aboutsummaryrefslogtreecommitdiff
path: root/webrtc/modules/video_coding/qm_select_unittest.cc
diff options
context:
space:
mode:
Diffstat (limited to 'webrtc/modules/video_coding/qm_select_unittest.cc')
-rw-r--r--webrtc/modules/video_coding/qm_select_unittest.cc1307
1 files changed, 1307 insertions, 0 deletions
diff --git a/webrtc/modules/video_coding/qm_select_unittest.cc b/webrtc/modules/video_coding/qm_select_unittest.cc
new file mode 100644
index 0000000000..f8542ec676
--- /dev/null
+++ b/webrtc/modules/video_coding/qm_select_unittest.cc
@@ -0,0 +1,1307 @@
+/*
+ * Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
+ *
+ * Use of this source code is governed by a BSD-style license
+ * that can be found in the LICENSE file in the root of the source
+ * tree. An additional intellectual property rights grant can be found
+ * in the file PATENTS. All contributing project authors may
+ * be found in the AUTHORS file in the root of the source tree.
+ */
+
+/*
+ * This file includes unit tests the QmResolution class
+ * In particular, for the selection of spatial and/or temporal down-sampling.
+ */
+
+#include "testing/gtest/include/gtest/gtest.h"
+
+#include "webrtc/modules/include/module_common_types.h"
+#include "webrtc/modules/video_coding/qm_select.h"
+
+namespace webrtc {
+
+// Representative values of content metrics for: low/high/medium(default) state,
+// based on parameters settings in qm_select_data.h.
+const float kSpatialLow = 0.01f;
+const float kSpatialMedium = 0.03f;
+const float kSpatialHigh = 0.1f;
+const float kTemporalLow = 0.01f;
+const float kTemporalMedium = 0.06f;
+const float kTemporalHigh = 0.1f;
+
+class QmSelectTest : public ::testing::Test {
+ protected:
+ QmSelectTest()
+ : qm_resolution_(new VCMQmResolution()),
+ content_metrics_(new VideoContentMetrics()),
+ qm_scale_(NULL) {}
+ VCMQmResolution* qm_resolution_;
+ VideoContentMetrics* content_metrics_;
+ VCMResolutionScale* qm_scale_;
+
+ void InitQmNativeData(float initial_bit_rate,
+ int user_frame_rate,
+ int native_width,
+ int native_height,
+ int num_layers);
+
+ void UpdateQmEncodedFrame(size_t* encoded_size, size_t num_updates);
+
+ void UpdateQmRateData(int* target_rate,
+ int* encoder_sent_rate,
+ int* incoming_frame_rate,
+ uint8_t* fraction_lost,
+ int num_updates);
+
+ void UpdateQmContentData(float motion_metric,
+ float spatial_metric,
+ float spatial_metric_horiz,
+ float spatial_metric_vert);
+
+ bool IsSelectedActionCorrect(VCMResolutionScale* qm_scale,
+ float fac_width,
+ float fac_height,
+ float fac_temp,
+ uint16_t new_width,
+ uint16_t new_height,
+ float new_frame_rate);
+
+ void TearDown() {
+ delete qm_resolution_;
+ delete content_metrics_;
+ }
+};
+
+TEST_F(QmSelectTest, HandleInputs) {
+ // Expect parameter error. Initialize with invalid inputs.
+ EXPECT_EQ(-4, qm_resolution_->Initialize(1000, 0, 640, 480, 1));
+ EXPECT_EQ(-4, qm_resolution_->Initialize(1000, 30, 640, 0, 1));
+ EXPECT_EQ(-4, qm_resolution_->Initialize(1000, 30, 0, 480, 1));
+
+ // Expect uninitialized error.: No valid initialization before selection.
+ EXPECT_EQ(-7, qm_resolution_->SelectResolution(&qm_scale_));
+
+ VideoContentMetrics* content_metrics = NULL;
+ EXPECT_EQ(0, qm_resolution_->Initialize(1000, 30, 640, 480, 1));
+ qm_resolution_->UpdateContent(content_metrics);
+ // Content metrics are NULL: Expect success and no down-sampling action.
+ EXPECT_EQ(0, qm_resolution_->SelectResolution(&qm_scale_));
+ EXPECT_TRUE(
+ IsSelectedActionCorrect(qm_scale_, 1.0, 1.0, 1.0, 640, 480, 30.0f));
+}
+
+// TODO(marpan): Add a test for number of temporal layers > 1.
+
+// No down-sampling action at high rates.
+TEST_F(QmSelectTest, NoActionHighRate) {
+ // Initialize with bitrate, frame rate, native system width/height, and
+ // number of temporal layers.
+ InitQmNativeData(800, 30, 640, 480, 1);
+
+ // Update with encoder frame size.
+ uint16_t codec_width = 640;
+ uint16_t codec_height = 480;
+ qm_resolution_->UpdateCodecParameters(30.0f, codec_width, codec_height);
+ EXPECT_EQ(5, qm_resolution_->GetImageType(codec_width, codec_height));
+
+ // Update rates for a sequence of intervals.
+ int target_rate[] = {800, 800, 800};
+ int encoder_sent_rate[] = {800, 800, 800};
+ int incoming_frame_rate[] = {30, 30, 30};
+ uint8_t fraction_lost[] = {10, 10, 10};
+ UpdateQmRateData(target_rate, encoder_sent_rate, incoming_frame_rate,
+ fraction_lost, 3);
+
+ // Update content: motion level, and 3 spatial prediction errors.
+ UpdateQmContentData(kTemporalLow, kSpatialLow, kSpatialLow, kSpatialLow);
+ EXPECT_EQ(0, qm_resolution_->SelectResolution(&qm_scale_));
+ EXPECT_EQ(0, qm_resolution_->ComputeContentClass());
+ EXPECT_EQ(kStableEncoding, qm_resolution_->GetEncoderState());
+ EXPECT_TRUE(
+ IsSelectedActionCorrect(qm_scale_, 1.0f, 1.0f, 1.0f, 640, 480, 30.0f));
+}
+
+// Rate is well below transition, down-sampling action is taken,
+// depending on the content state.
+TEST_F(QmSelectTest, DownActionLowRate) {
+ // Initialize with bitrate, frame rate, native system width/height, and
+ // number of temporal layers.
+ InitQmNativeData(50, 30, 640, 480, 1);
+
+ // Update with encoder frame size.
+ uint16_t codec_width = 640;
+ uint16_t codec_height = 480;
+ qm_resolution_->UpdateCodecParameters(30.0f, codec_width, codec_height);
+ EXPECT_EQ(5, qm_resolution_->GetImageType(codec_width, codec_height));
+
+ // Update rates for a sequence of intervals.
+ int target_rate[] = {50, 50, 50};
+ int encoder_sent_rate[] = {50, 50, 50};
+ int incoming_frame_rate[] = {30, 30, 30};
+ uint8_t fraction_lost[] = {10, 10, 10};
+ UpdateQmRateData(target_rate, encoder_sent_rate, incoming_frame_rate,
+ fraction_lost, 3);
+
+ // Update content: motion level, and 3 spatial prediction errors.
+ // High motion, low spatial: 2x2 spatial expected.
+ UpdateQmContentData(kTemporalHigh, kSpatialLow, kSpatialLow, kSpatialLow);
+ EXPECT_EQ(0, qm_resolution_->SelectResolution(&qm_scale_));
+ EXPECT_EQ(3, qm_resolution_->ComputeContentClass());
+ EXPECT_EQ(kStableEncoding, qm_resolution_->GetEncoderState());
+ EXPECT_TRUE(
+ IsSelectedActionCorrect(qm_scale_, 2.0f, 2.0f, 1.0f, 320, 240, 30.0f));
+
+ qm_resolution_->ResetDownSamplingState();
+ // Low motion, low spatial: 2/3 temporal is expected.
+ UpdateQmContentData(kTemporalLow, kSpatialLow, kSpatialLow, kSpatialLow);
+ EXPECT_EQ(0, qm_resolution_->SelectResolution(&qm_scale_));
+ EXPECT_EQ(0, qm_resolution_->ComputeContentClass());
+ EXPECT_TRUE(
+ IsSelectedActionCorrect(qm_scale_, 1.0f, 1.0f, 1.5f, 640, 480, 20.5f));
+
+ qm_resolution_->ResetDownSamplingState();
+ // Medium motion, low spatial: 2x2 spatial expected.
+ UpdateQmContentData(kTemporalMedium, kSpatialLow, kSpatialLow, kSpatialLow);
+ EXPECT_EQ(0, qm_resolution_->SelectResolution(&qm_scale_));
+ EXPECT_EQ(6, qm_resolution_->ComputeContentClass());
+ EXPECT_TRUE(
+ IsSelectedActionCorrect(qm_scale_, 2.0f, 2.0f, 1.0f, 320, 240, 30.0f));
+
+ qm_resolution_->ResetDownSamplingState();
+ // High motion, high spatial: 2/3 temporal expected.
+ UpdateQmContentData(kTemporalHigh, kSpatialHigh, kSpatialHigh, kSpatialHigh);
+ EXPECT_EQ(0, qm_resolution_->SelectResolution(&qm_scale_));
+ EXPECT_EQ(4, qm_resolution_->ComputeContentClass());
+ EXPECT_TRUE(
+ IsSelectedActionCorrect(qm_scale_, 1.0f, 1.0f, 1.5f, 640, 480, 20.5f));
+
+ qm_resolution_->ResetDownSamplingState();
+ // Low motion, high spatial: 1/2 temporal expected.
+ UpdateQmContentData(kTemporalLow, kSpatialHigh, kSpatialHigh, kSpatialHigh);
+ EXPECT_EQ(0, qm_resolution_->SelectResolution(&qm_scale_));
+ EXPECT_EQ(1, qm_resolution_->ComputeContentClass());
+ EXPECT_TRUE(
+ IsSelectedActionCorrect(qm_scale_, 1.0f, 1.0f, 2.0f, 640, 480, 15.5f));
+
+ qm_resolution_->ResetDownSamplingState();
+ // Medium motion, high spatial: 1/2 temporal expected.
+ UpdateQmContentData(kTemporalMedium, kSpatialHigh, kSpatialHigh,
+ kSpatialHigh);
+ EXPECT_EQ(0, qm_resolution_->SelectResolution(&qm_scale_));
+ EXPECT_EQ(7, qm_resolution_->ComputeContentClass());
+ EXPECT_TRUE(
+ IsSelectedActionCorrect(qm_scale_, 1.0f, 1.0f, 2.0f, 640, 480, 15.5f));
+
+ qm_resolution_->ResetDownSamplingState();
+ // High motion, medium spatial: 2x2 spatial expected.
+ UpdateQmContentData(kTemporalHigh, kSpatialMedium, kSpatialMedium,
+ kSpatialMedium);
+ EXPECT_EQ(0, qm_resolution_->SelectResolution(&qm_scale_));
+ EXPECT_EQ(5, qm_resolution_->ComputeContentClass());
+ // Target frame rate for frame dropper should be the same as previous == 15.
+ EXPECT_TRUE(
+ IsSelectedActionCorrect(qm_scale_, 2.0f, 2.0f, 1.0f, 320, 240, 30.0f));
+
+ qm_resolution_->ResetDownSamplingState();
+ // Low motion, medium spatial: high frame rate, so 1/2 temporal expected.
+ UpdateQmContentData(kTemporalLow, kSpatialMedium, kSpatialMedium,
+ kSpatialMedium);
+ EXPECT_EQ(0, qm_resolution_->SelectResolution(&qm_scale_));
+ EXPECT_EQ(2, qm_resolution_->ComputeContentClass());
+ EXPECT_TRUE(
+ IsSelectedActionCorrect(qm_scale_, 1.0f, 1.0f, 2.0f, 640, 480, 15.5f));
+
+ qm_resolution_->ResetDownSamplingState();
+ // Medium motion, medium spatial: high frame rate, so 2/3 temporal expected.
+ UpdateQmContentData(kTemporalMedium, kSpatialMedium, kSpatialMedium,
+ kSpatialMedium);
+ EXPECT_EQ(0, qm_resolution_->SelectResolution(&qm_scale_));
+ EXPECT_EQ(8, qm_resolution_->ComputeContentClass());
+ EXPECT_TRUE(
+ IsSelectedActionCorrect(qm_scale_, 1.0f, 1.0f, 1.5f, 640, 480, 20.5f));
+}
+
+// Rate mis-match is high, and we have over-shooting.
+// since target rate is below max for down-sampling, down-sampling is selected.
+TEST_F(QmSelectTest, DownActionHighRateMMOvershoot) {
+ // Initialize with bitrate, frame rate, native system width/height, and
+ // number of temporal layers.
+ InitQmNativeData(300, 30, 640, 480, 1);
+
+ // Update with encoder frame size.
+ uint16_t codec_width = 640;
+ uint16_t codec_height = 480;
+ qm_resolution_->UpdateCodecParameters(30.0f, codec_width, codec_height);
+ EXPECT_EQ(5, qm_resolution_->GetImageType(codec_width, codec_height));
+
+ // Update rates for a sequence of intervals.
+ int target_rate[] = {300, 300, 300};
+ int encoder_sent_rate[] = {900, 900, 900};
+ int incoming_frame_rate[] = {30, 30, 30};
+ uint8_t fraction_lost[] = {10, 10, 10};
+ UpdateQmRateData(target_rate, encoder_sent_rate, incoming_frame_rate,
+ fraction_lost, 3);
+
+ // Update content: motion level, and 3 spatial prediction errors.
+ // High motion, low spatial.
+ UpdateQmContentData(kTemporalHigh, kSpatialLow, kSpatialLow, kSpatialLow);
+ EXPECT_EQ(0, qm_resolution_->SelectResolution(&qm_scale_));
+ EXPECT_EQ(3, qm_resolution_->ComputeContentClass());
+ EXPECT_EQ(kStressedEncoding, qm_resolution_->GetEncoderState());
+ EXPECT_TRUE(IsSelectedActionCorrect(qm_scale_, 4.0f / 3.0f, 4.0f / 3.0f, 1.0f,
+ 480, 360, 30.0f));
+
+ qm_resolution_->ResetDownSamplingState();
+ // Low motion, high spatial
+ UpdateQmContentData(kTemporalLow, kSpatialHigh, kSpatialHigh, kSpatialHigh);
+ EXPECT_EQ(0, qm_resolution_->SelectResolution(&qm_scale_));
+ EXPECT_EQ(1, qm_resolution_->ComputeContentClass());
+ EXPECT_TRUE(
+ IsSelectedActionCorrect(qm_scale_, 1.0f, 1.0f, 1.5f, 640, 480, 20.5f));
+}
+
+// Rate mis-match is high, target rate is below max for down-sampling,
+// but since we have consistent under-shooting, no down-sampling action.
+TEST_F(QmSelectTest, NoActionHighRateMMUndershoot) {
+ // Initialize with bitrate, frame rate, native system width/height, and
+ // number of temporal layers.
+ InitQmNativeData(300, 30, 640, 480, 1);
+
+ // Update with encoder frame size.
+ uint16_t codec_width = 640;
+ uint16_t codec_height = 480;
+ qm_resolution_->UpdateCodecParameters(30.0f, codec_width, codec_height);
+ EXPECT_EQ(5, qm_resolution_->GetImageType(codec_width, codec_height));
+
+ // Update rates for a sequence of intervals.
+ int target_rate[] = {300, 300, 300};
+ int encoder_sent_rate[] = {100, 100, 100};
+ int incoming_frame_rate[] = {30, 30, 30};
+ uint8_t fraction_lost[] = {10, 10, 10};
+ UpdateQmRateData(target_rate, encoder_sent_rate, incoming_frame_rate,
+ fraction_lost, 3);
+
+ // Update content: motion level, and 3 spatial prediction errors.
+ // High motion, low spatial.
+ UpdateQmContentData(kTemporalHigh, kSpatialLow, kSpatialLow, kSpatialLow);
+ EXPECT_EQ(0, qm_resolution_->SelectResolution(&qm_scale_));
+ EXPECT_EQ(3, qm_resolution_->ComputeContentClass());
+ EXPECT_EQ(kEasyEncoding, qm_resolution_->GetEncoderState());
+ EXPECT_TRUE(
+ IsSelectedActionCorrect(qm_scale_, 1.0f, 1.0f, 1.0f, 640, 480, 30.0f));
+
+ qm_resolution_->ResetDownSamplingState();
+ // Low motion, high spatial
+ UpdateQmContentData(kTemporalLow, kSpatialHigh, kSpatialHigh, kSpatialHigh);
+ EXPECT_EQ(0, qm_resolution_->SelectResolution(&qm_scale_));
+ EXPECT_EQ(1, qm_resolution_->ComputeContentClass());
+ EXPECT_TRUE(
+ IsSelectedActionCorrect(qm_scale_, 1.0f, 1.0f, 1.0f, 640, 480, 30.0f));
+}
+
+// Buffer is underflowing, and target rate is below max for down-sampling,
+// so action is taken.
+TEST_F(QmSelectTest, DownActionBufferUnderflow) {
+ // Initialize with bitrate, frame rate, native system width/height, and
+ // number of temporal layers.
+ InitQmNativeData(300, 30, 640, 480, 1);
+
+ // Update with encoder frame size.
+ uint16_t codec_width = 640;
+ uint16_t codec_height = 480;
+ qm_resolution_->UpdateCodecParameters(30.0f, codec_width, codec_height);
+ EXPECT_EQ(5, qm_resolution_->GetImageType(codec_width, codec_height));
+
+ // Update with encoded size over a number of frames.
+ // per-frame bandwidth = 15 = 450/30: simulate (decoder) buffer underflow:
+ size_t encoded_size[] = {200, 100, 50, 30, 60, 40, 20, 30, 20, 40};
+ UpdateQmEncodedFrame(encoded_size, GTEST_ARRAY_SIZE_(encoded_size));
+
+ // Update rates for a sequence of intervals.
+ int target_rate[] = {300, 300, 300};
+ int encoder_sent_rate[] = {450, 450, 450};
+ int incoming_frame_rate[] = {30, 30, 30};
+ uint8_t fraction_lost[] = {10, 10, 10};
+ UpdateQmRateData(target_rate, encoder_sent_rate, incoming_frame_rate,
+ fraction_lost, 3);
+
+ // Update content: motion level, and 3 spatial prediction errors.
+ // High motion, low spatial.
+ UpdateQmContentData(kTemporalHigh, kSpatialLow, kSpatialLow, kSpatialLow);
+ EXPECT_EQ(0, qm_resolution_->SelectResolution(&qm_scale_));
+ EXPECT_EQ(3, qm_resolution_->ComputeContentClass());
+ EXPECT_EQ(kStressedEncoding, qm_resolution_->GetEncoderState());
+ EXPECT_TRUE(IsSelectedActionCorrect(qm_scale_, 4.0f / 3.0f, 4.0f / 3.0f, 1.0f,
+ 480, 360, 30.0f));
+
+ qm_resolution_->ResetDownSamplingState();
+ // Low motion, high spatial
+ UpdateQmContentData(kTemporalLow, kSpatialHigh, kSpatialHigh, kSpatialHigh);
+ EXPECT_EQ(0, qm_resolution_->SelectResolution(&qm_scale_));
+ EXPECT_EQ(1, qm_resolution_->ComputeContentClass());
+ EXPECT_TRUE(
+ IsSelectedActionCorrect(qm_scale_, 1.0f, 1.0f, 1.5f, 640, 480, 20.5f));
+}
+
+// Target rate is below max for down-sampling, but buffer level is stable,
+// so no action is taken.
+TEST_F(QmSelectTest, NoActionBufferStable) {
+ // Initialize with bitrate, frame rate, native system width/height, and
+ // number of temporal layers.
+ InitQmNativeData(350, 30, 640, 480, 1);
+
+ // Update with encoder frame size.
+ uint16_t codec_width = 640;
+ uint16_t codec_height = 480;
+ qm_resolution_->UpdateCodecParameters(30.0f, codec_width, codec_height);
+ EXPECT_EQ(5, qm_resolution_->GetImageType(codec_width, codec_height));
+
+ // Update with encoded size over a number of frames.
+ // per-frame bandwidth = 15 = 450/30: simulate stable (decoder) buffer levels.
+ size_t encoded_size[] = {40, 10, 10, 16, 18, 20, 17, 20, 16, 15};
+ UpdateQmEncodedFrame(encoded_size, GTEST_ARRAY_SIZE_(encoded_size));
+
+ // Update rates for a sequence of intervals.
+ int target_rate[] = {350, 350, 350};
+ int encoder_sent_rate[] = {350, 450, 450};
+ int incoming_frame_rate[] = {30, 30, 30};
+ uint8_t fraction_lost[] = {10, 10, 10};
+ UpdateQmRateData(target_rate, encoder_sent_rate, incoming_frame_rate,
+ fraction_lost, 3);
+
+ // Update content: motion level, and 3 spatial prediction errors.
+ // High motion, low spatial.
+ UpdateQmContentData(kTemporalHigh, kSpatialLow, kSpatialLow, kSpatialLow);
+ EXPECT_EQ(0, qm_resolution_->SelectResolution(&qm_scale_));
+ EXPECT_EQ(3, qm_resolution_->ComputeContentClass());
+ EXPECT_EQ(kStableEncoding, qm_resolution_->GetEncoderState());
+ EXPECT_TRUE(
+ IsSelectedActionCorrect(qm_scale_, 1.0f, 1.0f, 1.0f, 640, 480, 30.0f));
+
+ qm_resolution_->ResetDownSamplingState();
+ // Low motion, high spatial
+ UpdateQmContentData(kTemporalLow, kSpatialHigh, kSpatialHigh, kSpatialHigh);
+ EXPECT_EQ(0, qm_resolution_->SelectResolution(&qm_scale_));
+ EXPECT_EQ(1, qm_resolution_->ComputeContentClass());
+ EXPECT_TRUE(
+ IsSelectedActionCorrect(qm_scale_, 1.0f, 1.0f, 1.0f, 640, 480, 30.0f));
+}
+
+// Very low rate, but no spatial down-sampling below some size (QCIF).
+TEST_F(QmSelectTest, LimitDownSpatialAction) {
+ // Initialize with bitrate, frame rate, native system width/height, and
+ // number of temporal layers.
+ InitQmNativeData(10, 30, 176, 144, 1);
+
+ // Update with encoder frame size.
+ uint16_t codec_width = 176;
+ uint16_t codec_height = 144;
+ qm_resolution_->UpdateCodecParameters(30.0f, codec_width, codec_height);
+ EXPECT_EQ(0, qm_resolution_->GetImageType(codec_width, codec_height));
+
+ // Update rates for a sequence of intervals.
+ int target_rate[] = {10, 10, 10};
+ int encoder_sent_rate[] = {10, 10, 10};
+ int incoming_frame_rate[] = {30, 30, 30};
+ uint8_t fraction_lost[] = {10, 10, 10};
+ UpdateQmRateData(target_rate, encoder_sent_rate, incoming_frame_rate,
+ fraction_lost, 3);
+
+ // Update content: motion level, and 3 spatial prediction errors.
+ // High motion, low spatial.
+ UpdateQmContentData(kTemporalHigh, kSpatialLow, kSpatialLow, kSpatialLow);
+ EXPECT_EQ(0, qm_resolution_->SelectResolution(&qm_scale_));
+ EXPECT_EQ(3, qm_resolution_->ComputeContentClass());
+ EXPECT_EQ(kStableEncoding, qm_resolution_->GetEncoderState());
+ EXPECT_TRUE(
+ IsSelectedActionCorrect(qm_scale_, 1.0f, 1.0f, 1.0f, 176, 144, 30.0f));
+}
+
+// Very low rate, but no frame reduction below some frame_rate (8fps).
+TEST_F(QmSelectTest, LimitDownTemporalAction) {
+ // Initialize with bitrate, frame rate, native system width/height, and
+ // number of temporal layers.
+ InitQmNativeData(10, 8, 640, 480, 1);
+
+ // Update with encoder frame size.
+ uint16_t codec_width = 640;
+ uint16_t codec_height = 480;
+ qm_resolution_->UpdateCodecParameters(8.0f, codec_width, codec_height);
+ EXPECT_EQ(5, qm_resolution_->GetImageType(codec_width, codec_height));
+
+ // Update rates for a sequence of intervals.
+ int target_rate[] = {10, 10, 10};
+ int encoder_sent_rate[] = {10, 10, 10};
+ int incoming_frame_rate[] = {8, 8, 8};
+ uint8_t fraction_lost[] = {10, 10, 10};
+ UpdateQmRateData(target_rate, encoder_sent_rate, incoming_frame_rate,
+ fraction_lost, 3);
+
+ // Update content: motion level, and 3 spatial prediction errors.
+ // Low motion, medium spatial.
+ UpdateQmContentData(kTemporalLow, kSpatialMedium, kSpatialMedium,
+ kSpatialMedium);
+ EXPECT_EQ(0, qm_resolution_->SelectResolution(&qm_scale_));
+ EXPECT_EQ(2, qm_resolution_->ComputeContentClass());
+ EXPECT_EQ(kStableEncoding, qm_resolution_->GetEncoderState());
+ EXPECT_TRUE(
+ IsSelectedActionCorrect(qm_scale_, 1.0f, 1.0f, 1.0f, 640, 480, 8.0f));
+}
+
+// Two stages: spatial down-sample and then back up spatially,
+// as rate as increased.
+TEST_F(QmSelectTest, 2StageDownSpatialUpSpatial) {
+ // Initialize with bitrate, frame rate, native system width/height, and
+ // number of temporal layers.
+ InitQmNativeData(50, 30, 640, 480, 1);
+
+ // Update with encoder frame size.
+ uint16_t codec_width = 640;
+ uint16_t codec_height = 480;
+ qm_resolution_->UpdateCodecParameters(30.0f, codec_width, codec_height);
+ EXPECT_EQ(5, qm_resolution_->GetImageType(codec_width, codec_height));
+
+ // Update rates for a sequence of intervals.
+ int target_rate[] = {50, 50, 50};
+ int encoder_sent_rate[] = {50, 50, 50};
+ int incoming_frame_rate[] = {30, 30, 30};
+ uint8_t fraction_lost[] = {10, 10, 10};
+ UpdateQmRateData(target_rate, encoder_sent_rate, incoming_frame_rate,
+ fraction_lost, 3);
+
+ // Update content: motion level, and 3 spatial prediction errors.
+ // High motion, low spatial.
+ UpdateQmContentData(kTemporalHigh, kSpatialLow, kSpatialLow, kSpatialLow);
+ EXPECT_EQ(0, qm_resolution_->SelectResolution(&qm_scale_));
+ EXPECT_EQ(3, qm_resolution_->ComputeContentClass());
+ EXPECT_EQ(kStableEncoding, qm_resolution_->GetEncoderState());
+ EXPECT_TRUE(
+ IsSelectedActionCorrect(qm_scale_, 2.0f, 2.0f, 1.0f, 320, 240, 30.0f));
+
+ // Reset and go up in rate: expected to go back up, in 2 stages of 3/4.
+ qm_resolution_->ResetRates();
+ qm_resolution_->UpdateCodecParameters(30.0f, 320, 240);
+ EXPECT_EQ(2, qm_resolution_->GetImageType(320, 240));
+ // Update rates for a sequence of intervals.
+ int target_rate2[] = {400, 400, 400, 400, 400};
+ int encoder_sent_rate2[] = {400, 400, 400, 400, 400};
+ int incoming_frame_rate2[] = {30, 30, 30, 30, 30};
+ uint8_t fraction_lost2[] = {10, 10, 10, 10, 10};
+ UpdateQmRateData(target_rate2, encoder_sent_rate2, incoming_frame_rate2,
+ fraction_lost2, 5);
+ EXPECT_EQ(0, qm_resolution_->SelectResolution(&qm_scale_));
+ EXPECT_EQ(kStableEncoding, qm_resolution_->GetEncoderState());
+ float scale = (4.0f / 3.0f) / 2.0f;
+ EXPECT_TRUE(
+ IsSelectedActionCorrect(qm_scale_, scale, scale, 1.0f, 480, 360, 30.0f));
+
+ qm_resolution_->UpdateCodecParameters(30.0f, 480, 360);
+ EXPECT_EQ(4, qm_resolution_->GetImageType(480, 360));
+ EXPECT_EQ(0, qm_resolution_->SelectResolution(&qm_scale_));
+ EXPECT_TRUE(IsSelectedActionCorrect(qm_scale_, 3.0f / 4.0f, 3.0f / 4.0f, 1.0f,
+ 640, 480, 30.0f));
+}
+
+// Two stages: spatial down-sample and then back up spatially, since encoder
+// is under-shooting target even though rate has not increased much.
+TEST_F(QmSelectTest, 2StageDownSpatialUpSpatialUndershoot) {
+ // Initialize with bitrate, frame rate, native system width/height, and
+ // number of temporal layers.
+ InitQmNativeData(50, 30, 640, 480, 1);
+
+ // Update with encoder frame size.
+ uint16_t codec_width = 640;
+ uint16_t codec_height = 480;
+ qm_resolution_->UpdateCodecParameters(30.0f, codec_width, codec_height);
+ EXPECT_EQ(5, qm_resolution_->GetImageType(codec_width, codec_height));
+
+ // Update rates for a sequence of intervals.
+ int target_rate[] = {50, 50, 50};
+ int encoder_sent_rate[] = {50, 50, 50};
+ int incoming_frame_rate[] = {30, 30, 30};
+ uint8_t fraction_lost[] = {10, 10, 10};
+ UpdateQmRateData(target_rate, encoder_sent_rate, incoming_frame_rate,
+ fraction_lost, 3);
+
+ // Update content: motion level, and 3 spatial prediction errors.
+ // High motion, low spatial.
+ UpdateQmContentData(kTemporalHigh, kSpatialLow, kSpatialLow, kSpatialLow);
+ EXPECT_EQ(0, qm_resolution_->SelectResolution(&qm_scale_));
+ EXPECT_EQ(3, qm_resolution_->ComputeContentClass());
+ EXPECT_EQ(kStableEncoding, qm_resolution_->GetEncoderState());
+ EXPECT_TRUE(
+ IsSelectedActionCorrect(qm_scale_, 2.0f, 2.0f, 1.0f, 320, 240, 30.0f));
+
+ // Reset rates and simulate under-shooting scenario.: expect to go back up.
+ // Goes up spatially in two stages for 1/2x1/2 down-sampling.
+ qm_resolution_->ResetRates();
+ qm_resolution_->UpdateCodecParameters(30.0f, 320, 240);
+ EXPECT_EQ(2, qm_resolution_->GetImageType(320, 240));
+ // Update rates for a sequence of intervals.
+ int target_rate2[] = {200, 200, 200, 200, 200};
+ int encoder_sent_rate2[] = {50, 50, 50, 50, 50};
+ int incoming_frame_rate2[] = {30, 30, 30, 30, 30};
+ uint8_t fraction_lost2[] = {10, 10, 10, 10, 10};
+ UpdateQmRateData(target_rate2, encoder_sent_rate2, incoming_frame_rate2,
+ fraction_lost2, 5);
+ EXPECT_EQ(0, qm_resolution_->SelectResolution(&qm_scale_));
+ EXPECT_EQ(kEasyEncoding, qm_resolution_->GetEncoderState());
+ float scale = (4.0f / 3.0f) / 2.0f;
+ EXPECT_TRUE(
+ IsSelectedActionCorrect(qm_scale_, scale, scale, 1.0f, 480, 360, 30.0f));
+
+ qm_resolution_->UpdateCodecParameters(30.0f, 480, 360);
+ EXPECT_EQ(4, qm_resolution_->GetImageType(480, 360));
+ EXPECT_EQ(0, qm_resolution_->SelectResolution(&qm_scale_));
+ EXPECT_TRUE(IsSelectedActionCorrect(qm_scale_, 3.0f / 4.0f, 3.0f / 4.0f, 1.0f,
+ 640, 480, 30.0f));
+}
+
+// Two stages: spatial down-sample and then no action to go up,
+// as encoding rate mis-match is too high.
+TEST_F(QmSelectTest, 2StageDownSpatialNoActionUp) {
+ // Initialize with bitrate, frame rate, native system width/height, and
+ // number of temporal layers.
+ InitQmNativeData(50, 30, 640, 480, 1);
+
+ // Update with encoder frame size.
+ uint16_t codec_width = 640;
+ uint16_t codec_height = 480;
+ qm_resolution_->UpdateCodecParameters(30.0f, codec_width, codec_height);
+ EXPECT_EQ(5, qm_resolution_->GetImageType(codec_width, codec_height));
+
+ // Update rates for a sequence of intervals.
+ int target_rate[] = {50, 50, 50};
+ int encoder_sent_rate[] = {50, 50, 50};
+ int incoming_frame_rate[] = {30, 30, 30};
+ uint8_t fraction_lost[] = {10, 10, 10};
+ UpdateQmRateData(target_rate, encoder_sent_rate, incoming_frame_rate,
+ fraction_lost, 3);
+
+ // Update content: motion level, and 3 spatial prediction errors.
+ // High motion, low spatial.
+ UpdateQmContentData(kTemporalHigh, kSpatialLow, kSpatialLow, kSpatialLow);
+ EXPECT_EQ(0, qm_resolution_->SelectResolution(&qm_scale_));
+ EXPECT_EQ(3, qm_resolution_->ComputeContentClass());
+ EXPECT_EQ(kStableEncoding, qm_resolution_->GetEncoderState());
+ EXPECT_TRUE(
+ IsSelectedActionCorrect(qm_scale_, 2.0f, 2.0f, 1.0f, 320, 240, 30.0f));
+
+ // Reset and simulate large rate mis-match: expect no action to go back up.
+ qm_resolution_->ResetRates();
+ qm_resolution_->UpdateCodecParameters(30.0f, 320, 240);
+ EXPECT_EQ(2, qm_resolution_->GetImageType(320, 240));
+ // Update rates for a sequence of intervals.
+ int target_rate2[] = {400, 400, 400, 400, 400};
+ int encoder_sent_rate2[] = {1000, 1000, 1000, 1000, 1000};
+ int incoming_frame_rate2[] = {30, 30, 30, 30, 30};
+ uint8_t fraction_lost2[] = {10, 10, 10, 10, 10};
+ UpdateQmRateData(target_rate2, encoder_sent_rate2, incoming_frame_rate2,
+ fraction_lost2, 5);
+ EXPECT_EQ(0, qm_resolution_->SelectResolution(&qm_scale_));
+ EXPECT_EQ(kStressedEncoding, qm_resolution_->GetEncoderState());
+ EXPECT_TRUE(
+ IsSelectedActionCorrect(qm_scale_, 1.0f, 1.0f, 1.0f, 320, 240, 30.0f));
+}
+
+// Two stages: temporally down-sample and then back up temporally,
+// as rate as increased.
+TEST_F(QmSelectTest, 2StatgeDownTemporalUpTemporal) {
+ // Initialize with bitrate, frame rate, native system width/height, and
+ // number of temporal layers.
+ InitQmNativeData(50, 30, 640, 480, 1);
+
+ // Update with encoder frame size.
+ uint16_t codec_width = 640;
+ uint16_t codec_height = 480;
+ qm_resolution_->UpdateCodecParameters(30.0f, codec_width, codec_height);
+ EXPECT_EQ(5, qm_resolution_->GetImageType(codec_width, codec_height));
+
+ // Update rates for a sequence of intervals.
+ int target_rate[] = {50, 50, 50};
+ int encoder_sent_rate[] = {50, 50, 50};
+ int incoming_frame_rate[] = {30, 30, 30};
+ uint8_t fraction_lost[] = {10, 10, 10};
+ UpdateQmRateData(target_rate, encoder_sent_rate, incoming_frame_rate,
+ fraction_lost, 3);
+
+ // Update content: motion level, and 3 spatial prediction errors.
+ // Low motion, high spatial.
+ UpdateQmContentData(kTemporalLow, kSpatialHigh, kSpatialHigh, kSpatialHigh);
+ EXPECT_EQ(0, qm_resolution_->SelectResolution(&qm_scale_));
+ EXPECT_EQ(1, qm_resolution_->ComputeContentClass());
+ EXPECT_EQ(kStableEncoding, qm_resolution_->GetEncoderState());
+ EXPECT_TRUE(
+ IsSelectedActionCorrect(qm_scale_, 1.0f, 1.0f, 2.0f, 640, 480, 15.5f));
+
+ // Reset rates and go up in rate: expect to go back up.
+ qm_resolution_->ResetRates();
+ // Update rates for a sequence of intervals.
+ int target_rate2[] = {400, 400, 400, 400, 400};
+ int encoder_sent_rate2[] = {400, 400, 400, 400, 400};
+ int incoming_frame_rate2[] = {15, 15, 15, 15, 15};
+ uint8_t fraction_lost2[] = {10, 10, 10, 10, 10};
+ UpdateQmRateData(target_rate2, encoder_sent_rate2, incoming_frame_rate2,
+ fraction_lost2, 5);
+ EXPECT_EQ(0, qm_resolution_->SelectResolution(&qm_scale_));
+ EXPECT_EQ(kStableEncoding, qm_resolution_->GetEncoderState());
+ EXPECT_TRUE(
+ IsSelectedActionCorrect(qm_scale_, 1.0f, 1.0f, 0.5f, 640, 480, 30.0f));
+}
+
+// Two stages: temporal down-sample and then back up temporally, since encoder
+// is under-shooting target even though rate has not increased much.
+TEST_F(QmSelectTest, 2StatgeDownTemporalUpTemporalUndershoot) {
+ // Initialize with bitrate, frame rate, native system width/height, and
+ // number of temporal layers.
+ InitQmNativeData(50, 30, 640, 480, 1);
+
+ // Update with encoder frame size.
+ uint16_t codec_width = 640;
+ uint16_t codec_height = 480;
+ qm_resolution_->UpdateCodecParameters(30.0f, codec_width, codec_height);
+ EXPECT_EQ(5, qm_resolution_->GetImageType(codec_width, codec_height));
+
+ // Update rates for a sequence of intervals.
+ int target_rate[] = {50, 50, 50};
+ int encoder_sent_rate[] = {50, 50, 50};
+ int incoming_frame_rate[] = {30, 30, 30};
+ uint8_t fraction_lost[] = {10, 10, 10};
+ UpdateQmRateData(target_rate, encoder_sent_rate, incoming_frame_rate,
+ fraction_lost, 3);
+
+ // Update content: motion level, and 3 spatial prediction errors.
+ // Low motion, high spatial.
+ UpdateQmContentData(kTemporalLow, kSpatialHigh, kSpatialHigh, kSpatialHigh);
+ EXPECT_EQ(0, qm_resolution_->SelectResolution(&qm_scale_));
+ EXPECT_EQ(1, qm_resolution_->ComputeContentClass());
+ EXPECT_EQ(kStableEncoding, qm_resolution_->GetEncoderState());
+ EXPECT_TRUE(
+ IsSelectedActionCorrect(qm_scale_, 1.0f, 1.0f, 2.0f, 640, 480, 15.5f));
+
+ // Reset rates and simulate under-shooting scenario.: expect to go back up.
+ qm_resolution_->ResetRates();
+ // Update rates for a sequence of intervals.
+ int target_rate2[] = {150, 150, 150, 150, 150};
+ int encoder_sent_rate2[] = {50, 50, 50, 50, 50};
+ int incoming_frame_rate2[] = {15, 15, 15, 15, 15};
+ uint8_t fraction_lost2[] = {10, 10, 10, 10, 10};
+ UpdateQmRateData(target_rate2, encoder_sent_rate2, incoming_frame_rate2,
+ fraction_lost2, 5);
+ EXPECT_EQ(0, qm_resolution_->SelectResolution(&qm_scale_));
+ EXPECT_EQ(kEasyEncoding, qm_resolution_->GetEncoderState());
+ EXPECT_TRUE(
+ IsSelectedActionCorrect(qm_scale_, 1.0f, 1.0f, 0.5f, 640, 480, 30.0f));
+}
+
+// Two stages: temporal down-sample and then no action to go up,
+// as encoding rate mis-match is too high.
+TEST_F(QmSelectTest, 2StageDownTemporalNoActionUp) {
+ // Initialize with bitrate, frame rate, native system width/height, and
+ // number of temporal layers.
+ InitQmNativeData(50, 30, 640, 480, 1);
+
+ // Update with encoder frame size.
+ uint16_t codec_width = 640;
+ uint16_t codec_height = 480;
+ qm_resolution_->UpdateCodecParameters(30.0f, codec_width, codec_height);
+ EXPECT_EQ(5, qm_resolution_->GetImageType(codec_width, codec_height));
+
+ // Update rates for a sequence of intervals.
+ int target_rate[] = {50, 50, 50};
+ int encoder_sent_rate[] = {50, 50, 50};
+ int incoming_frame_rate[] = {30, 30, 30};
+ uint8_t fraction_lost[] = {10, 10, 10};
+ UpdateQmRateData(target_rate, encoder_sent_rate, incoming_frame_rate,
+ fraction_lost, 3);
+
+ // Update content: motion level, and 3 spatial prediction errors.
+ // Low motion, high spatial.
+ UpdateQmContentData(kTemporalLow, kSpatialHigh, kSpatialHigh, kSpatialHigh);
+ EXPECT_EQ(0, qm_resolution_->SelectResolution(&qm_scale_));
+ EXPECT_EQ(1, qm_resolution_->ComputeContentClass());
+ EXPECT_EQ(kStableEncoding, qm_resolution_->GetEncoderState());
+ EXPECT_TRUE(IsSelectedActionCorrect(qm_scale_, 1, 1, 2, 640, 480, 15.5f));
+
+ // Reset and simulate large rate mis-match: expect no action to go back up.
+ qm_resolution_->UpdateCodecParameters(15.0f, codec_width, codec_height);
+ qm_resolution_->ResetRates();
+ // Update rates for a sequence of intervals.
+ int target_rate2[] = {600, 600, 600, 600, 600};
+ int encoder_sent_rate2[] = {1000, 1000, 1000, 1000, 1000};
+ int incoming_frame_rate2[] = {15, 15, 15, 15, 15};
+ uint8_t fraction_lost2[] = {10, 10, 10, 10, 10};
+ UpdateQmRateData(target_rate2, encoder_sent_rate2, incoming_frame_rate2,
+ fraction_lost2, 5);
+ EXPECT_EQ(0, qm_resolution_->SelectResolution(&qm_scale_));
+ EXPECT_EQ(kStressedEncoding, qm_resolution_->GetEncoderState());
+ EXPECT_TRUE(
+ IsSelectedActionCorrect(qm_scale_, 1.0f, 1.0f, 1.0f, 640, 480, 15.0f));
+}
+// 3 stages: spatial down-sample, followed by temporal down-sample,
+// and then go up to full state, as encoding rate has increased.
+TEST_F(QmSelectTest, 3StageDownSpatialTemporlaUpSpatialTemporal) {
+ // Initialize with bitrate, frame rate, native system width/height, and
+ // number of temporal layers.
+ InitQmNativeData(80, 30, 640, 480, 1);
+
+ // Update with encoder frame size.
+ uint16_t codec_width = 640;
+ uint16_t codec_height = 480;
+ qm_resolution_->UpdateCodecParameters(30.0f, codec_width, codec_height);
+ EXPECT_EQ(5, qm_resolution_->GetImageType(codec_width, codec_height));
+
+ // Update rates for a sequence of intervals.
+ int target_rate[] = {80, 80, 80};
+ int encoder_sent_rate[] = {80, 80, 80};
+ int incoming_frame_rate[] = {30, 30, 30};
+ uint8_t fraction_lost[] = {10, 10, 10};
+ UpdateQmRateData(target_rate, encoder_sent_rate, incoming_frame_rate,
+ fraction_lost, 3);
+
+ // Update content: motion level, and 3 spatial prediction errors.
+ // High motion, low spatial.
+ UpdateQmContentData(kTemporalHigh, kSpatialLow, kSpatialLow, kSpatialLow);
+ EXPECT_EQ(0, qm_resolution_->SelectResolution(&qm_scale_));
+ EXPECT_EQ(3, qm_resolution_->ComputeContentClass());
+ EXPECT_EQ(kStableEncoding, qm_resolution_->GetEncoderState());
+ EXPECT_TRUE(
+ IsSelectedActionCorrect(qm_scale_, 2.0f, 2.0f, 1.0f, 320, 240, 30.0f));
+
+ // Change content data: expect temporal down-sample.
+ qm_resolution_->UpdateCodecParameters(30.0f, 320, 240);
+ EXPECT_EQ(2, qm_resolution_->GetImageType(320, 240));
+
+ // Reset rates and go lower in rate.
+ qm_resolution_->ResetRates();
+ int target_rate2[] = {40, 40, 40, 40, 40};
+ int encoder_sent_rate2[] = {40, 40, 40, 40, 40};
+ int incoming_frame_rate2[] = {30, 30, 30, 30, 30};
+ uint8_t fraction_lost2[] = {10, 10, 10, 10, 10};
+ UpdateQmRateData(target_rate2, encoder_sent_rate2, incoming_frame_rate2,
+ fraction_lost2, 5);
+
+ // Update content: motion level, and 3 spatial prediction errors.
+ // Low motion, high spatial.
+ UpdateQmContentData(kTemporalLow, kSpatialHigh, kSpatialHigh, kSpatialHigh);
+ EXPECT_EQ(0, qm_resolution_->SelectResolution(&qm_scale_));
+ EXPECT_EQ(1, qm_resolution_->ComputeContentClass());
+ EXPECT_EQ(kStableEncoding, qm_resolution_->GetEncoderState());
+ EXPECT_TRUE(
+ IsSelectedActionCorrect(qm_scale_, 1.0f, 1.0f, 1.5f, 320, 240, 20.5f));
+
+ // Reset rates and go high up in rate: expect to go back up both spatial
+ // and temporally. The 1/2x1/2 spatial is undone in two stages.
+ qm_resolution_->ResetRates();
+ // Update rates for a sequence of intervals.
+ int target_rate3[] = {1000, 1000, 1000, 1000, 1000};
+ int encoder_sent_rate3[] = {1000, 1000, 1000, 1000, 1000};
+ int incoming_frame_rate3[] = {20, 20, 20, 20, 20};
+ uint8_t fraction_lost3[] = {10, 10, 10, 10, 10};
+ UpdateQmRateData(target_rate3, encoder_sent_rate3, incoming_frame_rate3,
+ fraction_lost3, 5);
+
+ EXPECT_EQ(0, qm_resolution_->SelectResolution(&qm_scale_));
+ EXPECT_EQ(1, qm_resolution_->ComputeContentClass());
+ EXPECT_EQ(kStableEncoding, qm_resolution_->GetEncoderState());
+ float scale = (4.0f / 3.0f) / 2.0f;
+ EXPECT_TRUE(IsSelectedActionCorrect(qm_scale_, scale, scale, 2.0f / 3.0f, 480,
+ 360, 30.0f));
+
+ qm_resolution_->UpdateCodecParameters(30.0f, 480, 360);
+ EXPECT_EQ(4, qm_resolution_->GetImageType(480, 360));
+ EXPECT_EQ(0, qm_resolution_->SelectResolution(&qm_scale_));
+ EXPECT_TRUE(IsSelectedActionCorrect(qm_scale_, 3.0f / 4.0f, 3.0f / 4.0f, 1.0f,
+ 640, 480, 30.0f));
+}
+
+// No down-sampling below some total amount.
+TEST_F(QmSelectTest, NoActionTooMuchDownSampling) {
+ // Initialize with bitrate, frame rate, native system width/height, and
+ // number of temporal layers.
+ InitQmNativeData(150, 30, 1280, 720, 1);
+
+ // Update with encoder frame size.
+ uint16_t codec_width = 1280;
+ uint16_t codec_height = 720;
+ qm_resolution_->UpdateCodecParameters(30.0f, codec_width, codec_height);
+ EXPECT_EQ(7, qm_resolution_->GetImageType(codec_width, codec_height));
+
+ // Update rates for a sequence of intervals.
+ int target_rate[] = {150, 150, 150};
+ int encoder_sent_rate[] = {150, 150, 150};
+ int incoming_frame_rate[] = {30, 30, 30};
+ uint8_t fraction_lost[] = {10, 10, 10};
+ UpdateQmRateData(target_rate, encoder_sent_rate, incoming_frame_rate,
+ fraction_lost, 3);
+
+ // Update content: motion level, and 3 spatial prediction errors.
+ // High motion, low spatial.
+ UpdateQmContentData(kTemporalHigh, kSpatialLow, kSpatialLow, kSpatialLow);
+ EXPECT_EQ(0, qm_resolution_->SelectResolution(&qm_scale_));
+ EXPECT_EQ(3, qm_resolution_->ComputeContentClass());
+ EXPECT_EQ(kStableEncoding, qm_resolution_->GetEncoderState());
+ EXPECT_TRUE(
+ IsSelectedActionCorrect(qm_scale_, 2.0f, 2.0f, 1.0f, 640, 360, 30.0f));
+
+ // Reset and lower rates to get another spatial action (3/4x3/4).
+ // Lower the frame rate for spatial to be selected again.
+ qm_resolution_->ResetRates();
+ qm_resolution_->UpdateCodecParameters(10.0f, 640, 360);
+ EXPECT_EQ(4, qm_resolution_->GetImageType(640, 360));
+ // Update rates for a sequence of intervals.
+ int target_rate2[] = {70, 70, 70, 70, 70};
+ int encoder_sent_rate2[] = {70, 70, 70, 70, 70};
+ int incoming_frame_rate2[] = {10, 10, 10, 10, 10};
+ uint8_t fraction_lost2[] = {10, 10, 10, 10, 10};
+ UpdateQmRateData(target_rate2, encoder_sent_rate2, incoming_frame_rate2,
+ fraction_lost2, 5);
+
+ // Update content: motion level, and 3 spatial prediction errors.
+ // High motion, medium spatial.
+ UpdateQmContentData(kTemporalHigh, kSpatialMedium, kSpatialMedium,
+ kSpatialMedium);
+ EXPECT_EQ(0, qm_resolution_->SelectResolution(&qm_scale_));
+ EXPECT_EQ(5, qm_resolution_->ComputeContentClass());
+ EXPECT_EQ(kStableEncoding, qm_resolution_->GetEncoderState());
+ EXPECT_TRUE(IsSelectedActionCorrect(qm_scale_, 4.0f / 3.0f, 4.0f / 3.0f, 1.0f,
+ 480, 270, 10.0f));
+
+ // Reset and go to very low rate: no action should be taken,
+ // we went down too much already.
+ qm_resolution_->ResetRates();
+ qm_resolution_->UpdateCodecParameters(10.0f, 480, 270);
+ EXPECT_EQ(3, qm_resolution_->GetImageType(480, 270));
+ // Update rates for a sequence of intervals.
+ int target_rate3[] = {10, 10, 10, 10, 10};
+ int encoder_sent_rate3[] = {10, 10, 10, 10, 10};
+ int incoming_frame_rate3[] = {10, 10, 10, 10, 10};
+ uint8_t fraction_lost3[] = {10, 10, 10, 10, 10};
+ UpdateQmRateData(target_rate3, encoder_sent_rate3, incoming_frame_rate3,
+ fraction_lost3, 5);
+ EXPECT_EQ(0, qm_resolution_->SelectResolution(&qm_scale_));
+ EXPECT_EQ(5, qm_resolution_->ComputeContentClass());
+ EXPECT_EQ(kStableEncoding, qm_resolution_->GetEncoderState());
+ EXPECT_TRUE(
+ IsSelectedActionCorrect(qm_scale_, 1.0f, 1.0f, 1.0f, 480, 270, 10.0f));
+}
+
+// Multiple down-sampling stages and then undo all of them.
+// Spatial down-sample 3/4x3/4, followed by temporal down-sample 2/3,
+// followed by spatial 3/4x3/4. Then go up to full state,
+// as encoding rate has increased.
+TEST_F(QmSelectTest, MultipleStagesCheckActionHistory1) {
+ // Initialize with bitrate, frame rate, native system width/height, and
+ // number of temporal layers.
+ InitQmNativeData(150, 30, 640, 480, 1);
+
+ // Update with encoder frame size.
+ uint16_t codec_width = 640;
+ uint16_t codec_height = 480;
+ qm_resolution_->UpdateCodecParameters(30.0f, codec_width, codec_height);
+ EXPECT_EQ(5, qm_resolution_->GetImageType(codec_width, codec_height));
+
+ // Go down spatial 3/4x3/4.
+ // Update rates for a sequence of intervals.
+ int target_rate[] = {150, 150, 150};
+ int encoder_sent_rate[] = {150, 150, 150};
+ int incoming_frame_rate[] = {30, 30, 30};
+ uint8_t fraction_lost[] = {10, 10, 10};
+ UpdateQmRateData(target_rate, encoder_sent_rate, incoming_frame_rate,
+ fraction_lost, 3);
+
+ // Update content: motion level, and 3 spatial prediction errors.
+ // Medium motion, low spatial.
+ UpdateQmContentData(kTemporalMedium, kSpatialLow, kSpatialLow, kSpatialLow);
+ EXPECT_EQ(0, qm_resolution_->SelectResolution(&qm_scale_));
+ EXPECT_EQ(6, qm_resolution_->ComputeContentClass());
+ EXPECT_EQ(kStableEncoding, qm_resolution_->GetEncoderState());
+ EXPECT_TRUE(IsSelectedActionCorrect(qm_scale_, 4.0f / 3.0f, 4.0f / 3.0f, 1.0f,
+ 480, 360, 30.0f));
+ // Go down 2/3 temporal.
+ qm_resolution_->UpdateCodecParameters(30.0f, 480, 360);
+ EXPECT_EQ(4, qm_resolution_->GetImageType(480, 360));
+ qm_resolution_->ResetRates();
+ int target_rate2[] = {100, 100, 100, 100, 100};
+ int encoder_sent_rate2[] = {100, 100, 100, 100, 100};
+ int incoming_frame_rate2[] = {30, 30, 30, 30, 30};
+ uint8_t fraction_lost2[] = {10, 10, 10, 10, 10};
+ UpdateQmRateData(target_rate2, encoder_sent_rate2, incoming_frame_rate2,
+ fraction_lost2, 5);
+
+ // Update content: motion level, and 3 spatial prediction errors.
+ // Low motion, high spatial.
+ UpdateQmContentData(kTemporalLow, kSpatialHigh, kSpatialHigh, kSpatialHigh);
+ EXPECT_EQ(0, qm_resolution_->SelectResolution(&qm_scale_));
+ EXPECT_EQ(1, qm_resolution_->ComputeContentClass());
+ EXPECT_EQ(kStableEncoding, qm_resolution_->GetEncoderState());
+ EXPECT_TRUE(
+ IsSelectedActionCorrect(qm_scale_, 1.0f, 1.0f, 1.5f, 480, 360, 20.5f));
+
+ // Go down 3/4x3/4 spatial:
+ qm_resolution_->UpdateCodecParameters(20.0f, 480, 360);
+ qm_resolution_->ResetRates();
+ int target_rate3[] = {80, 80, 80, 80, 80};
+ int encoder_sent_rate3[] = {80, 80, 80, 80, 80};
+ int incoming_frame_rate3[] = {20, 20, 20, 20, 20};
+ uint8_t fraction_lost3[] = {10, 10, 10, 10, 10};
+ UpdateQmRateData(target_rate3, encoder_sent_rate3, incoming_frame_rate3,
+ fraction_lost3, 5);
+
+ // Update content: motion level, and 3 spatial prediction errors.
+ // High motion, low spatial.
+ UpdateQmContentData(kTemporalHigh, kSpatialLow, kSpatialLow, kSpatialLow);
+ EXPECT_EQ(0, qm_resolution_->SelectResolution(&qm_scale_));
+ EXPECT_EQ(3, qm_resolution_->ComputeContentClass());
+ EXPECT_EQ(kStableEncoding, qm_resolution_->GetEncoderState());
+ // The two spatial actions of 3/4x3/4 are converted to 1/2x1/2,
+ // so scale factor is 2.0.
+ EXPECT_TRUE(
+ IsSelectedActionCorrect(qm_scale_, 2.0f, 2.0f, 1.0f, 320, 240, 20.0f));
+
+ // Reset rates and go high up in rate: expect to go up:
+ // 1/2x1x2 spatial and 1/2 temporally.
+
+ // Go up 1/2x1/2 spatially and 1/2 temporally. Spatial is done in 2 stages.
+ qm_resolution_->UpdateCodecParameters(15.0f, 320, 240);
+ EXPECT_EQ(2, qm_resolution_->GetImageType(320, 240));
+ qm_resolution_->ResetRates();
+ // Update rates for a sequence of intervals.
+ int target_rate4[] = {1000, 1000, 1000, 1000, 1000};
+ int encoder_sent_rate4[] = {1000, 1000, 1000, 1000, 1000};
+ int incoming_frame_rate4[] = {15, 15, 15, 15, 15};
+ uint8_t fraction_lost4[] = {10, 10, 10, 10, 10};
+ UpdateQmRateData(target_rate4, encoder_sent_rate4, incoming_frame_rate4,
+ fraction_lost4, 5);
+
+ EXPECT_EQ(0, qm_resolution_->SelectResolution(&qm_scale_));
+ EXPECT_EQ(3, qm_resolution_->ComputeContentClass());
+ EXPECT_EQ(kStableEncoding, qm_resolution_->GetEncoderState());
+ float scale = (4.0f / 3.0f) / 2.0f;
+ EXPECT_TRUE(IsSelectedActionCorrect(qm_scale_, scale, scale, 2.0f / 3.0f, 480,
+ 360, 30.0f));
+
+ qm_resolution_->UpdateCodecParameters(30.0f, 480, 360);
+ EXPECT_EQ(4, qm_resolution_->GetImageType(480, 360));
+ EXPECT_EQ(0, qm_resolution_->SelectResolution(&qm_scale_));
+ EXPECT_TRUE(IsSelectedActionCorrect(qm_scale_, 3.0f / 4.0f, 3.0f / 4.0f, 1.0f,
+ 640, 480, 30.0f));
+}
+
+// Multiple down-sampling and up-sample stages, with partial undoing.
+// Spatial down-sample 1/2x1/2, followed by temporal down-sample 2/3, undo the
+// temporal, then another temporal, and then undo both spatial and temporal.
+TEST_F(QmSelectTest, MultipleStagesCheckActionHistory2) {
+ // Initialize with bitrate, frame rate, native system width/height, and
+ // number of temporal layers.
+ InitQmNativeData(80, 30, 640, 480, 1);
+
+ // Update with encoder frame size.
+ uint16_t codec_width = 640;
+ uint16_t codec_height = 480;
+ qm_resolution_->UpdateCodecParameters(30.0f, codec_width, codec_height);
+ EXPECT_EQ(5, qm_resolution_->GetImageType(codec_width, codec_height));
+
+ // Go down 1/2x1/2 spatial.
+ // Update rates for a sequence of intervals.
+ int target_rate[] = {80, 80, 80};
+ int encoder_sent_rate[] = {80, 80, 80};
+ int incoming_frame_rate[] = {30, 30, 30};
+ uint8_t fraction_lost[] = {10, 10, 10};
+ UpdateQmRateData(target_rate, encoder_sent_rate, incoming_frame_rate,
+ fraction_lost, 3);
+
+ // Update content: motion level, and 3 spatial prediction errors.
+ // Medium motion, low spatial.
+ UpdateQmContentData(kTemporalMedium, kSpatialLow, kSpatialLow, kSpatialLow);
+ EXPECT_EQ(0, qm_resolution_->SelectResolution(&qm_scale_));
+ EXPECT_EQ(6, qm_resolution_->ComputeContentClass());
+ EXPECT_EQ(kStableEncoding, qm_resolution_->GetEncoderState());
+ EXPECT_TRUE(
+ IsSelectedActionCorrect(qm_scale_, 2.0f, 2.0f, 1.0f, 320, 240, 30.0f));
+
+ // Go down 2/3 temporal.
+ qm_resolution_->UpdateCodecParameters(30.0f, 320, 240);
+ EXPECT_EQ(2, qm_resolution_->GetImageType(320, 240));
+ qm_resolution_->ResetRates();
+ int target_rate2[] = {40, 40, 40, 40, 40};
+ int encoder_sent_rate2[] = {40, 40, 40, 40, 40};
+ int incoming_frame_rate2[] = {30, 30, 30, 30, 30};
+ uint8_t fraction_lost2[] = {10, 10, 10, 10, 10};
+ UpdateQmRateData(target_rate2, encoder_sent_rate2, incoming_frame_rate2,
+ fraction_lost2, 5);
+
+ // Update content: motion level, and 3 spatial prediction errors.
+ // Medium motion, high spatial.
+ UpdateQmContentData(kTemporalMedium, kSpatialHigh, kSpatialHigh,
+ kSpatialHigh);
+ EXPECT_EQ(0, qm_resolution_->SelectResolution(&qm_scale_));
+ EXPECT_EQ(7, qm_resolution_->ComputeContentClass());
+ EXPECT_EQ(kStableEncoding, qm_resolution_->GetEncoderState());
+ EXPECT_TRUE(
+ IsSelectedActionCorrect(qm_scale_, 1.0f, 1.0f, 1.5f, 320, 240, 20.5f));
+
+ // Go up 2/3 temporally.
+ qm_resolution_->UpdateCodecParameters(20.0f, 320, 240);
+ qm_resolution_->ResetRates();
+ // Update rates for a sequence of intervals.
+ int target_rate3[] = {150, 150, 150, 150, 150};
+ int encoder_sent_rate3[] = {150, 150, 150, 150, 150};
+ int incoming_frame_rate3[] = {20, 20, 20, 20, 20};
+ uint8_t fraction_lost3[] = {10, 10, 10, 10, 10};
+ UpdateQmRateData(target_rate3, encoder_sent_rate3, incoming_frame_rate3,
+ fraction_lost3, 5);
+
+ EXPECT_EQ(0, qm_resolution_->SelectResolution(&qm_scale_));
+ EXPECT_EQ(7, qm_resolution_->ComputeContentClass());
+ EXPECT_EQ(kStableEncoding, qm_resolution_->GetEncoderState());
+ EXPECT_TRUE(IsSelectedActionCorrect(qm_scale_, 1.0f, 1.0f, 2.0f / 3.0f, 320,
+ 240, 30.0f));
+
+ // Go down 2/3 temporal.
+ qm_resolution_->UpdateCodecParameters(30.0f, 320, 240);
+ EXPECT_EQ(2, qm_resolution_->GetImageType(320, 240));
+ qm_resolution_->ResetRates();
+ int target_rate4[] = {40, 40, 40, 40, 40};
+ int encoder_sent_rate4[] = {40, 40, 40, 40, 40};
+ int incoming_frame_rate4[] = {30, 30, 30, 30, 30};
+ uint8_t fraction_lost4[] = {10, 10, 10, 10, 10};
+ UpdateQmRateData(target_rate4, encoder_sent_rate4, incoming_frame_rate4,
+ fraction_lost4, 5);
+
+ // Update content: motion level, and 3 spatial prediction errors.
+ // Low motion, high spatial.
+ UpdateQmContentData(kTemporalLow, kSpatialHigh, kSpatialHigh, kSpatialHigh);
+ EXPECT_EQ(0, qm_resolution_->SelectResolution(&qm_scale_));
+ EXPECT_EQ(1, qm_resolution_->ComputeContentClass());
+ EXPECT_EQ(kStableEncoding, qm_resolution_->GetEncoderState());
+ EXPECT_TRUE(
+ IsSelectedActionCorrect(qm_scale_, 1.0f, 1.0f, 1.5f, 320, 240, 20.5f));
+
+ // Go up spatial and temporal. Spatial undoing is done in 2 stages.
+ qm_resolution_->UpdateCodecParameters(20.5f, 320, 240);
+ qm_resolution_->ResetRates();
+ // Update rates for a sequence of intervals.
+ int target_rate5[] = {1000, 1000, 1000, 1000, 1000};
+ int encoder_sent_rate5[] = {1000, 1000, 1000, 1000, 1000};
+ int incoming_frame_rate5[] = {20, 20, 20, 20, 20};
+ uint8_t fraction_lost5[] = {10, 10, 10, 10, 10};
+ UpdateQmRateData(target_rate5, encoder_sent_rate5, incoming_frame_rate5,
+ fraction_lost5, 5);
+
+ EXPECT_EQ(0, qm_resolution_->SelectResolution(&qm_scale_));
+ float scale = (4.0f / 3.0f) / 2.0f;
+ EXPECT_TRUE(IsSelectedActionCorrect(qm_scale_, scale, scale, 2.0f / 3.0f, 480,
+ 360, 30.0f));
+
+ qm_resolution_->UpdateCodecParameters(30.0f, 480, 360);
+ EXPECT_EQ(4, qm_resolution_->GetImageType(480, 360));
+ EXPECT_EQ(0, qm_resolution_->SelectResolution(&qm_scale_));
+ EXPECT_TRUE(IsSelectedActionCorrect(qm_scale_, 3.0f / 4.0f, 3.0f / 4.0f, 1.0f,
+ 640, 480, 30.0f));
+}
+
+// Multiple down-sampling and up-sample stages, with partial undoing.
+// Spatial down-sample 3/4x3/4, followed by temporal down-sample 2/3,
+// undo the temporal 2/3, and then undo the spatial.
+TEST_F(QmSelectTest, MultipleStagesCheckActionHistory3) {
+ // Initialize with bitrate, frame rate, native system width/height, and
+ // number of temporal layers.
+ InitQmNativeData(100, 30, 640, 480, 1);
+
+ // Update with encoder frame size.
+ uint16_t codec_width = 640;
+ uint16_t codec_height = 480;
+ qm_resolution_->UpdateCodecParameters(30.0f, codec_width, codec_height);
+ EXPECT_EQ(5, qm_resolution_->GetImageType(codec_width, codec_height));
+
+ // Go down 3/4x3/4 spatial.
+ // Update rates for a sequence of intervals.
+ int target_rate[] = {100, 100, 100};
+ int encoder_sent_rate[] = {100, 100, 100};
+ int incoming_frame_rate[] = {30, 30, 30};
+ uint8_t fraction_lost[] = {10, 10, 10};
+ UpdateQmRateData(target_rate, encoder_sent_rate, incoming_frame_rate,
+ fraction_lost, 3);
+
+ // Update content: motion level, and 3 spatial prediction errors.
+ // Medium motion, low spatial.
+ UpdateQmContentData(kTemporalMedium, kSpatialLow, kSpatialLow, kSpatialLow);
+ EXPECT_EQ(0, qm_resolution_->SelectResolution(&qm_scale_));
+ EXPECT_EQ(6, qm_resolution_->ComputeContentClass());
+ EXPECT_EQ(kStableEncoding, qm_resolution_->GetEncoderState());
+ EXPECT_TRUE(IsSelectedActionCorrect(qm_scale_, 4.0f / 3.0f, 4.0f / 3.0f, 1.0f,
+ 480, 360, 30.0f));
+
+ // Go down 2/3 temporal.
+ qm_resolution_->UpdateCodecParameters(30.0f, 480, 360);
+ EXPECT_EQ(4, qm_resolution_->GetImageType(480, 360));
+ qm_resolution_->ResetRates();
+ int target_rate2[] = {100, 100, 100, 100, 100};
+ int encoder_sent_rate2[] = {100, 100, 100, 100, 100};
+ int incoming_frame_rate2[] = {30, 30, 30, 30, 30};
+ uint8_t fraction_lost2[] = {10, 10, 10, 10, 10};
+ UpdateQmRateData(target_rate2, encoder_sent_rate2, incoming_frame_rate2,
+ fraction_lost2, 5);
+
+ // Update content: motion level, and 3 spatial prediction errors.
+ // Low motion, high spatial.
+ UpdateQmContentData(kTemporalLow, kSpatialHigh, kSpatialHigh, kSpatialHigh);
+ EXPECT_EQ(0, qm_resolution_->SelectResolution(&qm_scale_));
+ EXPECT_EQ(1, qm_resolution_->ComputeContentClass());
+ EXPECT_EQ(kStableEncoding, qm_resolution_->GetEncoderState());
+ EXPECT_TRUE(
+ IsSelectedActionCorrect(qm_scale_, 1.0f, 1.0f, 1.5f, 480, 360, 20.5f));
+
+ // Go up 2/3 temporal.
+ qm_resolution_->UpdateCodecParameters(20.5f, 480, 360);
+ qm_resolution_->ResetRates();
+ // Update rates for a sequence of intervals.
+ int target_rate3[] = {250, 250, 250, 250, 250};
+ int encoder_sent_rate3[] = {250, 250, 250, 250, 250};
+ int incoming_frame_rate3[] = {20, 20, 20, 20, 120};
+ uint8_t fraction_lost3[] = {10, 10, 10, 10, 10};
+ UpdateQmRateData(target_rate3, encoder_sent_rate3, incoming_frame_rate3,
+ fraction_lost3, 5);
+
+ EXPECT_EQ(0, qm_resolution_->SelectResolution(&qm_scale_));
+ EXPECT_EQ(1, qm_resolution_->ComputeContentClass());
+ EXPECT_EQ(kStableEncoding, qm_resolution_->GetEncoderState());
+ EXPECT_TRUE(IsSelectedActionCorrect(qm_scale_, 1.0f, 1.0f, 2.0f / 3.0f, 480,
+ 360, 30.0f));
+
+ // Go up spatial.
+ qm_resolution_->UpdateCodecParameters(30.0f, 480, 360);
+ EXPECT_EQ(4, qm_resolution_->GetImageType(480, 360));
+ qm_resolution_->ResetRates();
+ int target_rate4[] = {500, 500, 500, 500, 500};
+ int encoder_sent_rate4[] = {500, 500, 500, 500, 500};
+ int incoming_frame_rate4[] = {30, 30, 30, 30, 30};
+ uint8_t fraction_lost4[] = {30, 30, 30, 30, 30};
+ UpdateQmRateData(target_rate4, encoder_sent_rate4, incoming_frame_rate4,
+ fraction_lost4, 5);
+
+ EXPECT_EQ(0, qm_resolution_->SelectResolution(&qm_scale_));
+ EXPECT_EQ(kStableEncoding, qm_resolution_->GetEncoderState());
+ EXPECT_TRUE(IsSelectedActionCorrect(qm_scale_, 3.0f / 4.0f, 3.0f / 4.0f, 1.0f,
+ 640, 480, 30.0f));
+}
+
+// Two stages of 3/4x3/4 converted to one stage of 1/2x1/2.
+TEST_F(QmSelectTest, ConvertThreeQuartersToOneHalf) {
+ // Initialize with bitrate, frame rate, native system width/height, and
+ // number of temporal layers.
+ InitQmNativeData(150, 30, 640, 480, 1);
+
+ // Update with encoder frame size.
+ uint16_t codec_width = 640;
+ uint16_t codec_height = 480;
+ qm_resolution_->UpdateCodecParameters(30.0f, codec_width, codec_height);
+ EXPECT_EQ(5, qm_resolution_->GetImageType(codec_width, codec_height));
+
+ // Go down 3/4x3/4 spatial.
+ // Update rates for a sequence of intervals.
+ int target_rate[] = {150, 150, 150};
+ int encoder_sent_rate[] = {150, 150, 150};
+ int incoming_frame_rate[] = {30, 30, 30};
+ uint8_t fraction_lost[] = {10, 10, 10};
+ UpdateQmRateData(target_rate, encoder_sent_rate, incoming_frame_rate,
+ fraction_lost, 3);
+
+ // Update content: motion level, and 3 spatial prediction errors.
+ // Medium motion, low spatial.
+ UpdateQmContentData(kTemporalMedium, kSpatialLow, kSpatialLow, kSpatialLow);
+ EXPECT_EQ(0, qm_resolution_->SelectResolution(&qm_scale_));
+ EXPECT_EQ(6, qm_resolution_->ComputeContentClass());
+ EXPECT_EQ(kStableEncoding, qm_resolution_->GetEncoderState());
+ EXPECT_TRUE(IsSelectedActionCorrect(qm_scale_, 4.0f / 3.0f, 4.0f / 3.0f, 1.0f,
+ 480, 360, 30.0f));
+
+ // Set rates to go down another 3/4 spatial. Should be converted ton 1/2.
+ qm_resolution_->UpdateCodecParameters(30.0f, 480, 360);
+ EXPECT_EQ(4, qm_resolution_->GetImageType(480, 360));
+ qm_resolution_->ResetRates();
+ int target_rate2[] = {100, 100, 100, 100, 100};
+ int encoder_sent_rate2[] = {100, 100, 100, 100, 100};
+ int incoming_frame_rate2[] = {30, 30, 30, 30, 30};
+ uint8_t fraction_lost2[] = {10, 10, 10, 10, 10};
+ UpdateQmRateData(target_rate2, encoder_sent_rate2, incoming_frame_rate2,
+ fraction_lost2, 5);
+
+ // Update content: motion level, and 3 spatial prediction errors.
+ // Medium motion, low spatial.
+ UpdateQmContentData(kTemporalMedium, kSpatialLow, kSpatialLow, kSpatialLow);
+ EXPECT_EQ(0, qm_resolution_->SelectResolution(&qm_scale_));
+ EXPECT_EQ(6, qm_resolution_->ComputeContentClass());
+ EXPECT_EQ(kStableEncoding, qm_resolution_->GetEncoderState());
+ EXPECT_TRUE(
+ IsSelectedActionCorrect(qm_scale_, 2.0f, 2.0f, 1.0f, 320, 240, 30.0f));
+}
+
+void QmSelectTest::InitQmNativeData(float initial_bit_rate,
+ int user_frame_rate,
+ int native_width,
+ int native_height,
+ int num_layers) {
+ EXPECT_EQ(
+ 0, qm_resolution_->Initialize(initial_bit_rate, user_frame_rate,
+ native_width, native_height, num_layers));
+}
+
+void QmSelectTest::UpdateQmContentData(float motion_metric,
+ float spatial_metric,
+ float spatial_metric_horiz,
+ float spatial_metric_vert) {
+ content_metrics_->motion_magnitude = motion_metric;
+ content_metrics_->spatial_pred_err = spatial_metric;
+ content_metrics_->spatial_pred_err_h = spatial_metric_horiz;
+ content_metrics_->spatial_pred_err_v = spatial_metric_vert;
+ qm_resolution_->UpdateContent(content_metrics_);
+}
+
+void QmSelectTest::UpdateQmEncodedFrame(size_t* encoded_size,
+ size_t num_updates) {
+ for (size_t i = 0; i < num_updates; ++i) {
+ // Convert to bytes.
+ size_t encoded_size_update = 1000 * encoded_size[i] / 8;
+ qm_resolution_->UpdateEncodedSize(encoded_size_update);
+ }
+}
+
+void QmSelectTest::UpdateQmRateData(int* target_rate,
+ int* encoder_sent_rate,
+ int* incoming_frame_rate,
+ uint8_t* fraction_lost,
+ int num_updates) {
+ for (int i = 0; i < num_updates; ++i) {
+ float target_rate_update = target_rate[i];
+ float encoder_sent_rate_update = encoder_sent_rate[i];
+ float incoming_frame_rate_update = incoming_frame_rate[i];
+ uint8_t fraction_lost_update = fraction_lost[i];
+ qm_resolution_->UpdateRates(target_rate_update, encoder_sent_rate_update,
+ incoming_frame_rate_update,
+ fraction_lost_update);
+ }
+}
+
+// Check is the selected action from the QmResolution class is the same
+// as the expected scales from |fac_width|, |fac_height|, |fac_temp|.
+bool QmSelectTest::IsSelectedActionCorrect(VCMResolutionScale* qm_scale,
+ float fac_width,
+ float fac_height,
+ float fac_temp,
+ uint16_t new_width,
+ uint16_t new_height,
+ float new_frame_rate) {
+ if (qm_scale->spatial_width_fact == fac_width &&
+ qm_scale->spatial_height_fact == fac_height &&
+ qm_scale->temporal_fact == fac_temp &&
+ qm_scale->codec_width == new_width &&
+ qm_scale->codec_height == new_height &&
+ qm_scale->frame_rate == new_frame_rate) {
+ return true;
+ } else {
+ return false;
+ }
+}
+} // namespace webrtc