aboutsummaryrefslogtreecommitdiff
path: root/arm_utils_unittest.cc
blob: 8109c92ef4c860cb76dd9d4e57b397a8a30b3dc6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
// Copyright 2019 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "components/zucchini/arm_utils.h"

#include <stddef.h>
#include <stdint.h>

#include <algorithm>
#include <cctype>
#include <initializer_list>
#include <map>
#include <sstream>
#include <string>
#include <vector>

#include "base/check_op.h"
#include "components/zucchini/address_translator.h"
#include "testing/gtest/include/gtest/gtest.h"

namespace zucchini {

namespace {

// "Clean slate" |code|s for branch instruction encodings with |disp| = 0, and
// if applicable, |cond| = 0.
uint32_t kCleanSlateB_A1 = 0x0A000000;    // A24.
uint32_t kCleanSlateBL_A1 = 0x0B000000;   // A24.
uint32_t kCleanSlateBLX_A2 = 0xFA000000;  // A24.
uint16_t kCleanSlateB_T1 = 0xD000;        // T8.
uint16_t kCleanSlateB_T2 = 0xE000;        // T11.
uint32_t kCleanSlateB_T3 = 0xF0008000;    // T20.
// For T24 encodings, |disp| = 0 means J1 = J2 = 1, so include 0x00002800.
uint32_t kCleanSlateB_T4 = 0xF0009000 | 0x00002800;    // T24.
uint32_t kCleanSlateBL_T1 = 0xF000D000 | 0x00002800;   // T24.
uint32_t kCleanSlateBLX_T2 = 0xF000C000 | 0x00002800;  // T24.

// For AArch64.
uint32_t kCleanSlate64TBZw = 0x36000000;   // Immd14.
uint32_t kCleanSlate64TBZz = 0xB6000000;   // Immd14.
uint32_t kCleanSlate64TBNZw = 0x37000000;  // Immd14.
uint32_t kCleanSlate64TBNZz = 0xB7000000;  // Immd14.
uint32_t kCleanSlate64Bcond = 0x54000000;  // Immd19.
uint32_t kCleanSlate64CBZw = 0x34000000;   // Immd19.
uint32_t kCleanSlate64CBZz = 0xB4000000;   // Immd19.
uint32_t kCleanSlate64CBNZw = 0x35000000;  // Immd19.
uint32_t kCleanSlate64CBNZz = 0xB5000000;  // Immd19.
uint32_t kCleanSlate64B = 0x14000000;      // Immd26.
uint32_t kCleanSlate64BL = 0x94000000;     // Immd26.

// Special case: Cond = 0xE => AL.
uint32_t kCleanSlateBAL_A1 = kCleanSlateB_A1 | (0xE << 28);  //

// Test helper: Extracts |components| from |value| (may be |code| or |disp|)
// based on |pattern|. Also performs consistency checks. On success, writes to
// |*components| and returns true. Otherwise returns false.
// Example (all numbers are in binary):
//   |pattern| = "11110Scc cciiiiii 10(J1)0(J2)jjj jjjj...."
//     |value| =  11110111 00111000 10 1  0 0  111 11000101
// Result: Noting that all 0's and 1's are consistent, returns true with:
//   |*components| = {S: 1, c: 1100, i: 111000, J1: 1, J2: 0, j: 1111100}
// Rules for |pattern|:
// * Spaces are ignored.
// * '.' means "don't care".
// * '0' and '1' are expected literals; mismatch leads to failure.
// * A variable name is specified as:
//   * A single letter.
//   * "(var)", where "var" is a name that begins with a letter.
// * If a variable's first letter is uppercase, then it's a singleton bit.
//   * If repeated, consistency check is applied (must be identical).
// * If a variable's first letter is lowercase, then it spans multiple bits.
//   * These need not be contiguous, but order is preserved (big-endian).
static bool SplitBits(const std::string& pattern,
                      uint32_t value,
                      std::map<std::string, uint32_t>* components) {
  CHECK(components);

  // Split |pattern| into |token_list|.
  std::vector<std::string> token_list;
  size_t bracket_start = std::string::npos;
  for (size_t i = 0; i < pattern.size(); ++i) {
    char ch = pattern[i];
    if (bracket_start == std::string::npos) {
      if (ch == '(')
        bracket_start = i + 1;
      else if (ch != ' ')  // Ignore space.
        token_list.push_back(std::string(1, ch));
    } else if (ch == ')') {
      token_list.push_back(pattern.substr(bracket_start, i - bracket_start));
      bracket_start = std::string::npos;
    }
  }
  CHECK_EQ(std::string::npos, bracket_start);  // No dangling "(".

  // Process each token.
  size_t num_tokens = token_list.size();
  std::map<std::string, uint32_t> temp_components;
  CHECK(num_tokens == 32 || (num_tokens == 16 && value <= 0xFFFF));
  for (size_t i = 0; i < num_tokens; ++i) {
    const std::string& token = token_list[i];
    CHECK(!token.empty());
    uint32_t bit = (value >> (num_tokens - 1 - i)) & 1;
    if (token == "0" || token == "1") {
      if (token[0] != static_cast<char>('0' + bit))
        return false;  // Fail: Mismatch.
    } else if (isupper(token[0])) {
      if (temp_components.count(token)) {
        if (temp_components[token] != bit)
          return false;  // Fail: Singleton bit not uniform.
      } else {
        temp_components[token] = bit;
      }
    } else if (islower(token[0])) {
      temp_components[token] = (temp_components[token] << 1) | bit;
    } else if (token != ".") {
      return false;  // Fail: Unrecognized token.
    }
  }
  components->swap(temp_components);
  return true;
}

// AArch32 or AArch64 instruction specification for tests. May be 16-bit or
// 32-bit (determined by INT_T).
template <typename INT_T>
struct ArmRelInstruction {
  ArmRelInstruction(const std::string& code_pattern_in, INT_T code)
      : code_pattern(code_pattern_in), clean_slate_code(code) {}

  // Code pattern for SplitBits().
  std::string code_pattern;

  // "Clean slate" |code| encodes |disp| = 0.
  INT_T clean_slate_code;
};

// Tester for ARM Encode / Decode functions for |disp| <-> |code|.
template <typename TRAITS>
class ArmTranslatorEncodeDecodeTest {
 public:
  using CODE_T = typename TRAITS::code_t;

  ArmTranslatorEncodeDecodeTest() {}

  // For each instruction (with |clean_slate_code| in |instr_list|) and for each
  // |disp| in |good_disp_list|, forms |code| with |encode_fun()| and checks for
  // success. Extracts |disp_out| with |decode_fun()| and checks that it's the
  // original |disp|. For each (|disp|, |code|) pair, extracts components using
  // SplitBits(), and checks that components from |toks_list| are identical. For
  // each |disp| in |bad_disp_list|, checks that |decode_fun_()| fails.
  void Run(const std::string& disp_pattern,
           const std::vector<std::string>& toks_list,
           const std::vector<ArmRelInstruction<CODE_T>>& instr_list,
           const std::vector<arm_disp_t>& good_disp_list,
           const std::vector<arm_disp_t>& bad_disp_list) {
    ArmAlign (*decode_fun)(CODE_T, arm_disp_t*) = TRAITS::Decode;
    bool (*encode_fun)(arm_disp_t, CODE_T*) = TRAITS::Encode;

    for (const ArmRelInstruction<CODE_T> instr : instr_list) {
      // Parse clean slate code bytes, and ensure it's well-formed.
      std::map<std::string, uint32_t> clean_slate_code_components;
      EXPECT_TRUE(SplitBits(instr.code_pattern, instr.clean_slate_code,
                            &clean_slate_code_components));

      for (arm_disp_t disp : good_disp_list) {
        CODE_T code = instr.clean_slate_code;
        // Encode |disp| to |code|.
        EXPECT_TRUE((*encode_fun)(disp, &code)) << disp;
        arm_disp_t disp_out = 0;

        // Extract components (performs consistency checks) and compare.
        std::map<std::string, uint32_t> disp_components;
        EXPECT_TRUE(SplitBits(disp_pattern, static_cast<uint32_t>(disp),
                              &disp_components));
        std::map<std::string, uint32_t> code_components;
        EXPECT_TRUE(SplitBits(instr.code_pattern, code, &code_components));
        for (const std::string& tok : toks_list) {
          EXPECT_EQ(1U, disp_components.count(tok)) << tok;
          EXPECT_EQ(1U, code_components.count(tok)) << tok;
          EXPECT_EQ(disp_components[tok], code_components[tok]) << tok;
        }

        // Decode |code| to |disp_out|, check fidelity.
        EXPECT_NE(kArmAlignFail, (*decode_fun)(code, &disp_out));
        EXPECT_EQ(disp, disp_out);

        // Sanity check: Re-encode |disp| into |code|, ensure no change.
        CODE_T code_copy = code;
        EXPECT_TRUE((*encode_fun)(disp, &code));
        EXPECT_EQ(code_copy, code);

        // Encode 0, ensure we get clean slate |code| back.
        EXPECT_TRUE((*encode_fun)(0, &code));
        EXPECT_EQ(instr.clean_slate_code, code);
      }

      for (arm_disp_t disp : bad_disp_list) {
        CODE_T code = instr.clean_slate_code;
        EXPECT_FALSE((*encode_fun)(disp, &code)) << disp;
        // Value does not get modified after failure.
        EXPECT_EQ(instr.clean_slate_code, code);
      }
    }
  }
};

// Tester for ARM Write / Read functions for |target_rva| <-> |code|.
template <typename TRAITS>
class ArmTranslatorWriteReadTest {
 public:
  using CODE_T = typename TRAITS::code_t;

  ArmTranslatorWriteReadTest() {}

  // Expects successful Write() to |clean_slate_code| for each |target_rva_list|
  // RVA, using each |instr_rva_list| RVA, and that the resulting |code| leads
  // to successful Read(), which recovers |instr_rva|.
  void Accept(CODE_T clean_slate_code,
              const std::vector<rva_t>& instr_rva_list,
              const std::vector<rva_t>& target_rva_list) {
    bool (*read_fun)(rva_t, CODE_T, rva_t*) = TRAITS::Read;
    bool (*write_fun)(rva_t, rva_t, CODE_T*) = TRAITS::Write;

    for (rva_t instr_rva : instr_rva_list) {
      for (rva_t target_rva : target_rva_list) {
        CODE_T code = clean_slate_code;
        // Write |target_rva| to |code|.
        EXPECT_TRUE((*write_fun)(instr_rva, target_rva, &code)) << target_rva;
        rva_t target_rva_out = kInvalidRva;

        // Read |code| to |target_rva_out|, check fidelity.
        EXPECT_TRUE((*read_fun)(instr_rva, code, &target_rva_out));
        EXPECT_EQ(target_rva, target_rva_out);

        // Sanity check: Rewrite |target_rva| into |code|, ensure no change.
        CODE_T code_copy = code;
        EXPECT_TRUE((*write_fun)(instr_rva, target_rva, &code));
        EXPECT_EQ(code_copy, code);
      }
    }
  }

  // Expects failed Write() to |clean_slate_code| for each |target_rva_list|
  // RVA, using each |instr_rva_list| RVA.
  void Reject(CODE_T clean_slate_code,
              const std::vector<rva_t>& instr_rva_list,
              const std::vector<rva_t>& target_rva_list) {
    bool (*write_fun)(rva_t, rva_t, CODE_T*) = TRAITS::Write;

    for (rva_t instr_rva : instr_rva_list) {
      for (rva_t target_rva : target_rva_list) {
        CODE_T code = clean_slate_code;
        EXPECT_FALSE((*write_fun)(instr_rva, target_rva, &code)) << target_rva;
        // Output variable is unmodified after failure.
        EXPECT_EQ(clean_slate_code, code);
      }
    }
  }
};

}  // namespace

// Test for test helper.
TEST(ArmUtilsTest, SplitBits) {
  // If |expected| == "BAD" then we expect failure.
  auto run_test = [](const std::string& expected, const std::string& pattern,
                     uint32_t value) {
    std::map<std::string, uint32_t> components;
    if (expected == "BAD") {
      EXPECT_FALSE(SplitBits(pattern, value, &components));
      EXPECT_TRUE(components.empty());
    } else {
      EXPECT_TRUE(SplitBits(pattern, value, &components));
      std::ostringstream oss;
      // Not using AsHex<>, since number of digits is not fixed.
      oss << std::uppercase << std::hex;
      std::string sep = "";
      for (auto it : components) {
        oss << sep << it.first << "=" << it.second;
        sep = ",";
      }
      EXPECT_EQ(expected, oss.str());
    }
  };

  run_test("a=ABCD0123", "aaaaaaaa aaaaaaaa aaaaaaaa aaaaaaaa", 0xABCD0123);
  run_test("a=ABCD,b=123", "aaaaaaaa aaaaaaaa bbbbbbbb bbbbbbbb", 0xABCD0123);
  run_test("a=23,b=1,c=CD,d=AB", "dddddddd cccccccc bbbbbbbb aaaaaaaa",
           0xABCD0123);
  run_test("", "........ ........ ........ ........", 0xABCD0123);
  run_test("t=AC02", " tttt.... tt tt.... tttt....tttt....  ", 0xABCD0123);

  run_test("a=8,b=C,c=E,d1=F", "aaaabbbb cccc(d1)(d1)(d1)(d1)", 0x8CEF);
  run_test("a=F,b=7,c=3,d1=1", "abc(d1)abc(d1) abc(d1)abc(d1)", 0x8CEF);

  run_test("A1=0,X=1", "(A1)XX(A1) X(A1)(A1)(A1)   (X)(A1)(X)X(X)(X)X(A1)",
           0x68BE);
  run_test("BAD", "(A1)XX(A1) X(A1)(A1)(A1)   (X)(A1)(X)X(X)(X)X(A1)", 0x68BF);
  run_test("BAD", "(A1)XX(A1) X(A1)(A1)(A1)   (X)(A1)(X)X(X)(X)X(A1)", 0x683E);

  run_test("A=1,B=0,a=C", "AAAAaaaa BBBB01..", 0xFC06);
  run_test("A=1,B=0,a=4", "AAAAaaaa BBBB01..", 0xF406);
  run_test("A=0,B=1,a=C", "AAAAaaaa BBBB01..", 0x0CF5);
  run_test("BAD", "AAAAaaaa BBBB01..", 0xEC06);  // Non-uniform A.
  run_test("BAD", "AAAAaaaa BBBB01..", 0xFC16);  // Non-uniform B.
  run_test("BAD", "AAAAaaaa BBBB01..", 0xFC02);  // Constant mismatch.
}

TEST(AArch32Rel32Translator, Fetch) {
  std::vector<uint8_t> bytes = {0x10, 0x32, 0x54, 0x76, 0x98, 0xBA, 0xDC, 0xFE};
  ConstBufferView region(&bytes[0], bytes.size());
  AArch32Rel32Translator translator;
  EXPECT_EQ(0x76543210U, translator.FetchArmCode32(region, 0U));
  EXPECT_EQ(0xFEDCBA98U, translator.FetchArmCode32(region, 4U));

  EXPECT_EQ(0x3210U, translator.FetchThumb2Code16(region, 0U));
  EXPECT_EQ(0xFEDCU, translator.FetchThumb2Code16(region, 6U));

  EXPECT_EQ(0x32107654U, translator.FetchThumb2Code32(region, 0U));
  EXPECT_EQ(0xBA98FEDCU, translator.FetchThumb2Code32(region, 4U));
}

TEST(AArch32Rel32Translator, Store) {
  std::vector<uint8_t> expected = {
      0xFF, 0xFF, 0xFF, 0xFF,  // Padding.
      0x10, 0x32, 0x54, 0x76,  // ARM 32-bit.
      0xFF, 0xFF,              // Padding.
      0x42, 0x86,              // THUMB2 16-bit.
      0xFF, 0xFF,              // Padding.
      0xDC, 0xFE, 0x98, 0xBA,  // THUMB2 32-bit.
      0xFF, 0xFF, 0xFF, 0xFF   // Padding.
  };

  std::vector<uint8_t> bytes(4 * 2 + 2 * 3 + 4 * 2, 0xFF);
  MutableBufferView region(&bytes[0], bytes.size());
  CHECK_EQ(expected.size(), bytes.size());

  AArch32Rel32Translator translator;
  translator.StoreArmCode32(region, 4U, 0x76543210U);
  translator.StoreThumb2Code16(region, 10U, 0x8642U);
  translator.StoreThumb2Code32(region, 14U, 0xFEDCBA98U);

  EXPECT_EQ(expected, bytes);
}

// Detailed test of Encode/Decode: Check valid and invalid |disp| for various
// clean slate |code| cases. Also check |disp| and |code| binary components,
// which in AArch32Rel32Translator comments.
TEST(AArch32Rel32Translator, EncodeDecode) {
  // A24 tests.
  ArmTranslatorEncodeDecodeTest<AArch32Rel32Translator::AddrTraits_A24>
      test_A24;
  for (int cond = 0; cond <= 0x0E; ++cond) {
    ArmRelInstruction<uint32_t> B_A1_cond("cccc1010 Siiiiiii iiiiiiii iiiiiiii",
                                          kCleanSlateB_A1 | (cond << 28));
    ArmRelInstruction<uint32_t> BL_A1_cond(
        "cccc1011 Siiiiiii iiiiiiii iiiiiiii", kCleanSlateBL_A1 | (cond << 28));
    test_A24.Run("SSSSSSSi iiiiiiii iiiiiiii iiiiii00", {"S", "i"},
                 {B_A1_cond, BL_A1_cond},
                 {0x01FFFFFC, -0x02000000, 0, 4, -4, 0x40, 0x44},
                 {2, -2, 0x41, 0x42, 0x43, 0x02000000, -0x02000004});
  }
  // BLX encoding A2, which has 2-byte alignment.
  ArmRelInstruction<uint32_t> BLX_A2("1111101H Siiiiiii iiiiiiii iiiiiiii",
                                     kCleanSlateBLX_A2);
  test_A24.Run("SSSSSSSi iiiiiiii iiiiiiii iiiiiiH0", {"S", "i", "H"}, {BLX_A2},
               {0x01FFFFFC, 0x01FFFFFE, -0x02000000, 0, 2, -2, 4, 0x40, 0x42},
               {1, -1, 0x41, 0x43, 0x02000000, -0x02000002});

  // T8 tests.
  ArmTranslatorEncodeDecodeTest<AArch32Rel32Translator::AddrTraits_T8> test_T8;
  for (int cond = 0; cond <= 0x0E; ++cond) {
    ArmRelInstruction<uint16_t> B_T1_cond("1101cccc Siiiiiii",
                                          kCleanSlateB_T1 | (cond << 8));
    test_T8.Run("SSSSSSSS SSSSSSSS SSSSSSSS iiiiiii0", {"S", "i"}, {B_T1_cond},
                {0x00FE, -0x0100, 0, 2, -2, 4, 0x40, 0x42},
                {1, -1, 0x41, 0x43, 0x0100, -0x0102});
  }
  ArmRelInstruction<uint16_t> B_T1_invalid("11011111 ........",
                                           kCleanSlateB_T1 | (0x0F << 8));
  test_T8.Run("........ ........ ........ ........", std::vector<std::string>(),
              {B_T1_invalid}, std::vector<arm_disp_t>(),
              {0x00FE, -0x0100, 0, 2, 4, 0x40, 0x41, 0x0100, -0x0102});

  // T11 tests.
  ArmTranslatorEncodeDecodeTest<AArch32Rel32Translator::AddrTraits_T11>
      test_T11;
  ArmRelInstruction<uint16_t> B_T2("11100Sii iiiiiiii", kCleanSlateB_T2);
  test_T11.Run("SSSSSSSS SSSSSSSS SSSSSiii iiiiiii0", {"S", "i"}, {B_T2},
               {0x07FE, -0x0800, 0, 2, -2, 4, 0x40, 0x42},
               {1, -1, 0x41, 0x43, 0x0800, -0x0802});

  // T20 tests.
  ArmTranslatorEncodeDecodeTest<AArch32Rel32Translator::AddrTraits_T20>
      test_T20;
  for (int cond = 0; cond <= 0x0E; ++cond) {
    ArmRelInstruction<uint32_t> B_T3_cond(
        "11110Scc cciiiiii 10(J1)0(J2)jjj jjjjjjjj",
        kCleanSlateB_T3 | (cond << 22));
    test_T20.Run("SSSSSSSS SSSS(J2)(J1)ii iiiijjjj jjjjjjj0",
                 {"S", "J2", "J1", "i", "j"}, {B_T3_cond},
                 {0x000FFFFE, -0x00100000, 0, 2, -2, 4, 0x40, 0x42},
                 {1, -1, 0x41, 0x43, 0x00100000, -0x00100002});
  }
  ArmRelInstruction<uint32_t> B_T3_invalid(
      "11110.11 11...... 10.0.... ........", kCleanSlateB_T3 | (0x0F << 22));
  test_T20.Run("........ ........ ........ ........",
               std::vector<std::string>(), {B_T3_invalid},
               std::vector<arm_disp_t>(),
               {0x000FFFFE, -0x00100000, 0, 2, 4, 0x40, 0x42, 1, 0x41, 0x43,
                0x00100000, -0x00100002});

  // T24 tests.
  ArmTranslatorEncodeDecodeTest<AArch32Rel32Translator::AddrTraits_T24>
      test_T24;
  // "Clean slate" means J1 = J2 = 1, so we include 0x00002800.
  ArmRelInstruction<uint32_t> B_T4("11110Sii iiiiiiii 10(J1)1(J2)jjj jjjjjjjj",
                                   kCleanSlateB_T4);
  ArmRelInstruction<uint32_t> BL_T1("11110Sii iiiiiiii 11(J1)1(J2)jjj jjjjjjjj",
                                    kCleanSlateBL_T1);
  test_T24.Run("SSSSSSSS (I1)(I2)iiiiii iiiijjjj jjjjjjj0",
               {"S", "i", "j"},  // Skip "J1", "J2", "I1", "I2" checks.
               {B_T4, BL_T1},
               {0x00FFFFFE, -0x01000000, 0, 2, -2, 4, -4, 0x40, 0x42},
               {1, -1, 0x41, 0x43, 0x01000000, -0x01000002});

  // For BLX encoding T2, |disp| must be multiple of 4.
  ArmRelInstruction<uint32_t> BLX_T2(
      "11110Sii iiiiiiii 11(J1)0(J2)jjj jjjjjjj0", kCleanSlateBLX_T2);
  test_T24.Run(
      "SSSSSSSS (I1)(I2)iiiiii iiiijjjj jjjjjj00",
      {"S", "i", "j"},  // Skip "J1", "J2", "I1", "I2" checks.
      {BLX_T2}, {0x00FFFFFC, -0x01000000, 0, 4, -4, 0x40},
      {1, -1, 2, -2, 0x41, 0x42, 0x43, 0x00FFFFFE, 0x01000000, -0x01000002});
}

TEST(AArch32Rel32Translator, WriteRead) {
  std::vector<rva_t> aligned4;
  std::vector<rva_t> misaligned4;
  std::vector<rva_t> aligned2;
  std::vector<rva_t> misaligned2;
  for (rva_t rva = 0x1FFC; rva <= 0x2010; ++rva) {
    ((rva % 4 == 0) ? aligned4 : misaligned4).push_back(rva);
    ((rva % 2 == 0) ? aligned2 : misaligned2).push_back(rva);
  }
  CHECK_EQ(6U, aligned4.size());
  CHECK_EQ(15U, misaligned4.size());
  CHECK_EQ(11U, aligned2.size());
  CHECK_EQ(10U, misaligned2.size());

  // Helpers to convert an instruction's RVA to PC.
  auto pcArm = [](rva_t instr_rva) -> rva_t { return instr_rva + 8; };
  auto pcThumb2 = [](rva_t instr_rva) -> rva_t { return instr_rva + 4; };

  // A24 tests.
  ArmTranslatorWriteReadTest<AArch32Rel32Translator::AddrTraits_A24> test_A24;
  for (uint32_t clean_slate_code : {kCleanSlateB_A1, kCleanSlateBL_A1}) {
    test_A24.Accept(clean_slate_code, aligned4, aligned4);
    test_A24.Reject(clean_slate_code, aligned4, misaligned4);
    test_A24.Reject(clean_slate_code, misaligned4, aligned4);
    test_A24.Reject(clean_slate_code, misaligned4, misaligned4);
    // Signed (24 + 2)-bit range, 4-byte aligned: [-0x02000000, 0x01FFFFFC].
    test_A24.Accept(clean_slate_code, {0x15000000},
                    {pcArm(0x13000000), pcArm(0x16FFFFFC)});
    test_A24.Reject(clean_slate_code, {0x15000000},
                    {pcArm(0x13000000 - 4), pcArm(0x16FFFFFC + 4)});
  }

  // BLX complication: ARM -> THUMB2.
  test_A24.Accept(kCleanSlateBLX_A2, aligned4, aligned2);
  test_A24.Reject(kCleanSlateBLX_A2, aligned4, misaligned2);
  test_A24.Reject(kCleanSlateBLX_A2, misaligned4, aligned2);
  test_A24.Reject(kCleanSlateBLX_A2, misaligned4, misaligned2);
  test_A24.Accept(kCleanSlateBLX_A2, {0x15000000},
                  {pcArm(0x13000000), pcArm(0x16FFFFFE)});
  test_A24.Reject(kCleanSlateBLX_A2, {0x15000000},
                  {pcArm(0x13000000 - 4), pcArm(0x13000000 - 2),
                   pcArm(0x16FFFFFE + 2), pcArm(0x16FFFFFE + 4)});

  // T8 tests.
  ArmTranslatorWriteReadTest<AArch32Rel32Translator::AddrTraits_T8> test_T8;
  test_T8.Accept(kCleanSlateB_T1, aligned2, aligned2);
  test_T8.Reject(kCleanSlateB_T1, aligned2, misaligned2);
  test_T8.Reject(kCleanSlateB_T1, misaligned2, aligned2);
  test_T8.Reject(kCleanSlateB_T1, misaligned2, misaligned2);
  // Signed (8 + 1)-bit range, 2-byte aligned: [-0x0100, 0x00FE].
  test_T8.Accept(kCleanSlateB_T1, {0x10000500},
                 {pcThumb2(0x10000400), pcThumb2(0x100005FE)});
  test_T8.Reject(kCleanSlateB_T1, {0x10000500},
                 {pcThumb2(0x10000400 - 2), pcThumb2(0x100005FE + 2)});

  // T11 tests.
  ArmTranslatorWriteReadTest<AArch32Rel32Translator::AddrTraits_T11> test_T11;
  test_T11.Accept(kCleanSlateB_T2, aligned2, aligned2);
  test_T11.Reject(kCleanSlateB_T2, aligned2, misaligned2);
  test_T11.Reject(kCleanSlateB_T2, misaligned2, aligned2);
  test_T11.Reject(kCleanSlateB_T2, misaligned2, misaligned2);
  // Signed (11 + 1)-bit range, 2-byte aligned: [-0x0800, 0x07FE].
  test_T11.Accept(kCleanSlateB_T2, {0x10003000},
                  {pcThumb2(0x10002800), pcThumb2(0x100037FE)});
  test_T11.Reject(kCleanSlateB_T2, {0x10003000},
                  {pcThumb2(0x10002800 - 2), pcThumb2(0x100037FE + 2)});

  // T20 tests.
  ArmTranslatorWriteReadTest<AArch32Rel32Translator::AddrTraits_T20> test_T20;
  test_T20.Accept(kCleanSlateB_T3, aligned2, aligned2);
  test_T20.Reject(kCleanSlateB_T3, aligned2, misaligned2);
  test_T20.Reject(kCleanSlateB_T3, misaligned2, aligned2);
  test_T20.Reject(kCleanSlateB_T3, misaligned2, misaligned2);
  // Signed (20 + 1)-bit range, 2-byte aligned: [-0x00100000, 0x000FFFFE].
  test_T20.Accept(kCleanSlateB_T3, {0x10300000},
                  {pcThumb2(0x10200000), pcThumb2(0x103FFFFE)});
  test_T20.Reject(kCleanSlateB_T3, {0x10300000},
                  {pcThumb2(0x10200000 - 2), pcThumb2(0x103FFFFE + 2)});

  // T24 tests.
  ArmTranslatorWriteReadTest<AArch32Rel32Translator::AddrTraits_T24> test_T24;
  for (uint32_t clean_slate_code : {kCleanSlateB_T4, kCleanSlateBL_T1}) {
    test_T24.Accept(clean_slate_code, aligned2, aligned2);
    test_T24.Reject(clean_slate_code, aligned2, misaligned2);
    test_T24.Reject(clean_slate_code, misaligned2, aligned2);
    test_T24.Reject(clean_slate_code, misaligned2, misaligned2);
    // Signed (24 + 1)-bit range, 2-byte aligned: [-0x01000000, 0x00FFFFFE].
    test_T24.Accept(clean_slate_code, {0x16000000},
                    {pcThumb2(0x15000000), pcThumb2(0x16FFFFFE)});
    test_T24.Reject(clean_slate_code, {0x16000000},
                    {pcThumb2(0x15000000 - 2), pcThumb2(0x16FFFFFE + 2)});
  }

  // BLX complication: THUMB2 -> ARM.
  test_T24.Accept(kCleanSlateBLX_T2, aligned2, aligned4);
  test_T24.Reject(kCleanSlateBLX_T2, aligned2, misaligned4);
  test_T24.Reject(kCleanSlateBLX_T2, misaligned2, aligned4);
  test_T24.Reject(kCleanSlateBLX_T2, misaligned2, misaligned4);
  test_T24.Accept(kCleanSlateBLX_T2, {0x16000000},
                  {pcThumb2(0x15000000), pcThumb2(0x16FFFFFC)});
  test_T24.Reject(kCleanSlateBLX_T2, {0x16000000},
                  {pcThumb2(0x15000000 - 4), pcThumb2(0x15000000 - 2),
                   pcThumb2(0x16FFFFFC + 2), pcThumb2(0x16FFFFFC + 4)});
}

// Typical usage in |target_rva| extraction.
TEST(AArch32Rel32Translator, Main) {
  // ARM mode (32-bit).
  // 00103050: 00 01 02 EA    B     00183458 ; B encoding A1 (cond = AL).
  {
    rva_t instr_rva = 0x00103050U;
    AArch32Rel32Translator translator;
    std::vector<uint8_t> bytes = {0x00, 0x01, 0x02, 0xEA};
    MutableBufferView region(&bytes[0], bytes.size());
    uint32_t code = translator.FetchArmCode32(region, 0U);
    EXPECT_EQ(0xEA020100U, code);

    // |code| <-> |disp|.
    arm_disp_t disp = 0;
    EXPECT_EQ(kArmAlign4, translator.DecodeA24(code, &disp));
    EXPECT_EQ(+0x00080400, disp);

    uint32_t code_from_disp = kCleanSlateBAL_A1;
    EXPECT_TRUE(translator.EncodeA24(disp, &code_from_disp));
    EXPECT_EQ(code, code_from_disp);

    // |code| <-> |target_rva|.
    rva_t target_rva = kInvalidRva;
    EXPECT_TRUE(translator.ReadA24(instr_rva, code, &target_rva));
    // 0x00103050 + 8 + 0x00080400.
    EXPECT_EQ(0x00183458U, target_rva);

    uint32_t code_from_rva = kCleanSlateBAL_A1;
    EXPECT_TRUE(translator.WriteA24(instr_rva, target_rva, &code_from_rva));
    EXPECT_EQ(code, code_from_rva);
  }

  // THUMB2 mode (16-bit).
  // 001030A2: F3 E7          B     0010308C ; B encoding T2.
  {
    rva_t instr_rva = 0x001030A2U;
    AArch32Rel32Translator translator;
    std::vector<uint8_t> bytes = {0xF3, 0xE7};
    MutableBufferView region(&bytes[0], bytes.size());
    uint16_t code = translator.FetchThumb2Code16(region, 0U);
    // Sii iiiiiiii = 111 11110011 = -1101 = -0x0D.
    EXPECT_EQ(0xE7F3U, code);

    // |code| <-> |disp|.
    arm_disp_t disp = 0;
    EXPECT_EQ(kArmAlign2, translator.DecodeT11(code, &disp));
    EXPECT_EQ(-0x0000001A, disp);  // -0x0D * 2 = -0x1A.

    uint16_t code_from_disp = kCleanSlateB_T2;
    EXPECT_TRUE(translator.EncodeT11(disp, &code_from_disp));
    EXPECT_EQ(code, code_from_disp);

    // |code| <-> |target_rva|.
    rva_t target_rva = kInvalidRva;
    EXPECT_TRUE(translator.ReadT11(instr_rva, code, &target_rva));
    // 0x001030A2 + 4 - 0x0000001A.
    EXPECT_EQ(0x0010308CU, target_rva);

    uint16_t code_from_rva = kCleanSlateB_T2;
    EXPECT_TRUE(translator.WriteT11(instr_rva, target_rva, &code_from_rva));
    EXPECT_EQ(code, code_from_rva);
  }

  // THUMB2 mode (32-bit).
  // 001030A2: 00 F0 01 FA    BL    001034A8 ; BL encoding T1.
  {
    rva_t instr_rva = 0x001030A2U;
    AArch32Rel32Translator translator;
    std::vector<uint8_t> bytes = {0x00, 0xF0, 0x01, 0xFA};
    MutableBufferView region(&bytes[0], bytes.size());
    uint32_t code = translator.FetchThumb2Code32(region, 0U);
    EXPECT_EQ(0xF000FA01U, code);

    // |code| <-> |disp|.
    arm_disp_t disp = 0;
    EXPECT_EQ(kArmAlign2, translator.DecodeT24(code, &disp));
    EXPECT_EQ(+0x00000402, disp);

    uint32_t code_from_disp = kCleanSlateBL_T1;
    EXPECT_TRUE(translator.EncodeT24(disp, &code_from_disp));
    EXPECT_EQ(code, code_from_disp);

    // |code| <-> |target_rva|.
    rva_t target_rva = kInvalidRva;
    EXPECT_TRUE(translator.ReadT24(instr_rva, code, &target_rva));
    // 0x001030A2 + 4 + 0x00000002.
    EXPECT_EQ(0x001034A8U, target_rva);

    uint32_t code_from_rva = kCleanSlateBL_T1;
    EXPECT_TRUE(translator.WriteT24(instr_rva, target_rva, &code_from_rva));
    EXPECT_EQ(code, code_from_rva);
  }
}

TEST(AArch32Rel32Translator, BLXComplication) {
  auto run_test = [](rva_t instr_rva,
                     std::vector<uint8_t> bytes,  // Pass by value.
                     uint32_t expected_code, arm_disp_t expected_disp,
                     uint32_t clean_slate_code, rva_t expected_target_rva) {
    AArch32Rel32Translator translator;
    MutableBufferView region(&bytes[0], bytes.size());
    uint32_t code = translator.FetchThumb2Code32(region, 0U);
    EXPECT_EQ(expected_code, code);

    // |code| <-> |disp|.
    arm_disp_t disp = 0;
    EXPECT_TRUE(translator.DecodeT24(code, &disp));
    EXPECT_EQ(expected_disp, disp);

    uint32_t code_from_disp = clean_slate_code;
    EXPECT_TRUE(translator.EncodeT24(disp, &code_from_disp));
    EXPECT_EQ(code, code_from_disp);

    // |code| <-> |target_rva|.
    rva_t target_rva = kInvalidRva;
    EXPECT_TRUE(translator.ReadT24(instr_rva, code, &target_rva));
    EXPECT_EQ(expected_target_rva, target_rva);

    uint32_t code_from_rva = clean_slate_code;
    EXPECT_TRUE(translator.WriteT24(instr_rva, target_rva, &code_from_rva));
    EXPECT_EQ(code, code_from_rva);
  };

  // No complication, 4-byte aligned.
  // 001030A0: 01 F0 06 B0    B     005040B0 ; B encoding T4.
  run_test(0x001030A0U,  // Multiple of 4.
           {0x01, 0xF0, 0x06, 0xB0}, 0xF001B006U, 0x0040100C, kCleanSlateB_T4,
           // "Canonical" |target_rva|: 0x001030A0 + 4 + 0x0040100C.
           0x005040B0U);

  // No complication, not 4-byte aligned.
  // 001030A2: 01 F0 06 B0    B     005040B2 ; B encoding T4.
  run_test(0x001030A2U,  // Shift by 2: Not multiple of 4.
           {0x01, 0xF0, 0x06, 0xB0}, 0xF001B006U, 0x0040100C, kCleanSlateB_T4,
           // Shifted by 2: 0x001030A2 + 4 + 0x0040100C.
           0x005040B2U);

  // Repeat the above, but use BLX instead of B.

  // BLX complication, 4-byte aligned.
  // 001030A0: 01 F0 06 E0    BLX   005040B0 ; BLX encoding T2.
  run_test(0x001030A0U,  // Multiple of 4.
           {0x01, 0xF0, 0x06, 0xE0}, 0xF001E006U, 0x0040100C, kCleanSlateBLX_T2,
           // Canonical again: align_down_4(0x001030A0 + 4 + 0x0040100C).
           0x005040B0U);

  // BLX complication, not 4-byte aligned.
  // 001030A2: 01 F0 06 E0    BLX   005040B0 ; BLX encoding T2.
  run_test(0x001030A2U,  // Shift by 2: Not multiple of 4.
           {0x01, 0xF0, 0x06, 0xE0}, 0xF001E006U, 0x0040100C, kCleanSlateBLX_T2,
           // No shift: align_down_4(0x001030A2 + 4 + 0x0040100C).
           0x005040B0U);
}

TEST(AArch64Rel32Translator, FetchStore) {
  std::vector<uint8_t> bytes = {0x10, 0x32, 0x54, 0x76, 0x98, 0xBA, 0xDC, 0xFE};
  std::vector<uint8_t> expected = {0xAB, 0x33, 0x22, 0x11,
                                   0x69, 0x5A, 0xFF, 0x00};
  MutableBufferView region(&bytes[0], bytes.size());
  AArch64Rel32Translator translator;
  EXPECT_EQ(0x76543210U, translator.FetchCode32(region, 0U));
  EXPECT_EQ(0xFEDCBA98U, translator.FetchCode32(region, 4U));

  translator.StoreCode32(region, 0U, 0x112233ABU);
  translator.StoreCode32(region, 4U, 0x00FF5A69);
  EXPECT_EQ(expected, bytes);
}

TEST(AArch64Rel32Translator, EncodeDecode) {
  // Immd14 tests.
  ArmTranslatorEncodeDecodeTest<AArch64Rel32Translator::AddrTraits_Immd14>
      test_immd14;
  for (int b40 : {0, 1, 7, 31}) {
    uint32_t b40_mask = b40 << 19;
    for (int Rt : {0, 1, 15, 30}) {
      uint32_t mask = b40_mask | Rt;
      ArmRelInstruction<uint32_t> TBZw_Rt("00110110 bbbbbSii iiiiiiii iiittttt",
                                          kCleanSlate64TBZw | mask);
      ArmRelInstruction<uint32_t> TBZz_Rt("10110110 bbbbbSii iiiiiiii iiittttt",
                                          kCleanSlate64TBZz | mask);
      ArmRelInstruction<uint32_t> TBNZw_Rt(
          "00110111 bbbbbSii iiiiiiii iiittttt", kCleanSlate64TBNZw | mask);
      ArmRelInstruction<uint32_t> TBNZz_Rt(
          "10110111 bbbbbSii iiiiiiii iiittttt", kCleanSlate64TBNZz | mask);
      test_immd14.Run("SSSSSSSS SSSSSSSS Siiiiiii iiiiii00", {"S", "i"},
                      {TBZw_Rt, TBZz_Rt, TBNZw_Rt, TBNZz_Rt},
                      {0x00007FFC, -0x00008000, 0, 4, -4, 0x40, 0x44},
                      {2, -2, 0x41, 0x42, 0x43, 0x00008000, -0x00008004});
    }
  }

  // Immd19 tests.
  ArmTranslatorEncodeDecodeTest<AArch64Rel32Translator::AddrTraits_Immd19>
      test_immd19;
  for (int cond = 0; cond <= 0x0E; ++cond) {
    ArmRelInstruction<uint32_t> B_cond("01010100 Siiiiiii iiiiiiii iii0cccc",
                                       kCleanSlate64Bcond | cond);
    test_immd19.Run("SSSSSSSS SSSSiiii iiiiiiii iiiiii00", {"S", "i"}, {B_cond},
                    {0x000FFFFC, -0x00100000, 0, 4, -4, 0x40, 0x44},
                    {2, -2, 0x41, 0x42, 0x43, 0x00100000, -0x00100004});
  }
  for (int Rt : {0, 1, 15, 30}) {
    ArmRelInstruction<uint32_t> CBZw_Rt("00110100 Siiiiiii iiiiiiii iiittttt",
                                        kCleanSlate64CBZw | Rt);
    ArmRelInstruction<uint32_t> CBZz_Rt("10110100 Siiiiiii iiiiiiii iiittttt",
                                        kCleanSlate64CBZz | Rt);
    ArmRelInstruction<uint32_t> CBNZw_Rt("00110101 Siiiiiii iiiiiiii iiittttt",
                                         kCleanSlate64CBNZw | Rt);
    ArmRelInstruction<uint32_t> CBNZz_Rt("10110101 Siiiiiii iiiiiiii iiittttt",
                                         kCleanSlate64CBNZz | Rt);
    test_immd19.Run("SSSSSSSS SSSSiiii iiiiiiii iiiiii00", {"S", "i"},
                    {CBZw_Rt, CBZz_Rt, CBNZw_Rt, CBNZz_Rt},
                    {0x000FFFFC, -0x00100000, 0, 4, -4, 0x40, 0x44},
                    {2, -2, 0x41, 0x42, 0x43, 0x00100000, -0x00100004});
  }

  // Immd26 tests.
  ArmTranslatorEncodeDecodeTest<AArch64Rel32Translator::AddrTraits_Immd26>
      test_immd26;
  ArmRelInstruction<uint32_t> B("000101Si iiiiiiii iiiiiiii iiiiiiii",
                                kCleanSlate64B);
  ArmRelInstruction<uint32_t> BL("100101Si iiiiiiii iiiiiiii iiiiiiii",
                                 kCleanSlate64BL);
  test_immd26.Run("SSSSSiii iiiiiiii iiiiiiii iiiiii00", {"S", "i"}, {B, BL},
                  {0x07FFFFFC, -0x08000000, 0, 4, -4, 0x40, 0x44},
                  {2, -2, 0x41, 0x42, 0x43, 0x08000000, -0x08000004});
}

TEST(AArch64Rel32Translator, WriteRead) {
  std::vector<rva_t> aligned4;
  std::vector<rva_t> misaligned4;
  for (rva_t rva = 0x1FFC; rva <= 0x2010; ++rva) {
    ((rva % 4 == 0) ? aligned4 : misaligned4).push_back(rva);
  }
  CHECK_EQ(6U, aligned4.size());
  CHECK_EQ(15U, misaligned4.size());

  // Helper to convert an instruction's RVA to PC.
  auto pcAArch64 = [](rva_t instr_rva) -> rva_t { return instr_rva; };

  // Immd14 tests.
  ArmTranslatorWriteReadTest<AArch64Rel32Translator::AddrTraits_Immd14>
      test_immd14;
  for (uint32_t clean_slate_code : {kCleanSlate64TBZw, kCleanSlate64TBZz,
                                    kCleanSlate64TBNZw, kCleanSlate64TBNZz}) {
    test_immd14.Accept(clean_slate_code, aligned4, aligned4);
    test_immd14.Reject(clean_slate_code, aligned4, misaligned4);
    test_immd14.Reject(clean_slate_code, misaligned4, aligned4);
    test_immd14.Reject(clean_slate_code, misaligned4, misaligned4);
    // Signed (14 + 2)-bit range, 4-byte aligned: [-0x00008000, 0x00007FFC].
    test_immd14.Accept(clean_slate_code, {0x10040000},
                       {pcAArch64(0x10038000), pcAArch64(0x10047FFC)});
    test_immd14.Reject(clean_slate_code, {0x15000000},
                       {pcAArch64(0x10038000 - 4), pcAArch64(0x10047FFC + 4)});
  }

  // Immd19 tests.
  ArmTranslatorWriteReadTest<AArch64Rel32Translator::AddrTraits_Immd19>
      test_immd19;
  for (uint32_t clean_slate_code :
       {kCleanSlate64Bcond, kCleanSlate64CBZw, kCleanSlate64CBZz,
        kCleanSlate64CBNZw, kCleanSlate64CBNZz}) {
    test_immd19.Accept(clean_slate_code, aligned4, aligned4);
    test_immd19.Reject(clean_slate_code, aligned4, misaligned4);
    test_immd19.Reject(clean_slate_code, misaligned4, aligned4);
    test_immd19.Reject(clean_slate_code, misaligned4, misaligned4);
    // Signed (19 + 2)-bit range, 4-byte aligned: [-0x00100000, 0x000FFFFC].
    test_immd19.Accept(clean_slate_code, {0x10300000},
                       {pcAArch64(0x10200000), pcAArch64(0x103FFFFC)});
    test_immd19.Reject(clean_slate_code, {0x10300000},
                       {pcAArch64(0x10200000 - 4), pcAArch64(0x103FFFFC + 4)});
  }

  // Immd26 tests.
  ArmTranslatorWriteReadTest<AArch64Rel32Translator::AddrTraits_Immd26>
      test_immd26;
  for (uint32_t clean_slate_code : {kCleanSlate64B, kCleanSlate64BL}) {
    test_immd26.Accept(clean_slate_code, aligned4, aligned4);
    test_immd26.Reject(clean_slate_code, aligned4, misaligned4);
    test_immd26.Reject(clean_slate_code, misaligned4, aligned4);
    test_immd26.Reject(clean_slate_code, misaligned4, misaligned4);
    // Signed (26 + 2)-bit range, 4-byte aligned: [-0x08000000, 0x07FFFFFC].
    test_immd26.Accept(clean_slate_code, {0x30000000},
                       {pcAArch64(0x28000000), pcAArch64(0x37FFFFFC)});
    test_immd26.Reject(clean_slate_code, {0x30000000},
                       {pcAArch64(0x28000000 - 4), pcAArch64(0x37FFFFFC + 4)});
  }
}

// Typical usage in |target_rva| extraction.
TEST(AArch64Rel32Translator, Main) {
  // 00103050: 02 01 02 14    B     00183458
  rva_t instr_rva = 0x00103050U;
  AArch64Rel32Translator translator;
  std::vector<uint8_t> bytes = {0x02, 0x01, 0x02, 0x14};
  MutableBufferView region(&bytes[0], bytes.size());
  uint32_t code = translator.FetchCode32(region, 0U);
  EXPECT_EQ(0x14020102U, code);

  // |code| <-> |disp|.
  arm_disp_t disp = 0;
  EXPECT_TRUE(translator.DecodeImmd26(code, &disp));
  EXPECT_EQ(+0x00080408, disp);

  uint32_t code_from_disp = kCleanSlate64B;
  EXPECT_TRUE(translator.EncodeImmd26(disp, &code_from_disp));
  EXPECT_EQ(code, code_from_disp);

  // |code| <-> |target_rva|.
  rva_t target_rva = kInvalidRva;
  EXPECT_TRUE(translator.ReadImmd26(instr_rva, code, &target_rva));
  // 0x00103050 + 0 + 0x00080408.
  EXPECT_EQ(0x00183458U, target_rva);

  uint32_t code_from_rva = kCleanSlate64B;
  EXPECT_TRUE(translator.WriteImmd26(instr_rva, target_rva, &code_from_rva));
  EXPECT_EQ(code, code_from_rva);
}

}  // namespace zucchini