aboutsummaryrefslogtreecommitdiff
path: root/java/com/google/security/wycheproof/testcases/DhTest.java
diff options
context:
space:
mode:
Diffstat (limited to 'java/com/google/security/wycheproof/testcases/DhTest.java')
-rw-r--r--java/com/google/security/wycheproof/testcases/DhTest.java402
1 files changed, 402 insertions, 0 deletions
diff --git a/java/com/google/security/wycheproof/testcases/DhTest.java b/java/com/google/security/wycheproof/testcases/DhTest.java
new file mode 100644
index 0000000..32ab83a
--- /dev/null
+++ b/java/com/google/security/wycheproof/testcases/DhTest.java
@@ -0,0 +1,402 @@
+/**
+ * @license
+ * Copyright 2016 Google Inc. All rights reserved.
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+package com.google.security.wycheproof;
+
+import com.google.security.wycheproof.WycheproofRunner.ProviderType;
+import com.google.security.wycheproof.WycheproofRunner.SlowTest;
+import java.math.BigInteger;
+import java.security.GeneralSecurityException;
+import java.security.KeyFactory;
+import java.security.KeyPair;
+import java.security.KeyPairGenerator;
+import java.security.PrivateKey;
+import java.security.PublicKey;
+import javax.crypto.KeyAgreement;
+import javax.crypto.interfaces.DHPrivateKey;
+import javax.crypto.spec.DHParameterSpec;
+import javax.crypto.spec.DHPublicKeySpec;
+import junit.framework.TestCase;
+
+/**
+ * Testing Diffie-Hellman key agreement.
+ *
+ * <p>Subgroup confinment attacks:
+ * The papers by van Oorshot and Wiener rsp. Lim and Lee show that Diffie-Hellman keys can
+ * be found much faster if the short exponents are used and if the multiplicative group modulo p
+ * contains small subgroups. In particular an attacker can try to send a public key that is an
+ * element of a small subgroup. If the receiver does not check for such elements then may be
+ * possible to find the private key modulo the order of the small subgroup.
+ * Several countermeasures against such attacks have been proposed: For example IKE uses
+ * fields of order p where p is a safe prime (i.e. q=(p-1)/2), hence the only elements of small
+ * order are 1 and p-1.
+ * NIST SP 800-56A rev. 2, Section 5.5.1.1 only requires that the size of the subgroup generated
+ * by the generator g is big enough to prevent the baby-step giant-step algorithm. I.e. for 80-bit
+ * security p must be at least 1024 bits long and the prime q must be at least 160 bits long. A 2048
+ * bit prime p and a 224 bit prime q are sufficient for 112 bit security. To avoid subgroup
+ * confinment attacks NIST requires that public keys are validated, i.e. by checking that a public
+ * key y satisfies the conditions 2 <= y <= p-2 and y^q mod p == 1 (Section 5.6.2.3.1). Further,
+ * after generating the shared secret z = y_a ^ x_b mod p each party should check that z != 1. RFC
+ * 2785 contains similar recommendations.
+ * The public key validation described by NIST requires that the order q of the generator g
+ * is known to the verifier. Unfortunately, the order q is missing in PKCS #3. PKCS #3 describes
+ * the Diffie-Hellman parameters only by the values p, g and optionally the key size in bits.
+ *
+ * <p>The class DHParameterSpec that defines the Diffie-Hellman parameters in JCE contains the same
+ * values as PKCS#3. In particular, it does not contain the order of the subgroup q.
+ * Moreover, the SUN provider uses the minimal sizes specified by NIST for q.
+ * Essentially the provider reuses the parameters for DSA.
+ *
+ * <p>Therefore, there is no guarantee that an implementation of Diffie-Hellman is secure against
+ * subgroup confinement attacks. Without a key validation it is insecure to use the key-pair
+ * generation from NIST SP 800-56A Section 5.6.1.1 (The key-pair generation there only requires that
+ * static and ephemeral private keys are randomly chosen in the range 1..q-1).
+ *
+ * <p>To avoid big disasters the tests below require that key sizes are not minimal. I.e., currently
+ * the tests require at least 512 bit keys for 1024 bit fields. We use this lower limit because that
+ * is what the SUN provider is currently doing. TODO(bleichen): Find a reference supporting or
+ * disproving that decision.
+ *
+ * <p>References: P. C. van Oorschot, M. J. Wiener, "On Diffie-Hellman key agreement with short
+ * exponents", Eurocrypt 96, pp 332–343.
+ *
+ * <p>C.H. Lim and P.J. Lee, "A key recovery attack on discrete log-based schemes using a prime
+ * order subgroup", CRYPTO' 98, pp 249–263.
+ *
+ * <p>NIST SP 800-56A, revision 2, May 2013
+ * http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-56Ar2.pdf
+ *
+ * <p>PKCS #3, Diffie–Hellman Key Agreement
+ * http://uk.emc.com/emc-plus/rsa-labs/standards-initiatives/pkcs-3-diffie-hellman-key-agreement-standar.htm
+ *
+ * <p>RFC 2785, "Methods for Avoiding 'Small-Subgroup' Attacks on the Diffie-Hellman Key Agreement
+ * Method for S/MIME", March 2000
+ * https://www.ietf.org/rfc/rfc2785.txt
+ *
+ * <p>D. Adrian et al. "Imperfect Forward Secrecy: How Diffie-Hellman Fails in Practice"
+ * https://weakdh.org/imperfect-forward-secrecy-ccs15.pdf
+ * A good analysis of various DH implementations.
+ * Some misconfigurations pointed out in the paper are: p is composite, p-1 contains no large
+ * prime factor, q is used instead of the generator g.
+ *
+ * <p>Sources that might be used for additional tests:
+ *
+ * CVE-2015-3193: The Montgomery squaring implementation in crypto/bn/asm/x86_64-mont5.pl
+ * in OpenSSL 1.0.2 before 1.0.2e on the x86_64 platform, as used by the BN_mod_exp function,
+ * mishandles carry propagation
+ * https://blog.fuzzing-project.org/31-Fuzzing-Math-miscalculations-in-OpenSSLs-BN_mod_exp-CVE-2015-3193.html
+ *
+ * <p>CVE-2016-0739: libssh before 0.7.3 improperly truncates ephemeral secrets generated for the
+ * (1) diffie-hellman-group1 and (2) diffie-hellman-group14 key exchange methods to 128 bits ...
+ *
+ * <p>CVE-2015-1787 The ssl3_get_client_key_exchange function in s3_srvr.c in OpenSSL 1.0.2 before
+ * 1.0.2a, when client authentication and an ephemeral Diffie-Hellman ciphersuite are enabled,
+ * allows remote attackers to cause a denial of service (daemon crash) via a ClientKeyExchange
+ * message with a length of zero.
+ *
+ * <p>CVE-2015-0205 The ssl3_get_cert_verify function in s3_srvr.c in OpenSSL 1.0.0 before 1.0.0p
+ * and 1.0.1 before 1.0.1k accepts client authentication with a Diffie-Hellman (DH) certificate
+ * without requiring a CertificateVerify message, which allows remote attackers to obtain access
+ * without knowledge of a private key via crafted TLS Handshake Protocol traffic to a server that
+ * recognizes a Certification Authority with DH support.
+ *
+ * <p>CVE-2016-0701 The DH_check_pub_key function in crypto/dh/dh_check.c in OpenSSL 1.0.2 before
+ * 1.0.2f does not ensure that prime numbers are appropriate for Diffie-Hellman (DH) key exchange,
+ * which makes it easier for remote attackers to discover a private DH exponent by making multiple
+ * handshakes with a peer that chose an inappropriate number, as demonstrated by a number in an
+ * X9.42 file.
+ *
+ * <p>CVE-2006-1115 nCipher HSM before 2.22.6, when generating a Diffie-Hellman public/private key
+ * pair without any specified DiscreteLogGroup parameters, chooses random parameters that could
+ * allow an attacker to crack the private key in significantly less time than a brute force attack.
+ *
+ * <p>CVE-2015-1716 Schannel in Microsoft Windows Server 2003 SP2, Windows Vista SP2, Windows Server
+ * 2008 SP2 and R2 SP1, Windows 7 SP1, Windows 8, Windows 8.1, Windows Server 2012 Gold and R2, and
+ * Windows RT Gold and 8.1 does not properly restrict Diffie-Hellman Ephemeral (DHE) key lengths,
+ * which makes it easier for remote attackers to defeat cryptographic protection mechanisms via
+ * unspecified vectors, aka "Schannel Information Disclosure Vulnerability.
+ *
+ * <p>CVE-2015-2419: Random generation of the prime p allows Pohlig-Hellman and probably other
+ * stuff.
+ *
+ * <p> J. Fried et al. "A kilobit hidden SNFS discrete logarithm computation".
+ * http://eprint.iacr.org/2016/961.pdf
+ * Some crypto libraries use fields that can be broken with the SNFS.
+ *
+ * @author bleichen@google.com (Daniel Bleichenbacher)
+ */
+public class DhTest extends TestCase {
+ public DHParameterSpec ike1536() {
+ final BigInteger p =
+ new BigInteger(
+ "ffffffffffffffffc90fdaa22168c234c4c6628b80dc1cd129024e088a67cc74"
+ + "020bbea63b139b22514a08798e3404ddef9519b3cd3a431b302b0a6df25f1437"
+ + "4fe1356d6d51c245e485b576625e7ec6f44c42e9a637ed6b0bff5cb6f406b7ed"
+ + "ee386bfb5a899fa5ae9f24117c4b1fe649286651ece45b3dc2007cb8a163bf05"
+ + "98da48361c55d39a69163fa8fd24cf5f83655d23dca3ad961c62f356208552bb"
+ + "9ed529077096966d670c354e4abc9804f1746c08ca237327ffffffffffffffff",
+ 16);
+ final BigInteger g = new BigInteger("2");
+ return new DHParameterSpec(p, g);
+ }
+
+ public DHParameterSpec ike2048() {
+ final BigInteger p =
+ new BigInteger(
+ "ffffffffffffffffc90fdaa22168c234c4c6628b80dc1cd129024e088a67cc74"
+ + "020bbea63b139b22514a08798e3404ddef9519b3cd3a431b302b0a6df25f1437"
+ + "4fe1356d6d51c245e485b576625e7ec6f44c42e9a637ed6b0bff5cb6f406b7ed"
+ + "ee386bfb5a899fa5ae9f24117c4b1fe649286651ece45b3dc2007cb8a163bf05"
+ + "98da48361c55d39a69163fa8fd24cf5f83655d23dca3ad961c62f356208552bb"
+ + "9ed529077096966d670c354e4abc9804f1746c08ca18217c32905e462e36ce3b"
+ + "e39e772c180e86039b2783a2ec07a28fb5c55df06f4c52c9de2bcbf695581718"
+ + "3995497cea956ae515d2261898fa051015728e5a8aacaa68ffffffffffffffff",
+ 16);
+ final BigInteger g = new BigInteger("2");
+ return new DHParameterSpec(p, g);
+ }
+
+ // The default parameters returned for 1024 bit DH keys from OpenJdk as defined in
+ // openjdk7/releases/v6/trunk/jdk/src/share/classes/sun/security/provider/ParameterCache.java
+ // I.e., these are the same parameters as used for DSA.
+ public DHParameterSpec openJdk1024() {
+ final BigInteger p =
+ new BigInteger(
+ "fd7f53811d75122952df4a9c2eece4e7f611b7523cef4400c31e3f80b6512669"
+ + "455d402251fb593d8d58fabfc5f5ba30f6cb9b556cd7813b801d346ff26660b7"
+ + "6b9950a5a49f9fe8047b1022c24fbba9d7feb7c61bf83b57e7c6a8a6150f04fb"
+ + "83f6d3c51ec3023554135a169132f675f3ae2b61d72aeff22203199dd14801c7",
+ 16);
+ final BigInteger unusedQ = new BigInteger("9760508f15230bccb292b982a2eb840bf0581cf5", 16);
+ final BigInteger g =
+ new BigInteger(
+ "f7e1a085d69b3ddecbbcab5c36b857b97994afbbfa3aea82f9574c0b3d078267"
+ + "5159578ebad4594fe67107108180b449167123e84c281613b7cf09328cc8a6e1"
+ + "3c167a8b547c8d28e0a3ae1e2bb3a675916ea37f0bfa213562f1fb627a01243b"
+ + "cca4f1bea8519089a883dfe15ae59f06928b665e807b552564014c3bfecf492a",
+ 16);
+ return new DHParameterSpec(p, g);
+ }
+
+ /** Check that key agreement using DH works. */
+ @SuppressWarnings("InsecureCryptoUsage")
+ public void testDh() throws Exception {
+ KeyPairGenerator keyGen = KeyPairGenerator.getInstance("DH");
+ DHParameterSpec dhparams = ike2048();
+ keyGen.initialize(dhparams);
+ KeyPair keyPairA = keyGen.generateKeyPair();
+ KeyPair keyPairB = keyGen.generateKeyPair();
+
+ KeyAgreement kaA = KeyAgreement.getInstance("DH");
+ KeyAgreement kaB = KeyAgreement.getInstance("DH");
+ kaA.init(keyPairA.getPrivate());
+ kaB.init(keyPairB.getPrivate());
+ kaA.doPhase(keyPairB.getPublic(), true);
+ kaB.doPhase(keyPairA.getPublic(), true);
+ byte[] kAB = kaA.generateSecret();
+ byte[] kBA = kaB.generateSecret();
+ assertEquals(TestUtil.bytesToHex(kAB), TestUtil.bytesToHex(kBA));
+ }
+
+ /**
+ * Returns the product of primes that can be found by a simple variant of Pollard-rho.
+ * The result should contain all prime factors of n smaller than 10^8.
+ * This method is heuristic, since it could in principle find large prime factors too.
+ * However, for a random 160-bit prime q the probability of this should be less than 2^{-100}.
+ */
+ private BigInteger smoothDivisor(BigInteger n) {
+ // By examination we verified that for every prime p < 10^8
+ // the iteration x_n = x_{n-1}^2 + 1 mod p enters a cycle of size < 50000 after at
+ // most 50000 steps.
+ int pollardRhoSteps = 50000;
+ BigInteger u = new BigInteger("2");
+ for (int i = 0; i < pollardRhoSteps; i++) {
+ u = u.multiply(u).add(BigInteger.ONE).mod(n);
+ }
+ BigInteger v = u;
+ BigInteger prod = BigInteger.ONE;
+ for (int i = 0; i < pollardRhoSteps; i++) {
+ v = v.multiply(v).add(BigInteger.ONE).mod(n);
+ // This implementation is only looking for the product of small primes.
+ // Therefore, instead of continuously computing gcds of v-u and n, it is sufficient
+ // and more efficient to compute the product of of v-u for all v and compute the gcd
+ // at the end.
+ prod = prod.multiply(v.subtract(u).abs()).mod(n);
+ }
+ BigInteger result = BigInteger.ONE;
+ while (true) {
+ BigInteger f = n.gcd(prod);
+ if (f.equals(BigInteger.ONE)) {
+ return result;
+ }
+ result = result.multiply(f);
+ n = n.divide(f);
+ }
+ }
+
+ @SlowTest(providers = {ProviderType.BOUNCY_CASTLE, ProviderType.SPONGY_CASTLE})
+ public void testKeyPair(KeyPair keyPair, int expectedKeySize) throws Exception {
+ DHPrivateKey priv = (DHPrivateKey) keyPair.getPrivate();
+ BigInteger p = priv.getParams().getP();
+ BigInteger g = priv.getParams().getG();
+ int keySize = p.bitLength();
+ assertEquals("wrong key size", keySize, expectedKeySize);
+
+ // Checks the key size of the private key.
+ // NIST SP 800-56A requires that x is in the range (1, q-1).
+ // Such a choice would require a full key validation. Since such a validation
+ // requires the value q (which is not present in the DH parameters) larger keys
+ // should be chosen to prevent attacks.
+ int minPrivateKeyBits = keySize / 2;
+ BigInteger x = priv.getX();
+ assertTrue(x.bitLength() >= minPrivateKeyBits - 32);
+ // TODO(bleichen): add tests for weak random number generators.
+
+ // Verify the DH parameters.
+ System.out.println("p=" + p.toString(16));
+ System.out.println("g=" + g.toString(16));
+ System.out.println("testKeyPairGenerator L=" + priv.getParams().getL());
+ // Basic parameter checks
+ assertTrue("Expecting g > 1", g.compareTo(BigInteger.ONE) > 0);
+ assertTrue("Expecting g < p - 1", g.compareTo(p.subtract(BigInteger.ONE)) < 0);
+ // Expecting p to be prime.
+ // No high certainty is needed, since this is a unit test.
+ assertTrue(p.isProbablePrime(4));
+ // The order of g should be a large prime divisor q of p-1.
+ // (see e.g. NIST SP 800-56A, section 5.5.1.1.)
+ // If the order of g is composite then the the Decision Diffie Hellman assumption is
+ // not satisfied for the group generated by g. Moreover, attacks using Pohlig-Hellman
+ // might be feasible.
+ // A good way to achieve these requirements is to select a safe prime p (i.e. a prime
+ // where q=(p-1)/2 is prime too. NIST SP 800-56A does not require (or even recommend)
+ // safe primes and allows Diffie-Hellman parameters where q is significantly smaller.
+ // Unfortunately, the key does not contain q and thus the conditions above cannot be
+ // tested easily.
+ // We perform a partial test that performs a partial factorization of p-1 and then
+ // test whether one of the small factors found by the partial factorization divides
+ // the order of g.
+ boolean isSafePrime = p.shiftRight(1).isProbablePrime(4);
+ System.out.println("p is a safe prime:" + isSafePrime);
+ BigInteger r; // p-1 divided by small prime factors.
+ if (isSafePrime) {
+ r = p.shiftRight(1);
+ } else {
+ BigInteger p1 = p.subtract(BigInteger.ONE);
+ r = p1.divide(smoothDivisor(p1));
+ }
+ System.out.println("r=" + r.toString(16));
+ assertEquals("g likely does not generate a prime oder subgroup", BigInteger.ONE,
+ g.modPow(r, p));
+
+ // Checks that there are not too many short prime factors.
+ // I.e., subgroup confinment attacks can find at least keySize - r.bitLength() bits of the key.
+ // At least 160 unknown bits should remain.
+ // Only very weak parameters are detected here, since the factorization above only finds small
+ // prime factors.
+ assertTrue(minPrivateKeyBits - (keySize - r.bitLength()) > 160);
+
+ // DH parameters are sometime misconfigures and g and q are swapped.
+ // A large g that divides p-1 is suspicious.
+ if (g.bitLength() >= 160) {
+ assertTrue(p.mod(g).compareTo(BigInteger.ONE) > 0);
+ }
+ }
+
+ /**
+ * Tests Diffie-Hellman key pair generation.
+ *
+ * <p> This is a slow test since some providers (e.g. BouncyCastle) generate new safe primes
+ * for each new key.
+ */
+ @SuppressWarnings("InsecureCryptoUsage")
+ public void testKeyPairGenerator() throws Exception {
+ int keySize = 1024;
+ KeyPairGenerator keyGen = KeyPairGenerator.getInstance("DH");
+ keyGen.initialize(keySize);
+ KeyPair keyPair = keyGen.generateKeyPair();
+ testKeyPair(keyPair, keySize);
+ }
+
+ /** This test tries a key agreement with keys using distinct parameters. */
+ @SuppressWarnings("InsecureCryptoUsage")
+ public void testDHDistinctParameters() throws Exception {
+ KeyPairGenerator keyGen = KeyPairGenerator.getInstance("DH");
+ keyGen.initialize(ike1536());
+ KeyPair keyPairA = keyGen.generateKeyPair();
+
+ keyGen.initialize(ike2048());
+ KeyPair keyPairB = keyGen.generateKeyPair();
+
+ KeyAgreement kaA = KeyAgreement.getInstance("DH");
+ kaA.init(keyPairA.getPrivate());
+ try {
+ kaA.doPhase(keyPairB.getPublic(), true);
+ byte[] kAB = kaA.generateSecret();
+ fail("Generated secrets with mixed keys " + TestUtil.bytesToHex(kAB) + ", ");
+ } catch (java.security.GeneralSecurityException ex) {
+ // This is expected.
+ }
+ }
+
+ /**
+ * Tests whether a provider accepts invalid public keys that result in predictable shared secrets.
+ * This test is based on RFC 2785, Section 4 and NIST SP 800-56A, If an attacker can modify both
+ * public keys in an ephemeral-ephemeral key agreement scheme then it may be possible to coerce
+ * both parties into computing the same predictable shared key.
+ *
+ * <p> Note: the test is quite whimsical. If the prime p is not a safe prime then the provider
+ * itself cannot prevent all small-subgroup attacks because of the missing parameter q in the
+ * Diffie-Hellman parameters. Implementations must add additional countermeasures such as the ones
+ * proposed in RFC 2785.
+ *
+ * <p> CVE-2016-1000346: BouncyCastle before v.1.56 did not validate the other parties public key.
+ */
+ @SuppressWarnings("InsecureCryptoUsage")
+ public void testSubgroupConfinement() throws Exception {
+ KeyPairGenerator keyGen = KeyPairGenerator.getInstance("DH");
+ DHParameterSpec params = ike2048();
+ BigInteger p = params.getP();
+ BigInteger g = params.getG();
+ keyGen.initialize(params);
+ PrivateKey priv = keyGen.generateKeyPair().getPrivate();
+ KeyAgreement ka = KeyAgreement.getInstance("DH");
+ BigInteger[] weakPublicKeys = {
+ BigInteger.ZERO,
+ BigInteger.ONE,
+ p.subtract(BigInteger.ONE),
+ p,
+ p.add(BigInteger.ONE),
+ BigInteger.ONE.negate()
+ };
+ for (BigInteger weakKey : weakPublicKeys) {
+ ka.init(priv);
+ try {
+ KeyFactory kf = KeyFactory.getInstance("DH");
+ DHPublicKeySpec weakSpec = new DHPublicKeySpec(weakKey, p, g);
+ PublicKey pub = kf.generatePublic(weakSpec);
+ ka.doPhase(pub, true);
+ byte[] kAB = ka.generateSecret();
+ fail(
+ "Generated secrets with weak public key:"
+ + weakKey.toString()
+ + " secret:"
+ + TestUtil.bytesToHex(kAB));
+ } catch (GeneralSecurityException ex) {
+ // this is expected
+ }
+ }
+ }
+}