summaryrefslogtreecommitdiff
path: root/nn/common/include/OperationsUtils.h
blob: ff5b348d1ca3d4576e680765db65755b47993649 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
/*
 * Copyright (C) 2017 The Android Open Source Project
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#ifndef ANDROID_ML_NN_COMMON_OPERATIONS_UTILS_H
#define ANDROID_ML_NN_COMMON_OPERATIONS_UTILS_H

#include "Utils.h"

#include <cstdint>
#include <vector>

// Macro to check if the input parameters for operation are valid or not.
#define NN_CHECK(v)                                                     \
  do {                                                                  \
    if (!(v)) {                                                         \
      LOG(ERROR) << "NN_CHECK failed: "  << #v << "'\n";                \
      return false;                                                     \
    }                                                                   \
  } while(0);

#define NN_CHECK_EQ(actual, expected)           \
  NN_CHECK((actual) == (expected))

#define NN_OPS_CHECK NN_CHECK

namespace android {
namespace nn {

enum PaddingScheme {
    kPaddingUnknown = 0,
    kPaddingSame = 1,
    kPaddingValid = 2,
};

// The type and dimensions of an operand.
struct Shape {
    OperandType type;
    std::vector<uint32_t> dimensions;
    float scale;
    int32_t offset;
};

// Verifies that the two shapes are the same.
bool SameShape(const Shape& in1, const Shape& in2);

// Sets out to the same shape as in.
bool SetShape(const Shape& in, Shape* out);

// Return the total number of elements, i.e. all the dimensions multiplied
// together. For a scalar, returns one.
uint32_t getNumberOfElements(const Shape& shape);
uint32_t getNumberOfElements(const Shape& shape,
                             size_t firstAxisInclusive,
                             size_t lastAxisExclusive);

uint32_t getNumberOfDimensions(const Shape& shape);

uint32_t getSizeOfDimension(const Shape& shape, uint32_t dimensionIdx);

// Converts an axis index from the range [-dims, dims) into the range [0, dims).
int32_t getDimensionIndex(const Shape& shape, int32_t axis);
int32_t getDimensionIndex(int32_t numberOfDimensions, int32_t axis);

inline uint32_t computeOutSize(uint32_t imageSize, uint32_t filterSize, uint32_t stride,
                               uint32_t paddingHead, uint32_t paddingTail) {
    return (imageSize - filterSize + stride + paddingHead + paddingTail) / stride;
}

inline uint32_t computeOutSizeTransposeConv(uint32_t imageSize, uint32_t filterSize,
                                            uint32_t stride, uint32_t paddingHead,
                                            uint32_t paddingTail) {
    return imageSize * stride + filterSize - stride - paddingHead - paddingTail;
}

__wur
bool QuantizeMultiplierSmallerThanOne(double double_multiplier,
                                      int32_t* quantized_multiplier,
                                      int32_t* right_shift);

__wur
bool QuantizeMultiplierGreaterThanOne(double double_multiplier,
                                      int32_t* quantized_multiplier,
                                      int* left_shift);

__wur
bool GetQuantizedConvolutionMultipler(const Shape& inputShape,
                                      const Shape& filterShape,
                                      const Shape& biasShape,
                                      const Shape& outputShape,
                                      float* multiplier);

void CalculateActivationRangeUint8(int32_t activation,
                                   const Shape& outputShape,
                                   int32_t* act_min,
                                   int32_t* act_max);

void CalculateActivationRangeFloat(int32_t activation,
                                   float* activation_min,
                                   float* activation_max);

int32_t CalculateInputRadius(int input_integer_bits, int input_left_shift);

inline void calculateExplicitPadding(int32_t in_size, int32_t stride,
                                     int32_t filter_size, int32_t padding_implicit,
                                     int32_t* padding_head, int32_t* padding_tail) {
    *padding_head = 0;
    *padding_tail = 0;

    if (padding_implicit == kPaddingSame) {
        int32_t out_size = (in_size + stride - 1) / stride;
        int32_t tmp = (out_size - 1) * stride + filter_size;
        if (tmp > in_size) {
            *padding_head = (tmp - in_size) / 2;
            *padding_tail = (tmp - in_size) - *padding_head;
        }
    }
}

inline PaddingScheme getPaddingScheme(int32_t inWidth, int32_t inHeight,
                                      int32_t strideWidth, int32_t strideHeight,
                                      int32_t filterWidth, int32_t filterHeight,
                                      int32_t paddingLeft, int32_t paddingRight,
                                      int32_t paddingTop, int32_t paddingBottom) {
    if (paddingLeft == 0 && paddingRight == 0 && paddingTop == 0 && paddingBottom == 0) {
        return kPaddingValid;
    }

    int32_t expectedPaddingLeft, expectedPaddingRight;
    int32_t expectedPaddingTop, expectedPaddingBottom;

    calculateExplicitPadding(inWidth, strideWidth, filterWidth, kPaddingSame,
                             &expectedPaddingLeft, &expectedPaddingRight);
    calculateExplicitPadding(inHeight, strideHeight, filterHeight, kPaddingSame,
                             &expectedPaddingTop, &expectedPaddingBottom);
    if (expectedPaddingLeft == paddingLeft && expectedPaddingRight == paddingRight &&
        expectedPaddingTop == paddingTop && expectedPaddingBottom == paddingBottom) {
        return kPaddingSame;
    } else {
        return kPaddingUnknown;
    }
}

// TODO: add more documentation from upstream.
// Reverse order of bits in the mask to match the expected order in kernel
inline int ReverseMaskBits(int mask, int num_dimensions) {
  int out = 0;
  for (int dim = 0; dim < num_dimensions; dim++) {
    out <<= 1;
    out += (mask & 1);
    mask >>= 1;
  }
  return out;
}

// TODO: add more documentation from upstream.
inline int32_t PositiveRemainder(int32_t dividend, int32_t divisor) {
  return (divisor + (dividend % divisor)) % divisor;
}

// TODO: add more documentation from upstream.
inline int32_t ClampedIndex(int32_t index, int dim, bool pos_stride) {
  return pos_stride
             ? (index >= dim ? dim
                             : PositiveRemainder(
                                   std::min(std::max(index, -dim), dim), dim))
             : (index < -dim
                    ? -1
                    : PositiveRemainder(
                          std::min(std::max(index, -dim), dim - 1), dim));
}

// Preparation functions for the corresponding ops
bool addMulPrepare(const Shape& in1, const Shape& in2, Shape* out1);

bool floorPrepare(const Shape& input, Shape* output);

bool dequantizePrepare(const Shape& input, Shape* output);

bool quantizePrepare(const Shape& input, Shape* output);

bool depthwiseConvPrepare(const Shape& input,
                          const Shape& filter,
                          const Shape& bias,
                          int32_t padding_left, int32_t padding_right,
                          int32_t padding_top, int32_t padding_bottom,
                          int32_t stride_width, int32_t stride_height,
                          Shape* output);

bool convPrepare(const Shape& input,
                 const Shape& filter,
                 const Shape& bias,
                 int32_t padding_left, int32_t padding_right,
                 int32_t padding_top, int32_t padding_bottom,
                 int32_t stride_width, int32_t stride_height,
                 Shape* output);

bool genericPoolingPrepare(const Shape& input,
                           int32_t padding_left, int32_t padding_right,
                           int32_t padding_top, int32_t padding_bottom,
                           int32_t stride_width, int32_t stride_height,
                           int32_t filter_width, int32_t filter_height,
                           Shape* output);

bool genericActivationPrepare(const Shape& input, Shape* output);

bool fullyConnectedPrepare(const Shape& input,
                           const Shape& weights,
                           const Shape& bias,
                           Shape* output);

bool concatenationPrepare(const std::vector<Shape>& inputShapes,
                          int32_t axis,
                          Shape* output);

bool genericNormalizationPrepare(const Shape& input, Shape* output);

bool reshapePrepare(const Shape& input,
                    const int32_t* targetDims,
                    const int32_t targetDimsSize,
                    Shape* output);

bool resizeBilinearPrepare(const Shape& input,
                           int32_t height,
                           int32_t width,
                           Shape* output);

bool depthToSpacePrepare(const Shape& input,
                         int32_t blockSize,
                         Shape* output);

bool spaceToDepthPrepare(const Shape& input,
                         int32_t blockSize,
                         Shape* output);

bool embeddingLookupPrepare(const Shape &valueShape,
                            const Shape &lookupShape,
                            Shape *outputShape);

bool hashtableLookupPrepare(const Shape &lookupShape,
                            const Shape &keyShape,
                            const Shape &valueShape,
                            Shape *outputShape,
                            Shape *hitShape);

bool padPrepare(const Shape& input,
                const int32_t* paddingsData,
                const Shape& paddingsShape,
                Shape* output);

bool batchToSpacePrepare(const Shape& input,
                         const int32_t* blockSizeData,
                         const Shape& blockSizeShape,
                         Shape* output);

bool spaceToBatchPrepare(const Shape& input,
                         const int32_t* blockSizeData,
                         const Shape& blockSizeShape,
                         const int32_t* paddingsData,
                         const Shape& paddingsShape,
                         Shape* output);

bool squeezePrepare(const Shape& input,
                    const int32_t* squeezeDims,
                    const Shape& squeezeDimsShape,
                    Shape* output);

bool transposePrepare(const Shape& input,
                      const int32_t* permData,
                      const Shape& permShape,
                      Shape* output);

bool meanPrepare(const Shape& input,
                 const int32_t* axisData,
                 const Shape& axisShape,
                 bool keepDims,
                 Shape* output);

bool stridedSlicePrepare(const Shape& input,
                         const int32_t* beginData, const Shape& beginShape,
                         const int32_t* endData, const Shape& endShape,
                         const int32_t* stridesData, const Shape& stridesShape,
                         int32_t beginMask, int32_t endMask, int32_t shrinkAxisMask,
                         Shape* output);

bool argMinMaxPrepare(const Shape& input, int32_t axis, Shape* output);

bool splitPrepare(const Shape& input, int32_t axis, int32_t numOutputs, std::vector<Shape>* output);

bool roiAlignPrepare(const Shape& input, const float* roiData, const Shape& roiShape,
                     const int32_t* outputShapeData, const Shape& outputShapeShape,
                     const float spatialScale, Shape* output);

bool heatmapMaxKeypointPrepare(const Shape& heatmapShape, const float* boxesData,
                               const Shape& boxesShape, Shape* output);

bool groupedConvPrepare(const Shape& input, const Shape& filter, const Shape& bias,
                        int32_t padding_left, int32_t padding_right, int32_t padding_top,
                        int32_t padding_bottom, int32_t stride_width, int32_t stride_height,
                        int32_t numGroups, Shape* output);

bool channelShufflePrepare(const Shape& input, int32_t numGroups, int32_t axis, Shape* output);

bool transposeConvPrepare(const Shape& input, const Shape& filter, const Shape& bias,
                          int32_t padding_left, int32_t padding_right, int32_t padding_top,
                          int32_t padding_bottom, int32_t stride_width, int32_t stride_height,
                          Shape* output);

bool axisAlignedBBoxTransformPrepare(const float* roiData, const Shape& roiShape,
                                     const Shape& bboxDeltasShape, const Shape& imageInfoShape,
                                     const Shape& weightsShape, Shape* outputShape,
                                     Shape* batchSplitShape);

bool rotatedBBoxTransformPrepare(const float* roiData, const Shape& roiShape,
                                 const Shape& bboxDeltasShape, const Shape& imageInfoShape,
                                 const Shape& weightsShape, bool angleBoundOn,
                                 int32_t angleBoundLow, int32_t angleBoundHigh, Shape* outputShape,
                                 Shape* batchSplitShape);
} // namespace nn
} // namespace android

#endif // ANDROID_ML_NN_COMMON_OPERATIONS_UTILS_H