summaryrefslogtreecommitdiff
path: root/crc32_simd.c
blob: 7428270920a03e06da4a037434de0255e486058b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
/* crc32_simd.c
 *
 * Copyright 2017 The Chromium Authors
 * Use of this source code is governed by a BSD-style license that can be
 * found in the Chromium source repository LICENSE file.
 */

#include "crc32_simd.h"
#if defined(CRC32_SIMD_AVX512_PCLMUL)

/*
 * crc32_avx512_simd_(): compute the crc32 of the buffer, where the buffer
 * length must be at least 256, and a multiple of 64. Based on:
 *
 * "Fast CRC Computation for Generic Polynomials Using PCLMULQDQ Instruction"
 *  V. Gopal, E. Ozturk, et al., 2009, http://intel.ly/2ySEwL0
 */

#include <emmintrin.h>
#include <smmintrin.h>
#include <wmmintrin.h>
#include <immintrin.h>

uint32_t ZLIB_INTERNAL crc32_avx512_simd_(  /* AVX512+PCLMUL */
    const unsigned char *buf,
    z_size_t len,
    uint32_t crc)
{
    /*
     * Definitions of the bit-reflected domain constants k1,k2,k3,k4
     * are similar to those given at the end of the paper, and remaining
     * constants and CRC32+Barrett polynomials remain unchanged.
     *
     * Replace the index of x from 128 to 512. As follows:
     * k1 = ( x ^ ( 512 * 4 + 32 ) mod P(x) << 32 )' << 1 = 0x011542778a
     * k2 = ( x ^ ( 512 * 4 - 32 ) mod P(x) << 32 )' << 1 = 0x01322d1430
     * k3 = ( x ^ ( 512 + 32 ) mod P(x) << 32 )' << 1 = 0x0154442bd4
     * k4 = ( x ^ ( 512 - 32 ) mod P(x) << 32 )' << 1 = 0x01c6e41596
     */
    static const uint64_t zalign(64) k1k2[] = { 0x011542778a, 0x01322d1430,
                                                0x011542778a, 0x01322d1430,
                                                0x011542778a, 0x01322d1430,
                                                0x011542778a, 0x01322d1430 };
    static const uint64_t zalign(64) k3k4[] = { 0x0154442bd4, 0x01c6e41596,
                                                0x0154442bd4, 0x01c6e41596,
                                                0x0154442bd4, 0x01c6e41596,
                                                0x0154442bd4, 0x01c6e41596 };
    static const uint64_t zalign(16) k5k6[] = { 0x01751997d0, 0x00ccaa009e };
    static const uint64_t zalign(16) k7k8[] = { 0x0163cd6124, 0x0000000000 };
    static const uint64_t zalign(16) poly[] = { 0x01db710641, 0x01f7011641 };
    __m512i x0, x1, x2, x3, x4, x5, x6, x7, x8, y5, y6, y7, y8;
    __m128i a0, a1, a2, a3;

    /*
     * There's at least one block of 256.
     */
    x1 = _mm512_loadu_si512((__m512i *)(buf + 0x00));
    x2 = _mm512_loadu_si512((__m512i *)(buf + 0x40));
    x3 = _mm512_loadu_si512((__m512i *)(buf + 0x80));
    x4 = _mm512_loadu_si512((__m512i *)(buf + 0xC0));

    x1 = _mm512_xor_si512(x1, _mm512_castsi128_si512(_mm_cvtsi32_si128(crc)));

    x0 = _mm512_load_si512((__m512i *)k1k2);

    buf += 256;
    len -= 256;

    /*
     * Parallel fold blocks of 256, if any.
     */
    while (len >= 256)
    {
        x5 = _mm512_clmulepi64_epi128(x1, x0, 0x00);
        x6 = _mm512_clmulepi64_epi128(x2, x0, 0x00);
        x7 = _mm512_clmulepi64_epi128(x3, x0, 0x00);
        x8 = _mm512_clmulepi64_epi128(x4, x0, 0x00);


        x1 = _mm512_clmulepi64_epi128(x1, x0, 0x11);
        x2 = _mm512_clmulepi64_epi128(x2, x0, 0x11);
        x3 = _mm512_clmulepi64_epi128(x3, x0, 0x11);
        x4 = _mm512_clmulepi64_epi128(x4, x0, 0x11);

        y5 = _mm512_loadu_si512((__m512i *)(buf + 0x00));
        y6 = _mm512_loadu_si512((__m512i *)(buf + 0x40));
        y7 = _mm512_loadu_si512((__m512i *)(buf + 0x80));
        y8 = _mm512_loadu_si512((__m512i *)(buf + 0xC0));

        x1 = _mm512_xor_si512(x1, x5);
        x2 = _mm512_xor_si512(x2, x6);
        x3 = _mm512_xor_si512(x3, x7);
        x4 = _mm512_xor_si512(x4, x8);

        x1 = _mm512_xor_si512(x1, y5);
        x2 = _mm512_xor_si512(x2, y6);
        x3 = _mm512_xor_si512(x3, y7);
        x4 = _mm512_xor_si512(x4, y8);

        buf += 256;
        len -= 256;
    }

    /*
     * Fold into 512-bits.
     */
    x0 = _mm512_load_si512((__m512i *)k3k4);

    x5 = _mm512_clmulepi64_epi128(x1, x0, 0x00);
    x1 = _mm512_clmulepi64_epi128(x1, x0, 0x11);
    x1 = _mm512_xor_si512(x1, x2);
    x1 = _mm512_xor_si512(x1, x5);

    x5 = _mm512_clmulepi64_epi128(x1, x0, 0x00);
    x1 = _mm512_clmulepi64_epi128(x1, x0, 0x11);
    x1 = _mm512_xor_si512(x1, x3);
    x1 = _mm512_xor_si512(x1, x5);

    x5 = _mm512_clmulepi64_epi128(x1, x0, 0x00);
    x1 = _mm512_clmulepi64_epi128(x1, x0, 0x11);
    x1 = _mm512_xor_si512(x1, x4);
    x1 = _mm512_xor_si512(x1, x5);

    /*
     * Single fold blocks of 64, if any.
     */
    while (len >= 64)
    {
        x2 = _mm512_loadu_si512((__m512i *)buf);

        x5 = _mm512_clmulepi64_epi128(x1, x0, 0x00);
        x1 = _mm512_clmulepi64_epi128(x1, x0, 0x11);
        x1 = _mm512_xor_si512(x1, x2);
        x1 = _mm512_xor_si512(x1, x5);

        buf += 64;
        len -= 64;
    }

    /*
     * Fold 512-bits to 384-bits.
     */
    a0 = _mm_load_si128((__m128i *)k5k6);

    a1 = _mm512_extracti32x4_epi32(x1, 0);
    a2 = _mm512_extracti32x4_epi32(x1, 1);

    a3 = _mm_clmulepi64_si128(a1, a0, 0x00);
    a1 = _mm_clmulepi64_si128(a1, a0, 0x11);

    a1 = _mm_xor_si128(a1, a3);
    a1 = _mm_xor_si128(a1, a2);

    /*
     * Fold 384-bits to 256-bits.
     */
    a2 = _mm512_extracti32x4_epi32(x1, 2);
    a3 = _mm_clmulepi64_si128(a1, a0, 0x00);
    a1 = _mm_clmulepi64_si128(a1, a0, 0x11);
    a1 = _mm_xor_si128(a1, a3);
    a1 = _mm_xor_si128(a1, a2);

    /*
     * Fold 256-bits to 128-bits.
     */
    a2 = _mm512_extracti32x4_epi32(x1, 3);
    a3 = _mm_clmulepi64_si128(a1, a0, 0x00);
    a1 = _mm_clmulepi64_si128(a1, a0, 0x11);
    a1 = _mm_xor_si128(a1, a3);
    a1 = _mm_xor_si128(a1, a2);

    /*
     * Fold 128-bits to 64-bits.
     */
    a2 = _mm_clmulepi64_si128(a1, a0, 0x10);
    a3 = _mm_setr_epi32(~0, 0, ~0, 0);
    a1 = _mm_srli_si128(a1, 8);
    a1 = _mm_xor_si128(a1, a2);

    a0 = _mm_loadl_epi64((__m128i*)k7k8);
    a2 = _mm_srli_si128(a1, 4);
    a1 = _mm_and_si128(a1, a3);
    a1 = _mm_clmulepi64_si128(a1, a0, 0x00);
    a1 = _mm_xor_si128(a1, a2);

    /*
     * Barret reduce to 32-bits.
     */
    a0 = _mm_load_si128((__m128i*)poly);

    a2 = _mm_and_si128(a1, a3);
    a2 = _mm_clmulepi64_si128(a2, a0, 0x10);
    a2 = _mm_and_si128(a2, a3);
    a2 = _mm_clmulepi64_si128(a2, a0, 0x00);
    a1 = _mm_xor_si128(a1, a2);

    /*
     * Return the crc32.
     */
    return _mm_extract_epi32(a1, 1);
}

#elif defined(CRC32_SIMD_SSE42_PCLMUL)

/*
 * crc32_sse42_simd_(): compute the crc32 of the buffer, where the buffer
 * length must be at least 64, and a multiple of 16.
 */

#include <emmintrin.h>
#include <smmintrin.h>
#include <wmmintrin.h>

uint32_t ZLIB_INTERNAL crc32_sse42_simd_(  /* SSE4.2+PCLMUL */
    const unsigned char *buf,
    z_size_t len,
    uint32_t crc)
{
    /*
     * Definitions of the bit-reflected domain constants k1,k2,k3, etc and
     * the CRC32+Barrett polynomials given at the end of the paper.
     */
    static const uint64_t zalign(16) k1k2[] = { 0x0154442bd4, 0x01c6e41596 };
    static const uint64_t zalign(16) k3k4[] = { 0x01751997d0, 0x00ccaa009e };
    static const uint64_t zalign(16) k5k0[] = { 0x0163cd6124, 0x0000000000 };
    static const uint64_t zalign(16) poly[] = { 0x01db710641, 0x01f7011641 };

    __m128i x0, x1, x2, x3, x4, x5, x6, x7, x8, y5, y6, y7, y8;

    /*
     * There's at least one block of 64.
     */
    x1 = _mm_loadu_si128((__m128i *)(buf + 0x00));
    x2 = _mm_loadu_si128((__m128i *)(buf + 0x10));
    x3 = _mm_loadu_si128((__m128i *)(buf + 0x20));
    x4 = _mm_loadu_si128((__m128i *)(buf + 0x30));

    x1 = _mm_xor_si128(x1, _mm_cvtsi32_si128(crc));

    x0 = _mm_load_si128((__m128i *)k1k2);

    buf += 64;
    len -= 64;

    /*
     * Parallel fold blocks of 64, if any.
     */
    while (len >= 64)
    {
        x5 = _mm_clmulepi64_si128(x1, x0, 0x00);
        x6 = _mm_clmulepi64_si128(x2, x0, 0x00);
        x7 = _mm_clmulepi64_si128(x3, x0, 0x00);
        x8 = _mm_clmulepi64_si128(x4, x0, 0x00);

        x1 = _mm_clmulepi64_si128(x1, x0, 0x11);
        x2 = _mm_clmulepi64_si128(x2, x0, 0x11);
        x3 = _mm_clmulepi64_si128(x3, x0, 0x11);
        x4 = _mm_clmulepi64_si128(x4, x0, 0x11);

        y5 = _mm_loadu_si128((__m128i *)(buf + 0x00));
        y6 = _mm_loadu_si128((__m128i *)(buf + 0x10));
        y7 = _mm_loadu_si128((__m128i *)(buf + 0x20));
        y8 = _mm_loadu_si128((__m128i *)(buf + 0x30));

        x1 = _mm_xor_si128(x1, x5);
        x2 = _mm_xor_si128(x2, x6);
        x3 = _mm_xor_si128(x3, x7);
        x4 = _mm_xor_si128(x4, x8);

        x1 = _mm_xor_si128(x1, y5);
        x2 = _mm_xor_si128(x2, y6);
        x3 = _mm_xor_si128(x3, y7);
        x4 = _mm_xor_si128(x4, y8);

        buf += 64;
        len -= 64;
    }

    /*
     * Fold into 128-bits.
     */
    x0 = _mm_load_si128((__m128i *)k3k4);

    x5 = _mm_clmulepi64_si128(x1, x0, 0x00);
    x1 = _mm_clmulepi64_si128(x1, x0, 0x11);
    x1 = _mm_xor_si128(x1, x2);
    x1 = _mm_xor_si128(x1, x5);

    x5 = _mm_clmulepi64_si128(x1, x0, 0x00);
    x1 = _mm_clmulepi64_si128(x1, x0, 0x11);
    x1 = _mm_xor_si128(x1, x3);
    x1 = _mm_xor_si128(x1, x5);

    x5 = _mm_clmulepi64_si128(x1, x0, 0x00);
    x1 = _mm_clmulepi64_si128(x1, x0, 0x11);
    x1 = _mm_xor_si128(x1, x4);
    x1 = _mm_xor_si128(x1, x5);

    /*
     * Single fold blocks of 16, if any.
     */
    while (len >= 16)
    {
        x2 = _mm_loadu_si128((__m128i *)buf);

        x5 = _mm_clmulepi64_si128(x1, x0, 0x00);
        x1 = _mm_clmulepi64_si128(x1, x0, 0x11);
        x1 = _mm_xor_si128(x1, x2);
        x1 = _mm_xor_si128(x1, x5);

        buf += 16;
        len -= 16;
    }

    /*
     * Fold 128-bits to 64-bits.
     */
    x2 = _mm_clmulepi64_si128(x1, x0, 0x10);
    x3 = _mm_setr_epi32(~0, 0, ~0, 0);
    x1 = _mm_srli_si128(x1, 8);
    x1 = _mm_xor_si128(x1, x2);

    x0 = _mm_loadl_epi64((__m128i*)k5k0);

    x2 = _mm_srli_si128(x1, 4);
    x1 = _mm_and_si128(x1, x3);
    x1 = _mm_clmulepi64_si128(x1, x0, 0x00);
    x1 = _mm_xor_si128(x1, x2);

    /*
     * Barret reduce to 32-bits.
     */
    x0 = _mm_load_si128((__m128i*)poly);

    x2 = _mm_and_si128(x1, x3);
    x2 = _mm_clmulepi64_si128(x2, x0, 0x10);
    x2 = _mm_and_si128(x2, x3);
    x2 = _mm_clmulepi64_si128(x2, x0, 0x00);
    x1 = _mm_xor_si128(x1, x2);

    /*
     * Return the crc32.
     */
    return _mm_extract_epi32(x1, 1);
}

#elif defined(CRC32_ARMV8_CRC32)

/* CRC32 checksums using ARMv8-a crypto instructions.
 */

#if defined(__clang__)
/* We need some extra types for using PMULL.
 */
#if defined(__aarch64__)
#include <arm_neon.h>
#include <arm_acle.h>
#endif

/* CRC32 intrinsics are #ifdef'ed out of arm_acle.h unless we build with an
 * armv8 target, which is incompatible with ThinLTO optimizations on Android.
 * (Namely, mixing and matching different module-level targets makes ThinLTO
 * warn, and Android defaults to armv7-a. This restriction does not apply to
 * function-level `target`s, however.)
 *
 * Since we only need four crc intrinsics, and since clang's implementation of
 * those are just wrappers around compiler builtins, it's simplest to #define
 * those builtins directly. If this #define list grows too much (or we depend on
 * an intrinsic that isn't a trivial wrapper), we may have to find a better way
 * to go about this.
 *
 * NOTE: clang currently complains that "'+soft-float-abi' is not a recognized
 * feature for this target (ignoring feature)." This appears to be a harmless
 * bug in clang.
 *
 * These definitions must appear *after* including arm_acle.h otherwise that
 * header may end up defining functions named __builtin_arm_crc32* that call
 * themselves, creating an infinite loop when the intrinsic is called.
 */
/* XXX: Cannot hook into builtins with XCode for arm64. */
#if !defined(ARMV8_OS_MACOS)
#define __crc32b __builtin_arm_crc32b
#define __crc32d __builtin_arm_crc32d
#define __crc32w __builtin_arm_crc32w
#define __crc32cw __builtin_arm_crc32cw
#endif

#if defined(__aarch64__)
#define TARGET_ARMV8_WITH_CRC __attribute__((target("aes,crc")))
#else  // !defined(__aarch64__)
#define TARGET_ARMV8_WITH_CRC __attribute__((target("armv8-a,crc")))
#endif  // defined(__aarch64__)

#elif defined(__GNUC__)
/* For GCC, we are setting CRC extensions at module level, so ThinLTO is not
 * allowed. We can just include arm_acle.h.
 */
#include <arm_acle.h>
#include <arm_neon.h>
#define TARGET_ARMV8_WITH_CRC
#else  // !defined(__GNUC__) && !defined(_aarch64__)
#error ARM CRC32 SIMD extensions only supported for Clang and GCC
#endif

TARGET_ARMV8_WITH_CRC
uint32_t ZLIB_INTERNAL armv8_crc32_little(
    const unsigned char *buf,
    z_size_t len,
    uint32_t crc)
{
    uint32_t c = (uint32_t) ~crc;

    while (len && ((uintptr_t)buf & 7)) {
        c = __crc32b(c, *buf++);
        --len;
    }

    const uint64_t *buf8 = (const uint64_t *)buf;

    while (len >= 64) {
        c = __crc32d(c, *buf8++);
        c = __crc32d(c, *buf8++);
        c = __crc32d(c, *buf8++);
        c = __crc32d(c, *buf8++);

        c = __crc32d(c, *buf8++);
        c = __crc32d(c, *buf8++);
        c = __crc32d(c, *buf8++);
        c = __crc32d(c, *buf8++);
        len -= 64;
    }

    while (len >= 8) {
        c = __crc32d(c, *buf8++);
        len -= 8;
    }

    buf = (const unsigned char *)buf8;

    while (len--) {
        c = __crc32b(c, *buf++);
    }

    return ~c;
}

#if defined(__aarch64__) || defined(ARMV8_OS_MACOS) /* aarch64 specific code. */

/*
 * crc32_pmull_simd_(): compute the crc32 of the buffer, where the buffer
 * length must be at least 64, and a multiple of 16. Based on:
 *
 * "Fast CRC Computation for Generic Polynomials Using PCLMULQDQ Instruction"
 *  V. Gopal, E. Ozturk, et al., 2009, http://intel.ly/2ySEwL0
 */
TARGET_ARMV8_WITH_CRC
static inline uint8x16_t pmull_lo(const uint64x2_t a, const uint64x2_t b)
{
    uint8x16_t r;
    __asm__ __volatile__ ("pmull  %0.1q, %1.1d, %2.1d \n\t"
        : "=w" (r) : "w" (a), "w" (b) );
    return r;
}

TARGET_ARMV8_WITH_CRC
static inline uint8x16_t pmull_01(const uint64x2_t a, const uint64x2_t b)
{
    uint8x16_t r;
    __asm__ __volatile__ ("pmull  %0.1q, %1.1d, %2.1d \n\t"
        : "=w" (r) : "w" (a), "w" (vgetq_lane_u64(b, 1)) );
    return r;
}

TARGET_ARMV8_WITH_CRC
static inline uint8x16_t pmull_hi(const uint64x2_t a, const uint64x2_t b)
{
    uint8x16_t r;
    __asm__ __volatile__ ("pmull2 %0.1q, %1.2d, %2.2d \n\t"
        : "=w" (r) : "w" (a), "w" (b) );
    return r;
}

TARGET_ARMV8_WITH_CRC
uint32_t ZLIB_INTERNAL armv8_crc32_pmull_little(
    const unsigned char *buf,
    z_size_t len,
    uint32_t crc)
{
    /*
     * Definitions of the bit-reflected domain constants k1,k2,k3, etc and
     * the CRC32+Barrett polynomials given at the end of the paper.
     */
    static const uint64_t zalign(16) k1k2[] = { 0x0154442bd4, 0x01c6e41596 };
    static const uint64_t zalign(16) k3k4[] = { 0x01751997d0, 0x00ccaa009e };
    static const uint64_t zalign(16) k5k0[] = { 0x0163cd6124, 0x0000000000 };
    static const uint64_t zalign(16) poly[] = { 0x01db710641, 0x01f7011641 };

    uint64x2_t x0, x1, x2, x3, x4, x5, x6, x7, x8, y5, y6, y7, y8;

    /*
     * There's at least one block of 64.
     */
    x1 = vld1q_u64((const uint64_t *)(buf + 0x00));
    x2 = vld1q_u64((const uint64_t *)(buf + 0x10));
    x3 = vld1q_u64((const uint64_t *)(buf + 0x20));
    x4 = vld1q_u64((const uint64_t *)(buf + 0x30));

    x1 = veorq_u64(x1, (uint64x2_t) vsetq_lane_u32(crc, vdupq_n_u32(0), 0));

    x0 = vld1q_u64(k1k2);

    buf += 64;
    len -= 64;

    /*
     * Parallel fold blocks of 64, if any.
     */
    while (len >= 64)
    {
        x5 = (uint64x2_t) pmull_lo(x1, x0);
        x6 = (uint64x2_t) pmull_lo(x2, x0);
        x7 = (uint64x2_t) pmull_lo(x3, x0);
        x8 = (uint64x2_t) pmull_lo(x4, x0);

        y5 = vld1q_u64((const uint64_t *)(buf + 0x00));
        y6 = vld1q_u64((const uint64_t *)(buf + 0x10));
        y7 = vld1q_u64((const uint64_t *)(buf + 0x20));
        y8 = vld1q_u64((const uint64_t *)(buf + 0x30));

        x1 = (uint64x2_t) pmull_hi(x1, x0);
        x2 = (uint64x2_t) pmull_hi(x2, x0);
        x3 = (uint64x2_t) pmull_hi(x3, x0);
        x4 = (uint64x2_t) pmull_hi(x4, x0);

        x1 = veorq_u64(x1, x5);
        x2 = veorq_u64(x2, x6);
        x3 = veorq_u64(x3, x7);
        x4 = veorq_u64(x4, x8);

        x1 = veorq_u64(x1, y5);
        x2 = veorq_u64(x2, y6);
        x3 = veorq_u64(x3, y7);
        x4 = veorq_u64(x4, y8);

        buf += 64;
        len -= 64;
    }

    /*
     * Fold into 128-bits.
     */
    x0 = vld1q_u64(k3k4);

    x5 = (uint64x2_t) pmull_lo(x1, x0);
    x1 = (uint64x2_t) pmull_hi(x1, x0);
    x1 = veorq_u64(x1, x2);
    x1 = veorq_u64(x1, x5);

    x5 = (uint64x2_t) pmull_lo(x1, x0);
    x1 = (uint64x2_t) pmull_hi(x1, x0);
    x1 = veorq_u64(x1, x3);
    x1 = veorq_u64(x1, x5);

    x5 = (uint64x2_t) pmull_lo(x1, x0);
    x1 = (uint64x2_t) pmull_hi(x1, x0);
    x1 = veorq_u64(x1, x4);
    x1 = veorq_u64(x1, x5);

    /*
     * Single fold blocks of 16, if any.
     */
    while (len >= 16)
    {
        x2 = vld1q_u64((const uint64_t *)buf);

        x5 = (uint64x2_t) pmull_lo(x1, x0);
        x1 = (uint64x2_t) pmull_hi(x1, x0);
        x1 = veorq_u64(x1, x2);
        x1 = veorq_u64(x1, x5);

        buf += 16;
        len -= 16;
    }

    /*
     * Fold 128-bits to 64-bits.
     */
    static uint32_t zalign(16) mask[] = { ~0u, 0u, ~0u, 0u };

    x2 = (uint64x2_t) pmull_01(x1, x0);
    x1 = (uint64x2_t) vextq_u8(vreinterpretq_u8_u64(x1), vdupq_n_u8(0), 8);
    x3 = (uint64x2_t) vld1q_u32(mask);
    x1 = veorq_u64(x1, x2);

    x0 = vld1q_u64(k5k0);

    x2 = (uint64x2_t) pmull_01(x2, x0);
    x2 = (uint64x2_t) vextq_u8(vreinterpretq_u8_u64(x1), vdupq_n_u8(0), 4);
    x1 = vandq_u64(x1, x3);
    x1 = (uint64x2_t) pmull_lo(x1, x0);
    x1 = veorq_u64(x1, x2);

    /*
     * Barret reduce to 32-bits.
     */
    x0 = vld1q_u64(poly);

    x2 = vandq_u64(x1, x3);
    x2 = (uint64x2_t) pmull_01(x2, x0);
    x2 = vandq_u64(x2, x3);
    x2 = (uint64x2_t) pmull_lo(x2, x0);
    x1 = veorq_u64(x1, x2);

    /*
     * Return the crc32.
     */
    return vgetq_lane_u32(vreinterpretq_u32_u64(x1), 1);
}
#endif /* aarch64 specific code. */

#endif