aboutsummaryrefslogtreecommitdiff
path: root/arm_utils.h
blob: 8664f3e189600ff16ee420ec709c0fa55046f5e4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
// Copyright 2019 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#ifndef COMPONENTS_ZUCCHINI_ARM_UTILS_H_
#define COMPONENTS_ZUCCHINI_ARM_UTILS_H_

#include <stddef.h>
#include <stdint.h>

#include "base/check_op.h"
#include "components/zucchini/address_translator.h"
#include "components/zucchini/buffer_view.h"

namespace zucchini {

// References:
// * AArch32 (32-bit ARM, AKA ARM32):
//     https://static.docs.arm.com/ddi0406/c/DDI0406C_C_arm_architecture_reference_manual.pdf
// * AArch64 (64-bit ARM):
//     https://static.docs.arm.com/ddi0487/da/DDI0487D_a_armv8_arm.pdf

// Definitions (used in Zucchini):
// * |instr_rva|: Instruction RVA: The RVA where an instruction is located. In
//   ARM mode and for AArch64 this is 4-byte aligned; in THUMB2 mode this is
//   2-byte aligned.
// * |code|: Instruction code: ARM instruction code as seen in manual. In ARM
//   mode and for AArch64, this is a 32-bit int. In THUMB2 mode, this may be a
//   16-bit or 32-bit int.
// * |disp|: Displacement: For branch instructions (e.g.: B, BL, BLX, and
//   conditional varieties) this is the value encoded in instruction bytes.
// * PC: Program Counter: In ARM mode this is |instr_rva + 8|; in THUMB2 mode
//   this is |instr_rva + 4|; for AArch64 this is |instr_rva|.
// * |target_rva|: Target RVA: The RVA targeted by a branch instruction.
//
// These are related by:
//   |code| = Fetch(image data at offset(|instr_rva|)).
//   |disp| = Decode(|code|).
//   PC = |instr_rva| + {8 in ARM mode, 4 in THUMB2 mode, 0 for AArch64}.
//   |target_rva| = PC + |disp| - (see "BLX complication" below)
//
// Example 1 (ARM mode):
//   00103050: 00 01 02 EA    B     00183458
//   |instr_rva| = 0x00103050  (4-byte aligned).
//   |code| = 0xEA020100  (little endian fetched from data).
//   |disp| = 0x00080400  (decoded from |code| with A24 -> B encoding T1).
//   PC = |instr_rva| + 8 = 0x00103058  (ARM mode).
//   |target_rva| = PC + |disp| = 0x00183458.
//
// Example 2 (THUMB2 mode):
//   001030A2: 00 F0 01 FA    BL    001034A8
//   |instr_rva| = 0x001030A2  (2-byte aligned).
//   |code| = 0xF000FA01  (special THUMB2 mode data fetch).
//   |disp| = 0x00000402  (decoded from |code| with T24 -> BL encoding T1).
//   PC = |instr_rva| + 4 = 0x001030A6  (THUMB2 mode).
//   |target_rva| = PC + |disp| = 0x001034A8.
//
// Example 3 (AArch64):
//   0000000000305070: 03 02 01 14    B     000000000034587C
//   |instr_rva| = 0x00305070  (4-byte aligned, assumed to fit in 32-bit).
//   |code| = 0x14010203  (little endian fetchd from data).
//   |disp| = 0x0004080C  (decoded from |code| with Immd -> B).
//   PC = |instr_rva| = 0x00305070  (AArch64).
//   |target_rva| = PC + |disp| = 0x0034587C.

// BLX complication: BLX transits between ARM mode and THUMB2 mode, and branches
// to an address. Therefore |instr_rva| must align by the "old" mode, and
// |target_rva| must align by the "new" mode. In particular:
// * BLX encoding A2 (ARM -> THUMB2): |instr_rva| is 4-byte aligned with
//   PC = |instr_rva| + 8; |target_rva| is 2-byte aligned, and so |disp| is
//   2-byte aligned.
// * BLX encoding T2 (THUMB2 -> ARM): |instr_rva| is 2-byte aligned with
//   PC = |instr_rva| + 4; |target_rva| is 4-byte aligned. Complication: BLX
//   encoding T2 stores a bit |H| that corresponds to "2" in binary, but |H|
//   must be set to 0. Thus the encoded value is effectively 4-byte aligned. So
//   when computing |target_rva| by adding PC (2-byte aligned) to the stored
//   value (4-byte aligned), the result must be rounded down to the nearest
//   4-byte aligned address.
// The last situation creates ambiguity in how |disp| is defined! Alternatives:
// (1) |disp| := |target_rva| - PC: So |code| <-> |disp| for BLX encoding T2,
//     requires |instr_rva| % 4 to be determined, and adjustments made.
// (2) |disp| := Value stored in |code|: So |disp| <-> |target_rva| for BLX
//     encoding T2 requires adjustment: |disp| -> |target_rva| needs to round
//     down, whereas |target_rva| -> |disp| needs to round up.
// We adopt (2) to simplify |code| <-> |disp|, since that gets used.

using arm_disp_t = int32_t;

// Alignment requirement for |target_rva|, useful for |disp| <-> |target_rva|
// (also requires |instr_rva|). Alignment is determined by parsing |code| in
// *Decode() functions. kArmAlignFail is also defined to indicate parse failure.
// Alignments can be 2 or 4. These values are also used in the enum, so
// |x % align| with |x & (align - 1)| to compute alignment.
enum ArmAlign : uint32_t {
  kArmAlignFail = 0U,
  kArmAlign2 = 2U,
  kArmAlign4 = 4U,
};

// Traits for rel32 address types (technically rel64 for AArch64 -- but we
// assume values are small enough), which form collections of strategies to
// process each rel32 address type.
template <typename ENUM_ADDR_TYPE,
          ENUM_ADDR_TYPE ADDR_TYPE,
          typename CODE_T,
          CODE_T (*FETCH)(ConstBufferView, offset_t),
          void (*STORE)(MutableBufferView, offset_t, CODE_T),
          ArmAlign (*DECODE)(CODE_T, arm_disp_t*),
          bool (*ENCODE)(arm_disp_t, CODE_T*),
          bool (*READ)(rva_t, CODE_T, rva_t*),
          bool (*WRITE)(rva_t, rva_t, CODE_T*)>
class ArmAddrTraits {
 public:
  static constexpr ENUM_ADDR_TYPE addr_type = ADDR_TYPE;
  using code_t = CODE_T;
  static constexpr CODE_T (*Fetch)(ConstBufferView, offset_t) = FETCH;
  static constexpr void (*Store)(MutableBufferView, offset_t, CODE_T) = STORE;
  static constexpr ArmAlign (*Decode)(CODE_T, arm_disp_t*) = DECODE;
  static constexpr bool (*Encode)(arm_disp_t, CODE_T*) = ENCODE;
  static constexpr bool (*Read)(rva_t, CODE_T, rva_t*) = READ;
  static constexpr bool (*Write)(rva_t, rva_t, CODE_T*) = WRITE;
};

// Given THUMB2 instruction |code16|, returns 2 if it's from a 16-bit THUMB2
// instruction, or 4 if it's from a 32-bit THUMB2 instruction.
inline int GetThumb2InstructionSize(uint16_t code16) {
  return ((code16 & 0xF000) == 0xF000 || (code16 & 0xF800) == 0xE800) ? 4 : 2;
}

// A translator for ARM mode and THUMB2 mode with static functions that
// translate among |code|, |disp|, and |target_rva|.
class AArch32Rel32Translator {
 public:
  // Rel32 address types enumeration.
  enum AddrType : uint8_t {
    ADDR_NONE = 0xFF,
    // Naming: Here "A24" represents ARM mode instructions where |code|
    // dedicates 24 bits (including sign bit) to specify |disp|. Similarly, "T8"
    // represents THUMB2 mode instructions with 8 bits for |disp|. Currently
    // only {A24, T8, T11, T20, T24} are defined. These are not to be confused
    // with "B encoding A1", "B encoding T3", etc., which are specific encoding
    // schemes given by the manual for the "B" (or other) instructions (only
    // {A1, A2, T1, T2, T3, T4} are seen).
    ADDR_A24 = 0,
    ADDR_T8,
    ADDR_T11,
    ADDR_T20,
    ADDR_T24,
    NUM_ADDR_TYPE
  };

  AArch32Rel32Translator();
  AArch32Rel32Translator(const AArch32Rel32Translator&) = delete;
  const AArch32Rel32Translator& operator=(const AArch32Rel32Translator&) =
      delete;

  // Fetches the 32-bit ARM instruction |code| at |view[idx]|.
  static inline uint32_t FetchArmCode32(ConstBufferView view, offset_t idx) {
    return view.read<uint32_t>(idx);
  }

  // Fetches the 16-bit THUMB2 instruction |code| at |view[idx]|.
  static inline uint16_t FetchThumb2Code16(ConstBufferView view, offset_t idx) {
    return view.read<uint16_t>(idx);
  }

  // Fetches the 32-bit THUMB2 instruction |code| at |view[idx]|.
  static inline uint32_t FetchThumb2Code32(ConstBufferView view, offset_t idx) {
    // By convention, 32-bit THUMB2 instructions are written (as seen later) as:
    //   [byte3, byte2, byte1, byte0].
    // However (assuming little-endian ARM) the in-memory representation is
    //   [byte2, byte3, byte0, byte1].
    return (static_cast<uint32_t>(view.read<uint16_t>(idx)) << 16) |
           view.read<uint16_t>(idx + 2);
  }

  // Stores the 32-bit ARM instruction |code| to |mutable_view[idx]|.
  static inline void StoreArmCode32(MutableBufferView mutable_view,
                                    offset_t idx,
                                    uint32_t code) {
    mutable_view.write<uint32_t>(idx, code);
  }

  // Stores the 16-bit THUMB2 instruction |code| to |mutable_view[idx]|.
  static inline void StoreThumb2Code16(MutableBufferView mutable_view,
                                       offset_t idx,
                                       uint16_t code) {
    mutable_view.write<uint16_t>(idx, code);
  }

  // Stores the next 32-bit THUMB2 instruction |code| to |mutable_view[idx]|.
  static inline void StoreThumb2Code32(MutableBufferView mutable_view,
                                       offset_t idx,
                                       uint32_t code) {
    mutable_view.write<uint16_t>(idx, static_cast<uint16_t>(code >> 16));
    mutable_view.write<uint16_t>(idx + 2, static_cast<uint16_t>(code & 0xFFFF));
  }

  // The following functions convert |code| (16-bit or 32-bit) from/to |disp|
  // or |target_rva|, for specific branch instruction types.
  // Read*() and write*() functions convert between |code| and |target_rva|.
  // * Decode*() determines whether |code16/code32| is a branch instruction
  //   of a specific type. If so, then extracts |*disp| and returns the required
  //   ArmAlign. Otherwise returns kArmAlignFail.
  // * Encode*() determines whether |*code16/*code32| is a branch instruction of
  //   a specific type, and whether it can accommodate |disp|. If so, then
  //   re-encodes |*code32| using |disp|, and returns true. Otherwise returns
  //   false.
  // * Read*() is similar to Decode*(), but on success, extracts |*target_rva|
  //   using |instr_rva| as aid, performs the proper alignment, and returns
  //   true. Otherwise returns false.
  // * Write*() is similar to Encode*(), takes |target_rva| instead, and uses
  //   |instr_rva| as aid.
  static ArmAlign DecodeA24(uint32_t code32, arm_disp_t* disp);
  static bool EncodeA24(arm_disp_t disp, uint32_t* code32);
  // TODO(huangs): Refactor the Read*() functions: These are identical
  // except for Decode*() and Get*TargetRvaFromDisp().
  static bool ReadA24(rva_t instr_rva, uint32_t code32, rva_t* target_rva);
  static bool WriteA24(rva_t instr_rva, rva_t target_rva, uint32_t* code32);

  static ArmAlign DecodeT8(uint16_t code16, arm_disp_t* disp);
  static bool EncodeT8(arm_disp_t disp, uint16_t* code16);
  static bool ReadT8(rva_t instr_rva, uint16_t code16, rva_t* target_rva);
  static bool WriteT8(rva_t instr_rva, rva_t target_rva, uint16_t* code16);

  static ArmAlign DecodeT11(uint16_t code16, arm_disp_t* disp);
  static bool EncodeT11(arm_disp_t disp, uint16_t* code16);
  static bool ReadT11(rva_t instr_rva, uint16_t code16, rva_t* target_rva);
  static bool WriteT11(rva_t instr_rva, rva_t target_rva, uint16_t* code16);

  static ArmAlign DecodeT20(uint32_t code32, arm_disp_t* disp);
  static bool EncodeT20(arm_disp_t disp, uint32_t* code32);
  static bool ReadT20(rva_t instr_rva, uint32_t code32, rva_t* target_rva);
  static bool WriteT20(rva_t instr_rva, rva_t target_rva, uint32_t* code32);

  static ArmAlign DecodeT24(uint32_t code32, arm_disp_t* disp);
  static bool EncodeT24(arm_disp_t disp, uint32_t* code32);
  static bool ReadT24(rva_t instr_rva, uint32_t code32, rva_t* target_rva);
  static bool WriteT24(rva_t instr_rva, rva_t target_rva, uint32_t* code32);

  // Computes |target_rva| from |instr_rva| and |disp| in ARM mode.
  static inline rva_t GetArmTargetRvaFromDisp(rva_t instr_rva,
                                              arm_disp_t disp,
                                              ArmAlign align) {
    rva_t ret = static_cast<rva_t>(instr_rva + 8 + disp);
    // Align down.
    DCHECK_NE(align, kArmAlignFail);
    return ret - (ret & static_cast<rva_t>(align - 1));
  }

  // Computes |target_rva| from |instr_rva| and |disp| in THUMB2 mode.
  static inline rva_t GetThumb2TargetRvaFromDisp(rva_t instr_rva,
                                                 arm_disp_t disp,
                                                 ArmAlign align) {
    rva_t ret = static_cast<rva_t>(instr_rva + 4 + disp);
    // Align down.
    DCHECK_NE(align, kArmAlignFail);
    return ret - (ret & static_cast<rva_t>(align - 1));
  }

  // Computes |disp| from |instr_rva| and |target_rva| in ARM mode.
  static inline arm_disp_t GetArmDispFromTargetRva(rva_t instr_rva,
                                                   rva_t target_rva,
                                                   ArmAlign align) {
    // Assumes that |instr_rva + 8| does not overflow.
    arm_disp_t ret = static_cast<arm_disp_t>(target_rva) -
                     static_cast<arm_disp_t>(instr_rva + 8);
    // Align up.
    DCHECK_NE(align, kArmAlignFail);
    return ret + ((-ret) & static_cast<arm_disp_t>(align - 1));
  }

  // Computes |disp| from |instr_rva| and |target_rva| in THUMB2 mode.
  static inline arm_disp_t GetThumb2DispFromTargetRva(rva_t instr_rva,
                                                      rva_t target_rva,
                                                      ArmAlign align) {
    // Assumes that |instr_rva + 4| does not overflow.
    arm_disp_t ret = static_cast<arm_disp_t>(target_rva) -
                     static_cast<arm_disp_t>(instr_rva + 4);
    // Align up.
    DCHECK_NE(align, kArmAlignFail);
    return ret + ((-ret) & static_cast<arm_disp_t>(align - 1));
  }

  // Strategies to process each rel32 address type.
  using AddrTraits_A24 = ArmAddrTraits<AddrType,
                                       ADDR_A24,
                                       uint32_t,
                                       FetchArmCode32,
                                       StoreArmCode32,
                                       DecodeA24,
                                       EncodeA24,
                                       ReadA24,
                                       WriteA24>;
  using AddrTraits_T8 = ArmAddrTraits<AddrType,
                                      ADDR_T8,
                                      uint16_t,
                                      FetchThumb2Code16,
                                      StoreThumb2Code16,
                                      DecodeT8,
                                      EncodeT8,
                                      ReadT8,
                                      WriteT8>;
  using AddrTraits_T11 = ArmAddrTraits<AddrType,
                                       ADDR_T11,
                                       uint16_t,
                                       FetchThumb2Code16,
                                       StoreThumb2Code16,
                                       DecodeT11,
                                       EncodeT11,
                                       ReadT11,
                                       WriteT11>;
  using AddrTraits_T20 = ArmAddrTraits<AddrType,
                                       ADDR_T20,
                                       uint32_t,
                                       FetchThumb2Code32,
                                       StoreThumb2Code32,
                                       DecodeT20,
                                       EncodeT20,
                                       ReadT20,
                                       WriteT20>;
  using AddrTraits_T24 = ArmAddrTraits<AddrType,
                                       ADDR_T24,
                                       uint32_t,
                                       FetchThumb2Code32,
                                       StoreThumb2Code32,
                                       DecodeT24,
                                       EncodeT24,
                                       ReadT24,
                                       WriteT24>;
};

// Translator for AArch64, which is simpler than 32-bit ARM. Although pointers
// are 64-bit, displacements are within 32-bit.
class AArch64Rel32Translator {
 public:
  // Rel64 address types enumeration.
  enum AddrType : uint8_t {
    ADDR_NONE = 0xFF,
    ADDR_IMMD14 = 0,
    ADDR_IMMD19,
    ADDR_IMMD26,
    NUM_ADDR_TYPE
  };

  // Although RVA for 64-bit architecture can be 64-bit in length, we make the
  // bold assumption that for ELF images that RVA will stay nicely in 32-bit!
  AArch64Rel32Translator();
  AArch64Rel32Translator(const AArch64Rel32Translator&) = delete;
  const AArch64Rel32Translator& operator=(const AArch64Rel32Translator&) =
      delete;

  static inline uint32_t FetchCode32(ConstBufferView view, offset_t idx) {
    return view.read<uint32_t>(idx);
  }

  static inline void StoreCode32(MutableBufferView mutable_view,
                                 offset_t idx,
                                 uint32_t code) {
    mutable_view.write<uint32_t>(idx, code);
  }

  // Conversion functions for |code32| from/to |disp| or |target_rva|, similar
  // to the counterparts in AArch32Rel32Translator.
  static ArmAlign DecodeImmd14(uint32_t code32, arm_disp_t* disp);
  static bool EncodeImmd14(arm_disp_t disp, uint32_t* code32);
  // TODO(huangs): Refactor the Read*() functions: These are identical
  // except for Decode*().
  static bool ReadImmd14(rva_t instr_rva, uint32_t code32, rva_t* target_rva);
  static bool WriteImmd14(rva_t instr_rva, rva_t target_rva, uint32_t* code32);

  static ArmAlign DecodeImmd19(uint32_t code32, arm_disp_t* disp);
  static bool EncodeImmd19(arm_disp_t disp, uint32_t* code32);
  static bool ReadImmd19(rva_t instr_rva, uint32_t code32, rva_t* target_rva);
  static bool WriteImmd19(rva_t instr_rva, rva_t target_rva, uint32_t* code32);

  static ArmAlign DecodeImmd26(uint32_t code32, arm_disp_t* disp);
  static bool EncodeImmd26(arm_disp_t disp, uint32_t* code32);
  static bool ReadImmd26(rva_t instr_rva, uint32_t code32, rva_t* target_rva);
  static bool WriteImmd26(rva_t instr_rva, rva_t target_rva, uint32_t* code32);

  static inline rva_t GetTargetRvaFromDisp(rva_t instr_rva, arm_disp_t disp) {
    return static_cast<rva_t>(instr_rva + disp);
  }

  static inline arm_disp_t GetDispFromTargetRva(rva_t instr_rva,
                                                rva_t target_rva) {
    return static_cast<arm_disp_t>(target_rva - instr_rva);
  }

  // Strategies to process each rel32 address type.
  using AddrTraits_Immd14 = ArmAddrTraits<AddrType,
                                          ADDR_IMMD14,
                                          uint32_t,
                                          FetchCode32,
                                          StoreCode32,
                                          DecodeImmd14,
                                          EncodeImmd14,
                                          ReadImmd14,
                                          WriteImmd14>;
  using AddrTraits_Immd19 = ArmAddrTraits<AddrType,
                                          ADDR_IMMD19,
                                          uint32_t,
                                          FetchCode32,
                                          StoreCode32,
                                          DecodeImmd19,
                                          EncodeImmd19,
                                          ReadImmd19,
                                          WriteImmd19>;
  using AddrTraits_Immd26 = ArmAddrTraits<AddrType,
                                          ADDR_IMMD26,
                                          uint32_t,
                                          FetchCode32,
                                          StoreCode32,
                                          DecodeImmd26,
                                          EncodeImmd26,
                                          ReadImmd26,
                                          WriteImmd26>;
};

}  // namespace zucchini

#endif  // COMPONENTS_ZUCCHINI_ARM_UTILS_H_