUpResolution() {
- // For going up, we check for undoing the previous down-sampling action.
-
- float fac_width = kFactorWidthSpatial[down_action_history_[0].spatial];
- float fac_height = kFactorHeightSpatial[down_action_history_[0].spatial];
- float fac_temp = kFactorTemporal[down_action_history_[0].temporal];
- // For going up spatially, we allow for going up by 3/4x3/4 at each stage.
- // So if the last spatial action was 1/2x1/2 it would be undone in 2 stages.
- // Modify the fac_width/height for this case.
- if (down_action_history_[0].spatial == kOneQuarterSpatialUniform) {
- fac_width = kFactorWidthSpatial[kOneQuarterSpatialUniform] /
- kFactorWidthSpatial[kOneHalfSpatialUniform];
- fac_height = kFactorHeightSpatial[kOneQuarterSpatialUniform] /
- kFactorHeightSpatial[kOneHalfSpatialUniform];
- }
-
- // Check if we should go up both spatially and temporally.
- if (down_action_history_[0].spatial != kNoChangeSpatial &&
- down_action_history_[0].temporal != kNoChangeTemporal) {
- if (ConditionForGoingUp(fac_width, fac_height, fac_temp,
- kTransRateScaleUpSpatialTemp)) {
- action_.spatial = down_action_history_[0].spatial;
- action_.temporal = down_action_history_[0].temporal;
- UpdateDownsamplingState(kUpResolution);
- return true;
- }
- }
- // Check if we should go up either spatially or temporally.
- bool selected_up_spatial = false;
- bool selected_up_temporal = false;
- if (down_action_history_[0].spatial != kNoChangeSpatial) {
- selected_up_spatial = ConditionForGoingUp(fac_width, fac_height, 1.0f,
- kTransRateScaleUpSpatial);
- }
- if (down_action_history_[0].temporal != kNoChangeTemporal) {
- selected_up_temporal = ConditionForGoingUp(1.0f, 1.0f, fac_temp,
- kTransRateScaleUpTemp);
- }
- if (selected_up_spatial && !selected_up_temporal) {
- action_.spatial = down_action_history_[0].spatial;
- action_.temporal = kNoChangeTemporal;
- UpdateDownsamplingState(kUpResolution);
- return true;
- } else if (!selected_up_spatial && selected_up_temporal) {
- action_.spatial = kNoChangeSpatial;
- action_.temporal = down_action_history_[0].temporal;
- UpdateDownsamplingState(kUpResolution);
- return true;
- } else if (selected_up_spatial && selected_up_temporal) {
- PickSpatialOrTemporal();
- UpdateDownsamplingState(kUpResolution);
- return true;
- }
- return false;
-}
-
-bool VCMQmResolution::ConditionForGoingUp(float fac_width,
- float fac_height,
- float fac_temp,
- float scale_fac) {
- float estimated_transition_rate_up = GetTransitionRate(fac_width, fac_height,
- fac_temp, scale_fac);
- // Go back up if:
- // 1) target rate is above threshold and current encoder state is stable, or
- // 2) encoder state is easy (encoder is significantly under-shooting target).
- if (((avg_target_rate_ > estimated_transition_rate_up) &&
- (encoder_state_ == kStableEncoding)) ||
- (encoder_state_ == kEasyEncoding)) {
- return true;
- } else {
- return false;
- }
-}
-
-bool VCMQmResolution::GoingDownResolution() {
- float estimated_transition_rate_down =
- GetTransitionRate(1.0f, 1.0f, 1.0f, 1.0f);
- float max_rate = kFrameRateFac[framerate_level_] * kMaxRateQm[image_type_];
- // Resolution reduction if:
- // (1) target rate is below transition rate, or
- // (2) encoder is in stressed state and target rate below a max threshold.
- if ((avg_target_rate_ < estimated_transition_rate_down ) ||
- (encoder_state_ == kStressedEncoding && avg_target_rate_ < max_rate)) {
- // Get the down-sampling action: based on content class, and how low
- // average target rate is relative to transition rate.
- uint8_t spatial_fact =
- kSpatialAction[content_class_ +
- 9 * RateClass(estimated_transition_rate_down)];
- uint8_t temp_fact =
- kTemporalAction[content_class_ +
- 9 * RateClass(estimated_transition_rate_down)];
-
- switch (spatial_fact) {
- case 4: {
- action_.spatial = kOneQuarterSpatialUniform;
- break;
- }
- case 2: {
- action_.spatial = kOneHalfSpatialUniform;
- break;
- }
- case 1: {
- action_.spatial = kNoChangeSpatial;
- break;
- }
- default: {
- assert(false);
- }
- }
- switch (temp_fact) {
- case 3: {
- action_.temporal = kTwoThirdsTemporal;
- break;
- }
- case 2: {
- action_.temporal = kOneHalfTemporal;
- break;
- }
- case 1: {
- action_.temporal = kNoChangeTemporal;
- break;
- }
- default: {
- assert(false);
- }
- }
- // Only allow for one action (spatial or temporal) at a given time.
- assert(action_.temporal == kNoChangeTemporal ||
- action_.spatial == kNoChangeSpatial);
-
- // Adjust cases not captured in tables, mainly based on frame rate, and
- // also check for odd frame sizes.
- AdjustAction();
-
- // Update down-sampling state.
- if (action_.spatial != kNoChangeSpatial ||
- action_.temporal != kNoChangeTemporal) {
- UpdateDownsamplingState(kDownResolution);
- return true;
- }
- }
- return false;
-}
-
-float VCMQmResolution::GetTransitionRate(float fac_width,
- float fac_height,
- float fac_temp,
- float scale_fac) {
- ImageType image_type = GetImageType(
- static_cast<uint16_t>(fac_width * width_),
- static_cast<uint16_t>(fac_height * height_));
-
- FrameRateLevelClass framerate_level =
- FrameRateLevel(fac_temp * avg_incoming_framerate_);
- // If we are checking for going up temporally, and this is the last
- // temporal action, then use native frame rate.
- if (down_action_history_[1].temporal == kNoChangeTemporal &&
- fac_temp > 1.0f) {
- framerate_level = FrameRateLevel(native_frame_rate_);
- }
-
- // The maximum allowed rate below which down-sampling is allowed:
- // Nominal values based on image format (frame size and frame rate).
- float max_rate = kFrameRateFac[framerate_level] * kMaxRateQm[image_type];
-
- uint8_t image_class = image_type > kVGA ? 1: 0;
- uint8_t table_index = image_class * 9 + content_class_;
- // Scale factor for down-sampling transition threshold:
- // factor based on the content class and the image size.
- float scaleTransRate = kScaleTransRateQm[table_index];
- // Threshold bitrate for resolution action.
- return static_cast<float> (scale_fac * scaleTransRate * max_rate);
-}
-
-void VCMQmResolution::UpdateDownsamplingState(UpDownAction up_down) {
- if (up_down == kUpResolution) {
- qm_->spatial_width_fact = 1.0f / kFactorWidthSpatial[action_.spatial];
- qm_->spatial_height_fact = 1.0f / kFactorHeightSpatial[action_.spatial];
- // If last spatial action was 1/2x1/2, we undo it in two steps, so the
- // spatial scale factor in this first step is modified as (4.0/3.0 / 2.0).
- if (action_.spatial == kOneQuarterSpatialUniform) {
- qm_->spatial_width_fact =
- 1.0f * kFactorWidthSpatial[kOneHalfSpatialUniform] /
- kFactorWidthSpatial[kOneQuarterSpatialUniform];
- qm_->spatial_height_fact =
- 1.0f * kFactorHeightSpatial[kOneHalfSpatialUniform] /
- kFactorHeightSpatial[kOneQuarterSpatialUniform];
- }
- qm_->temporal_fact = 1.0f / kFactorTemporal[action_.temporal];
- RemoveLastDownAction();
- } else if (up_down == kDownResolution) {
- ConstrainAmountOfDownSampling();
- ConvertSpatialFractionalToWhole();
- qm_->spatial_width_fact = kFactorWidthSpatial[action_.spatial];
- qm_->spatial_height_fact = kFactorHeightSpatial[action_.spatial];
- qm_->temporal_fact = kFactorTemporal[action_.temporal];
- InsertLatestDownAction();
- } else {
- // This function should only be called if either the Up or Down action
- // has been selected.
- assert(false);
- }
- UpdateCodecResolution();
- state_dec_factor_spatial_ = state_dec_factor_spatial_ *
- qm_->spatial_width_fact * qm_->spatial_height_fact;
- state_dec_factor_temporal_ = state_dec_factor_temporal_ * qm_->temporal_fact;
-}
-
-void VCMQmResolution::UpdateCodecResolution() {
- if (action_.spatial != kNoChangeSpatial) {
- qm_->change_resolution_spatial = true;
- qm_->codec_width = static_cast<uint16_t>(width_ /
- qm_->spatial_width_fact + 0.5f);
- qm_->codec_height = static_cast<uint16_t>(height_ /
- qm_->spatial_height_fact + 0.5f);
- // Size should not exceed native sizes.
- assert(qm_->codec_width <= native_width_);
- assert(qm_->codec_height <= native_height_);
- // New sizes should be multiple of 2, otherwise spatial should not have
- // been selected.
- assert(qm_->codec_width % 2 == 0);
- assert(qm_->codec_height % 2 == 0);
- }
- if (action_.temporal != kNoChangeTemporal) {
- qm_->change_resolution_temporal = true;
- // Update the frame rate based on the average incoming frame rate.
- qm_->frame_rate = avg_incoming_framerate_ / qm_->temporal_fact + 0.5f;
- if (down_action_history_[0].temporal == 0) {
- // When we undo the last temporal-down action, make sure we go back up
- // to the native frame rate. Since the incoming frame rate may
- // fluctuate over time, |avg_incoming_framerate_| scaled back up may
- // be smaller than |native_frame rate_|.
- qm_->frame_rate = native_frame_rate_;
- }
- }
-}
-
-uint8_t VCMQmResolution::RateClass(float transition_rate) {
- return avg_target_rate_ < (kFacLowRate * transition_rate) ? 0:
- (avg_target_rate_ >= transition_rate ? 2 : 1);
-}
-
-// TODO(marpan): Would be better to capture these frame rate adjustments by
-// extending the table data (qm_select_data.h).
-void VCMQmResolution::AdjustAction() {
- // If the spatial level is default state (neither low or high), motion level
- // is not high, and spatial action was selected, switch to 2/3 frame rate
- // reduction if the average incoming frame rate is high.
- if (spatial_.level == kDefault && motion_.level != kHigh &&
- action_.spatial != kNoChangeSpatial &&
- framerate_level_ == kFrameRateHigh) {
- action_.spatial = kNoChangeSpatial;
- action_.temporal = kTwoThirdsTemporal;
- }
- // If both motion and spatial level are low, and temporal down action was
- // selected, switch to spatial 3/4x3/4 if the frame rate is not above the
- // lower middle level (|kFrameRateMiddle1|).
- if (motion_.level == kLow && spatial_.level == kLow &&
- framerate_level_ <= kFrameRateMiddle1 &&
- action_.temporal != kNoChangeTemporal) {
- action_.spatial = kOneHalfSpatialUniform;
- action_.temporal = kNoChangeTemporal;
- }
- // If spatial action is selected, and there has been too much spatial
- // reduction already (i.e., 1/4), then switch to temporal action if the
- // average frame rate is not low.
- if (action_.spatial != kNoChangeSpatial &&
- down_action_history_[0].spatial == kOneQuarterSpatialUniform &&
- framerate_level_ != kFrameRateLow) {
- action_.spatial = kNoChangeSpatial;
- action_.temporal = kTwoThirdsTemporal;
- }
- // Never use temporal action if number of temporal layers is above 2.
- if (num_layers_ > 2) {
- if (action_.temporal != kNoChangeTemporal) {
- action_.spatial = kOneHalfSpatialUniform;
- }
- action_.temporal = kNoChangeTemporal;
- }
- // If spatial action was selected, we need to make sure the frame sizes
- // are multiples of two. Otherwise switch to 2/3 temporal.
- if (action_.spatial != kNoChangeSpatial &&
- !EvenFrameSize()) {
- action_.spatial = kNoChangeSpatial;
- // Only one action (spatial or temporal) is allowed at a given time, so need
- // to check whether temporal action is currently selected.
- action_.temporal = kTwoThirdsTemporal;
- }
-}
-
-void VCMQmResolution::ConvertSpatialFractionalToWhole() {
- // If 3/4 spatial is selected, check if there has been another 3/4,
- // and if so, combine them into 1/2. 1/2 scaling is more efficient than 9/16.
- // Note we define 3/4x3/4 spatial as kOneHalfSpatialUniform.
- if (action_.spatial == kOneHalfSpatialUniform) {
- bool found = false;
- int isel = kDownActionHistorySize;
- for (int i = 0; i < kDownActionHistorySize; ++i) {
- if (down_action_history_[i].spatial == kOneHalfSpatialUniform) {
- isel = i;
- found = true;
- break;
- }
- }
- if (found) {
- action_.spatial = kOneQuarterSpatialUniform;
- state_dec_factor_spatial_ = state_dec_factor_spatial_ /
- (kFactorWidthSpatial[kOneHalfSpatialUniform] *
- kFactorHeightSpatial[kOneHalfSpatialUniform]);
- // Check if switching to 1/2x1/2 (=1/4) spatial is allowed.
- ConstrainAmountOfDownSampling();
- if (action_.spatial == kNoChangeSpatial) {
- // Not allowed. Go back to 3/4x3/4 spatial.
- action_.spatial = kOneHalfSpatialUniform;
- state_dec_factor_spatial_ = state_dec_factor_spatial_ *
- kFactorWidthSpatial[kOneHalfSpatialUniform] *
- kFactorHeightSpatial[kOneHalfSpatialUniform];
- } else {
- // Switching is allowed. Remove 3/4x3/4 from the history, and update
- // the frame size.
- for (int i = isel; i < kDownActionHistorySize - 1; ++i) {
- down_action_history_[i].spatial =
- down_action_history_[i + 1].spatial;
- }
- width_ = width_ * kFactorWidthSpatial[kOneHalfSpatialUniform];
- height_ = height_ * kFactorHeightSpatial[kOneHalfSpatialUniform];
- }
- }
- }
-}
-
-// Returns false if the new frame sizes, under the current spatial action,
-// are not multiples of two.
-bool VCMQmResolution::EvenFrameSize() {
- if (action_.spatial == kOneHalfSpatialUniform) {
- if ((width_ * 3 / 4) % 2 != 0 || (height_ * 3 / 4) % 2 != 0) {
- return false;
- }
- } else if (action_.spatial == kOneQuarterSpatialUniform) {
- if ((width_ * 1 / 2) % 2 != 0 || (height_ * 1 / 2) % 2 != 0) {
- return false;
- }
- }
- return true;
-}
-
-void VCMQmResolution::InsertLatestDownAction() {
- if (action_.spatial != kNoChangeSpatial) {
- for (int i = kDownActionHistorySize - 1; i > 0; --i) {
- down_action_history_[i].spatial = down_action_history_[i - 1].spatial;
- }
- down_action_history_[0].spatial = action_.spatial;
- }
- if (action_.temporal != kNoChangeTemporal) {
- for (int i = kDownActionHistorySize - 1; i > 0; --i) {
- down_action_history_[i].temporal = down_action_history_[i - 1].temporal;
- }
- down_action_history_[0].temporal = action_.temporal;
- }
-}
-
-void VCMQmResolution::RemoveLastDownAction() {
- if (action_.spatial != kNoChangeSpatial) {
- // If the last spatial action was 1/2x1/2 we replace it with 3/4x3/4.
- if (action_.spatial == kOneQuarterSpatialUniform) {
- down_action_history_[0].spatial = kOneHalfSpatialUniform;
- } else {
- for (int i = 0; i < kDownActionHistorySize - 1; ++i) {
- down_action_history_[i].spatial = down_action_history_[i + 1].spatial;
- }
- down_action_history_[kDownActionHistorySize - 1].spatial =
- kNoChangeSpatial;
- }
- }
- if (action_.temporal != kNoChangeTemporal) {
- for (int i = 0; i < kDownActionHistorySize - 1; ++i) {
- down_action_history_[i].temporal = down_action_history_[i + 1].temporal;
- }
- down_action_history_[kDownActionHistorySize - 1].temporal =
- kNoChangeTemporal;
- }
-}
-
-void VCMQmResolution::ConstrainAmountOfDownSampling() {
- // Sanity checks on down-sampling selection:
- // override the settings for too small image size and/or frame rate.
- // Also check the limit on current down-sampling states.
-
- float spatial_width_fact = kFactorWidthSpatial[action_.spatial];
- float spatial_height_fact = kFactorHeightSpatial[action_.spatial];
- float temporal_fact = kFactorTemporal[action_.temporal];
- float new_dec_factor_spatial = state_dec_factor_spatial_ *
- spatial_width_fact * spatial_height_fact;
- float new_dec_factor_temp = state_dec_factor_temporal_ * temporal_fact;
-
- // No spatial sampling if current frame size is too small, or if the
- // amount of spatial down-sampling is above maximum spatial down-action.
- if ((width_ * height_) <= kMinImageSize ||
- new_dec_factor_spatial > kMaxSpatialDown) {
- action_.spatial = kNoChangeSpatial;
- new_dec_factor_spatial = state_dec_factor_spatial_;
- }
- // No frame rate reduction if average frame rate is below some point, or if
- // the amount of temporal down-sampling is above maximum temporal down-action.
- if (avg_incoming_framerate_ <= kMinFrameRate ||
- new_dec_factor_temp > kMaxTempDown) {
- action_.temporal = kNoChangeTemporal;
- new_dec_factor_temp = state_dec_factor_temporal_;
- }
- // Check if the total (spatial-temporal) down-action is above maximum allowed,
- // if so, disallow the current selected down-action.
- if (new_dec_factor_spatial * new_dec_factor_temp > kMaxTotalDown) {
- if (action_.spatial != kNoChangeSpatial) {
- action_.spatial = kNoChangeSpatial;
- } else if (action_.temporal != kNoChangeTemporal) {
- action_.temporal = kNoChangeTemporal;
- } else {
- // We only allow for one action (spatial or temporal) at a given time, so
- // either spatial or temporal action is selected when this function is
- // called. If the selected action is disallowed from one of the above
- // 2 prior conditions (on spatial & temporal max down-action), then this
- // condition "total down-action > |kMaxTotalDown|" would not be entered.
- assert(false);
- }
- }
-}
-
-void VCMQmResolution::PickSpatialOrTemporal() {
- // Pick the one that has had the most down-sampling thus far.
- if (state_dec_factor_spatial_ > state_dec_factor_temporal_) {
- action_.spatial = down_action_history_[0].spatial;
- action_.temporal = kNoChangeTemporal;
- } else {
- action_.spatial = kNoChangeSpatial;
- action_.temporal = down_action_history_[0].temporal;
- }
-}
-
-// TODO(marpan): Update when we allow for directional spatial down-sampling.
-void VCMQmResolution::SelectSpatialDirectionMode(float transition_rate) {
- // Default is 4/3x4/3
- // For bit rates well below transitional rate, we select 2x2.
- if (avg_target_rate_ < transition_rate * kRateRedSpatial2X2) {
- qm_->spatial_width_fact = 2.0f;
- qm_->spatial_height_fact = 2.0f;
- }
- // Otherwise check prediction errors and aspect ratio.
- float spatial_err = 0.0f;
- float spatial_err_h = 0.0f;
- float spatial_err_v = 0.0f;
- if (content_metrics_) {
- spatial_err = content_metrics_->spatial_pred_err;
- spatial_err_h = content_metrics_->spatial_pred_err_h;
- spatial_err_v = content_metrics_->spatial_pred_err_v;
- }
-
- // Favor 1x2 if aspect_ratio is 16:9.
- if (aspect_ratio_ >= 16.0f / 9.0f) {
- // Check if 1x2 has lowest prediction error.
- if (spatial_err_h < spatial_err && spatial_err_h < spatial_err_v) {
- qm_->spatial_width_fact = 2.0f;
- qm_->spatial_height_fact = 1.0f;
- }
- }
- // Check for 4/3x4/3 selection: favor 2x2 over 1x2 and 2x1.
- if (spatial_err < spatial_err_h * (1.0f + kSpatialErr2x2VsHoriz) &&
- spatial_err < spatial_err_v * (1.0f + kSpatialErr2X2VsVert)) {
- qm_->spatial_width_fact = 4.0f / 3.0f;
- qm_->spatial_height_fact = 4.0f / 3.0f;
- }
- // Check for 2x1 selection.
- if (spatial_err_v < spatial_err_h * (1.0f - kSpatialErrVertVsHoriz) &&
- spatial_err_v < spatial_err * (1.0f - kSpatialErr2X2VsVert)) {
- qm_->spatial_width_fact = 1.0f;
- qm_->spatial_height_fact = 2.0f;
- }
-}
-
-// ROBUSTNESS CLASS
-
-VCMQmRobustness::VCMQmRobustness() {
- Reset();
-}
-
-VCMQmRobustness::~VCMQmRobustness() {
-}
-
-void VCMQmRobustness::Reset() {
- prev_total_rate_ = 0.0f;
- prev_rtt_time_ = 0;
- prev_packet_loss_ = 0;
- prev_code_rate_delta_ = 0;
- ResetQM();
-}
-
-// Adjust the FEC rate based on the content and the network state
-// (packet loss rate, total rate/bandwidth, round trip time).
-// Note that packetLoss here is the filtered loss value.
-float VCMQmRobustness::AdjustFecFactor(uint8_t code_rate_delta,
- float total_rate,
- float framerate,
- int64_t rtt_time,
- uint8_t packet_loss) {
- // Default: no adjustment
- float adjust_fec = 1.0f;
- if (content_metrics_ == NULL) {
- return adjust_fec;
- }
- // Compute class state of the content.
- ComputeMotionNFD();
- ComputeSpatial();
-
- // TODO(marpan): Set FEC adjustment factor.
-
- // Keep track of previous values of network state:
- // adjustment may be also based on pattern of changes in network state.
- prev_total_rate_ = total_rate;
- prev_rtt_time_ = rtt_time;
- prev_packet_loss_ = packet_loss;
- prev_code_rate_delta_ = code_rate_delta;
- return adjust_fec;
-}
-
-// Set the UEP (unequal-protection across packets) on/off for the FEC.
-bool VCMQmRobustness::SetUepProtection(uint8_t code_rate_delta,
- float total_rate,
- uint8_t packet_loss,
- bool frame_type) {
- // Default.
- return false;
-}
-} // namespace