summaryrefslogtreecommitdiff
path: root/nn/common/operations/Activation.cpp
blob: ff5a55dc35354775035812a3a91d11304b4305ad (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
/*
 * Copyright (C) 2017 The Android Open Source Project
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#define LOG_TAG "Operations"

#include <tensorflow/lite/kernels/internal/optimized/legacy_optimized_ops.h>
#include <tensorflow/lite/kernels/internal/optimized/optimized_ops.h>
#include <tensorflow/lite/kernels/internal/reference/integer_ops/logistic.h>
#include <tensorflow/lite/kernels/internal/reference/integer_ops/tanh.h>
#include <tensorflow/lite/kernels/internal/reference/reference_ops.h>

#include <algorithm>
#include <limits>
#include <vector>

#include "ActivationFunctor.h"
#include "CpuOperationUtils.h"
#include "HalInterfaces.h"
#include "OperationResolver.h"
#include "OperationsUtils.h"
#include "Tracing.h"

namespace android {
namespace nn {

using namespace hal;

namespace activation {

constexpr uint32_t kNumInputs = 1;
constexpr uint32_t kInputTensor = 0;

constexpr uint32_t kNumOutputs = 1;
constexpr uint32_t kOutputTensor = 0;

namespace {

template <typename T>
bool reluFloat(const T* inputData, const Shape& inputShape, T* outputData, const Shape& outputShape,
               float reluMin = 0.f, float reluMax = std::numeric_limits<float>::max()) {
    NNTRACE_COMP("reluX");
    int numElements = getNumberOfElements(inputShape);
    for (int i = 0; i < numElements; i++, inputData++, outputData++) {
        *outputData = static_cast<T>(
                std::min(std::max(reluMin, static_cast<float>(*inputData)), reluMax));
    }
    return true;
}
template bool reluFloat<float>(const float* inputData, const Shape& inputShape, float* outputData,
                               const Shape& outputShape, float reluMin, float reluMax);
template bool reluFloat<_Float16>(const _Float16* inputData, const Shape& inputShape,
                                  _Float16* outputData, const Shape& outputShape, float reluMin,
                                  float reluMax);

template <typename T>
bool relu1Float(const T* inputData, const Shape& inputShape, T* outputData,
                const Shape& outputShape) {
    return reluFloat(inputData, inputShape, outputData, outputShape, -1.f, 1.f);
}
template bool relu1Float<float>(const float* inputData, const Shape& inputShape, float* outputData,
                                const Shape& outputShape);
template bool relu1Float<_Float16>(const _Float16* inputData, const Shape& inputShape,
                                   _Float16* outputData, const Shape& outputShape);

template <typename T>
bool relu6Float(const T* inputData, const Shape& inputShape, T* outputData,
                const Shape& outputShape) {
    return reluFloat(inputData, inputShape, outputData, outputShape, 0.f, 6.f);
}
template bool relu6Float<float>(const float* inputData, const Shape& inputShape, float* outputData,
                                const Shape& outputShape);
template bool relu6Float<_Float16>(const _Float16* inputData, const Shape& inputShape,
                                   _Float16* outputData, const Shape& outputShape);

bool tanhFloat16(const _Float16* inputData, const Shape& inputShape, _Float16* outputData,
                 const Shape& outputShape) {
    NNTRACE_COMP("tanhFloat16");
    int numElements = getNumberOfElements(inputShape);
    for (int i = 0; i < numElements; i++, inputData++, outputData++) {
        *outputData = static_cast<_Float16>(std::tanh(static_cast<float>(*inputData)));
    }
    return true;
}

bool tanhFloat32(const float* inputData, const Shape& inputShape, float* outputData,
                 const Shape& outputShape) {
    NNTRACE_COMP("tanhFloat32");
    int numElements = getNumberOfElements(inputShape);
    for (int i = 0; i < numElements; i++, inputData++, outputData++) {
        *outputData = std::tanh(*inputData);
    }
    return true;
}

template <typename T>
bool logisticFloat(const T* inputData, const Shape& inputShape, T* outputData,
                   const Shape& outputShape) {
    NNTRACE_COMP("logisticFloat");
    int numElements = getNumberOfElements(inputShape);
    for (int i = 0; i < numElements; i++, inputData++, outputData++) {
        *outputData = static_cast<T>(1.f / (1.f + std::exp(static_cast<float>(-*inputData))));
    }
    return true;
}
template bool logisticFloat<float>(const float* inputData, const Shape& inputShape,
                                   float* outputData, const Shape& outputShape);
template bool logisticFloat<_Float16>(const _Float16* inputData, const Shape& inputShape,
                                      _Float16* outputData, const Shape& outputShape);

template <ActivationFn activation>
inline bool reluXQuant8(const uint8_t* inputData, const Shape& inputShape, uint8_t* outputData,
                        const Shape& outputShape) {
    int numElements = getNumberOfElements(inputShape);
    int32_t output_activation_min = 0;
    int32_t output_activation_max = 0;

    CalculateActivationRangeUint8(activation, inputShape, &output_activation_min,
                                  &output_activation_max);

    for (int i = 0; i < numElements; i++, inputData++, outputData++) {
        *outputData = std::min((uint8_t)output_activation_max,
                               std::max((uint8_t)output_activation_min, *inputData));
    }
    return true;
}

bool reluQuant8(const uint8_t* inputData, const Shape& inputShape, uint8_t* outputData,
                const Shape& outputShape) {
    NNTRACE_COMP("reluQuant8");
    return reluXQuant8<kActivationRelu>(inputData, inputShape, outputData, outputShape);
}

bool relu1Quant8(const uint8_t* inputData, const Shape& inputShape, uint8_t* outputData,
                 const Shape& outputShape) {
    NNTRACE_COMP("relu1Quant8");
    return reluXQuant8<kActivationRelu1>(inputData, inputShape, outputData, outputShape);
}

bool relu6Quant8(const uint8_t* inputData, const Shape& inputShape, uint8_t* outputData,
                 const Shape& outputShape) {
    NNTRACE_COMP("relu6Quant8");
    return reluXQuant8<kActivationRelu6>(inputData, inputShape, outputData, outputShape);
}

bool tanhQuant8(const uint8_t* inputData, const Shape& inputShape, uint8_t* outputData,
                const Shape& outputShape) {
    NNTRACE_TRANS("tanhQuant8");
    if (outputShape.offset != 128 || outputShape.scale != 1.f / 128) {
        LOG(ERROR) << "incorrect scale or offset for TANH output";
        return false;
    }

    int numElements = getNumberOfElements(inputShape);
    static constexpr int kInputIntegerBits = 4;

    const double input_real_multiplier =
            inputShape.scale * static_cast<double>(1 << (31 - kInputIntegerBits));

    int32_t input_multiplier = 0;
    int32_t input_left_shift = 0;
    if (!QuantizeMultiplierGreaterThanOne(input_real_multiplier, &input_multiplier,
                                          &input_left_shift)) {
        return false;
    }
    int32_t input_range_radius = CalculateInputRadius(kInputIntegerBits, input_left_shift);

    NNTRACE_COMP_SWITCH("optimized_ops::Tanh");
    tflite::optimized_ops::Tanh(inputData, convertShapeToTflshape(inputShape), inputShape.offset,
                                input_range_radius, input_multiplier, input_left_shift, outputData,
                                convertShapeToTflshape(outputShape));

    return true;
}

bool logisticQuant8(const uint8_t* inputData, const Shape& inputShape, uint8_t* outputData,
                    const Shape& outputShape) {
    NNTRACE_TRANS("logisticQuant8");
    if (outputShape.offset != 0 || outputShape.scale != 1.f / 256) {
        LOG(ERROR) << "incorrect scale / offset for output";
        return false;
    }

    int numElements = getNumberOfElements(inputShape);
    static constexpr int kInputIntegerBits = 4;

    const double input_real_multiplier =
            inputShape.scale * static_cast<double>(1 << (31 - kInputIntegerBits));

    int32_t input_multiplier = 0;
    int32_t input_left_shift = 0;
    if (!QuantizeMultiplierGreaterThanOne(input_real_multiplier, &input_multiplier,
                                          &input_left_shift)) {
        return false;
    }
    int32_t input_range_radius = CalculateInputRadius(kInputIntegerBits, input_left_shift);

    NNTRACE_COMP_SWITCH("optimized_ops::Logistic");
    tflite::optimized_ops::Logistic(
            inputData, convertShapeToTflshape(inputShape), inputShape.offset, input_range_radius,
            input_multiplier, input_left_shift, outputData, convertShapeToTflshape(outputShape));

    return true;
}

template <ActivationFn activation>
inline bool reluXQuant8Signed(const int8_t* inputData, const Shape& inputShape, int8_t* outputData,
                              const Shape& outputShape) {
    int numElements = getNumberOfElements(inputShape);
    int32_t output_activation_min = 0;
    int32_t output_activation_max = 0;

    CalculateActivationRangeInt8(activation, inputShape, &output_activation_min,
                                 &output_activation_max);

    for (int i = 0; i < numElements; i++, inputData++, outputData++) {
        *outputData = std::min((int8_t)output_activation_max,
                               std::max((int8_t)output_activation_min, *inputData));
    }
    return true;
}

bool reluQuant8Signed(const int8_t* inputData, const Shape& inputShape, int8_t* outputData,
                      const Shape& outputShape) {
    NNTRACE_COMP("reluQuant8");
    return reluXQuant8Signed<kActivationRelu>(inputData, inputShape, outputData, outputShape);
}

bool relu1Quant8Signed(const int8_t* inputData, const Shape& inputShape, int8_t* outputData,
                       const Shape& outputShape) {
    NNTRACE_COMP("relu1Quant8");
    return reluXQuant8Signed<kActivationRelu1>(inputData, inputShape, outputData, outputShape);
}

bool relu6Quant8Signed(const int8_t* inputData, const Shape& inputShape, int8_t* outputData,
                       const Shape& outputShape) {
    NNTRACE_COMP("relu6Quant8");
    return reluXQuant8Signed<kActivationRelu6>(inputData, inputShape, outputData, outputShape);
}

bool tanhQuant8Signed(const int8_t* inputData, const Shape& inputShape, int8_t* outputData,
                      const Shape& outputShape) {
    NNTRACE_TRANS("tanhQuant8Signed");
    if (outputShape.offset != 0 || outputShape.scale != 1.f / 128) {
        LOG(ERROR) << "incorrect scale or offset for TANH output";
        return false;
    }

    int numElements = getNumberOfElements(inputShape);
    static constexpr int kInputIntegerBits = 4;

    const double input_real_multiplier =
            inputShape.scale * static_cast<double>(1 << (31 - kInputIntegerBits));

    int32_t input_multiplier = 0;
    int32_t input_left_shift = 0;
    if (!QuantizeMultiplierGreaterThanOne(input_real_multiplier, &input_multiplier,
                                          &input_left_shift)) {
        return false;
    }
    int32_t input_range_radius = CalculateInputRadius(kInputIntegerBits, input_left_shift);

    NNTRACE_COMP_SWITCH("reference_integer_ops::Tanh");
    tflite::reference_integer_ops::Tanh(inputShape.offset, input_range_radius, input_multiplier,
                                        input_left_shift, numElements, inputData, outputData);

    return true;
}

bool logisticQuant8Signed(const int8_t* inputData, const Shape& inputShape, int8_t* outputData,
                          const Shape& outputShape) {
    NNTRACE_TRANS("logisticQuant8Signed");
    if (outputShape.offset != -128 || outputShape.scale != 1.f / 256) {
        LOG(ERROR) << "incorrect scale / offset for output";
        return false;
    }

    int numElements = getNumberOfElements(inputShape);
    static constexpr int kInputIntegerBits = 4;

    const double input_real_multiplier =
            inputShape.scale * static_cast<double>(1 << (31 - kInputIntegerBits));

    int32_t input_multiplier = 0;
    int32_t input_left_shift = 0;
    if (!QuantizeMultiplierGreaterThanOne(input_real_multiplier, &input_multiplier,
                                          &input_left_shift)) {
        return false;
    }
    int32_t input_range_radius = CalculateInputRadius(kInputIntegerBits, input_left_shift);

    NNTRACE_COMP_SWITCH("reference_integer_ops::Logistic");
    tflite::reference_integer_ops::Logistic(inputShape.offset, input_range_radius, input_multiplier,
                                            input_left_shift, numElements, inputData, outputData);

    return true;
}

void DownScaleInt32ToInt16Multiplier(int32_t multiplier_int32, int16_t* multiplier_int16) {
    TFLITE_DCHECK_GE(multiplier_int32, 0);
    static constexpr int32_t kRoundingOffset = 1 << 15;
    if (multiplier_int32 >= std::numeric_limits<int32_t>::max() - kRoundingOffset) {
        *multiplier_int16 = std::numeric_limits<int16_t>::max();
        return;
    }
    const int32_t result = (multiplier_int32 + kRoundingOffset) >> 16;
    TFLITE_DCHECK_LE(result << 16, multiplier_int32 + kRoundingOffset);
    TFLITE_DCHECK_GT(result << 16, multiplier_int32 - kRoundingOffset);
    *multiplier_int16 = result;
    TFLITE_DCHECK_EQ(*multiplier_int16, result);
}

template <typename T>
bool hardSwishQuant(const T* inputData, const Shape& inputShape, T* outputData,
                    const Shape& outputShape) {
    tflite::HardSwishParams params;
    params.input_zero_point = inputShape.offset;
    params.output_zero_point = outputShape.offset;
    const float input_scale = inputShape.scale;
    const float hires_input_scale = (1.0f / 128.0f) * input_scale;
    const float reluish_scale = 3.0f / 32768.0f;
    const float output_scale = outputShape.scale;

    const float output_multiplier = hires_input_scale / output_scale;

    int32_t output_multiplier_fixedpoint_int32;
    NN_RET_CHECK(QuantizeMultiplier(output_multiplier, &output_multiplier_fixedpoint_int32,
                                    &params.output_multiplier_exponent));
    DownScaleInt32ToInt16Multiplier(output_multiplier_fixedpoint_int32,
                                    &params.output_multiplier_fixedpoint_int16);
    NN_RET_CHECK(params.output_multiplier_exponent <= 0);

    const float reluish_multiplier = hires_input_scale / reluish_scale;
    int32_t reluish_multiplier_fixedpoint_int32;
    NN_RET_CHECK(QuantizeMultiplier(reluish_multiplier, &reluish_multiplier_fixedpoint_int32,
                                    &params.reluish_multiplier_exponent));
    DownScaleInt32ToInt16Multiplier(reluish_multiplier_fixedpoint_int32,
                                    &params.reluish_multiplier_fixedpoint_int16);

    tflite::reference_ops::HardSwish(params, convertShapeToTflshape(inputShape), inputData,
                                     convertShapeToTflshape(outputShape), outputData);
    return true;
}

}  // namespace

bool validate(OperationType opType, const IOperationValidationContext* context) {
    NN_RET_CHECK_EQ(context->getNumInputs(), kNumInputs);
    NN_RET_CHECK_EQ(context->getNumOutputs(), kNumOutputs);
    auto inputType = context->getInputType(kInputTensor);
    if (inputType == OperandType::TENSOR_FLOAT32) {
        NN_RET_CHECK(validateHalVersion(context, HalVersion::V1_0));
    } else if (inputType == OperandType::TENSOR_FLOAT16) {
        NN_RET_CHECK(validateHalVersion(context, HalVersion::V1_2));
    } else if (inputType == OperandType::TENSOR_QUANT8_ASYMM) {
        if (opType == OperationType::TANH) {
            NN_RET_CHECK(validateHalVersion(context, HalVersion::V1_2));
        } else {
            NN_RET_CHECK(validateHalVersion(context, HalVersion::V1_0));
        }
    } else if (inputType == OperandType::TENSOR_QUANT8_ASYMM_SIGNED) {
        NN_RET_CHECK(validateHalVersion(context, HalVersion::V1_3));
    } else {
        NN_RET_CHECK_FAIL() << "Unsupported tensor type for operation " << getOperationName(opType);
    }
    const Shape& input = context->getInputShape(kInputTensor);
    if (hasKnownRank(input)) {
        NN_RET_CHECK_LE(getNumberOfDimensions(input), 4);
    }
    return validateInputTypes(context, {inputType}) && validateOutputTypes(context, {inputType});
}

bool validateHardSwish(const IOperationValidationContext* context) {
    NN_RET_CHECK_EQ(context->getNumInputs(), kNumInputs);
    NN_RET_CHECK_EQ(context->getNumOutputs(), kNumOutputs);
    auto inputType = context->getInputType(kInputTensor);
    if (inputType == OperandType::TENSOR_FLOAT16 || inputType == OperandType::TENSOR_FLOAT32 ||
        inputType == OperandType::TENSOR_QUANT8_ASYMM ||
        inputType == OperandType::TENSOR_QUANT8_ASYMM_SIGNED) {
        NN_RET_CHECK(validateHalVersion(context, HalVersion::V1_3));
    } else {
        NN_RET_CHECK_FAIL() << "Unsupported tensor type for operation ELU";
    }
    return validateInputTypes(context, {inputType}) && validateOutputTypes(context, {inputType});
}

bool prepare(OperationType opType, IOperationExecutionContext* context) {
    Shape input = context->getInputShape(kInputTensor);
    if (opType != OperationType::HARD_SWISH) {
        NN_RET_CHECK_LE(getNumberOfDimensions(input), 4);
    }
    Shape output = input;
    if (input.type == OperandType::TENSOR_QUANT8_ASYMM ||
        input.type == OperandType::TENSOR_QUANT8_ASYMM_SIGNED) {
        bool isSigned = input.type == OperandType::TENSOR_QUANT8_ASYMM_SIGNED;
        switch (opType) {
            case OperationType::HARD_SWISH: {
                auto outputShape = context->getOutputShape(kOutputTensor);
                output.scale = outputShape.scale;
                output.offset = outputShape.offset;
            } break;
            case OperationType::RELU:
            case OperationType::RELU1:
            case OperationType::RELU6:
                break;
            case OperationType::LOGISTIC:
                output.scale = 1.f / 256;
                output.offset = isSigned ? -128 : 0;
                break;
            case OperationType::TANH:
                output.scale = 1.f / 128;
                output.offset = isSigned ? 0 : 128;
                break;
            default:
                NN_RET_CHECK_FAIL() << "Unsupported operation type";
        }
    }
    return context->setOutputShape(kOutputTensor, output);
}

bool executeRelu(IOperationExecutionContext* context) {
    // Bypass execution in the case of zero-sized input.
    if (getNumberOfElements(context->getOutputShape(kOutputTensor)) == 0) return true;
    switch (context->getInputType(kInputTensor)) {
        case OperandType::TENSOR_FLOAT16:
            return reluFloat(context->getInputBuffer<_Float16>(kInputTensor),
                             context->getInputShape(kInputTensor),
                             context->getOutputBuffer<_Float16>(kOutputTensor),
                             context->getOutputShape(kOutputTensor));
        case OperandType::TENSOR_FLOAT32:
            return reluFloat(context->getInputBuffer<float>(kInputTensor),
                             context->getInputShape(kInputTensor),
                             context->getOutputBuffer<float>(kOutputTensor),
                             context->getOutputShape(kOutputTensor));
        case OperandType::TENSOR_QUANT8_ASYMM:
            return reluQuant8(context->getInputBuffer<uint8_t>(kInputTensor),
                              context->getInputShape(kInputTensor),
                              context->getOutputBuffer<uint8_t>(kOutputTensor),
                              context->getOutputShape(kOutputTensor));
        case OperandType::TENSOR_QUANT8_ASYMM_SIGNED:
            return reluQuant8Signed(context->getInputBuffer<int8_t>(kInputTensor),
                                    context->getInputShape(kInputTensor),
                                    context->getOutputBuffer<int8_t>(kOutputTensor),
                                    context->getOutputShape(kOutputTensor));
        default:
            NN_RET_CHECK_FAIL() << "Unsupported tensor type for operation RELU";
    }
}

bool executeRelu1(IOperationExecutionContext* context) {
    // Bypass execution in the case of zero-sized input.
    if (getNumberOfElements(context->getOutputShape(kOutputTensor)) == 0) return true;
    switch (context->getInputType(kInputTensor)) {
        case OperandType::TENSOR_FLOAT16:
            return relu1Float(context->getInputBuffer<_Float16>(kInputTensor),
                              context->getInputShape(kInputTensor),
                              context->getOutputBuffer<_Float16>(kOutputTensor),
                              context->getOutputShape(kOutputTensor));
        case OperandType::TENSOR_FLOAT32:
            return relu1Float(context->getInputBuffer<float>(kInputTensor),
                              context->getInputShape(kInputTensor),
                              context->getOutputBuffer<float>(kOutputTensor),
                              context->getOutputShape(kOutputTensor));
        case OperandType::TENSOR_QUANT8_ASYMM:
            return relu1Quant8(context->getInputBuffer<uint8_t>(kInputTensor),
                               context->getInputShape(kInputTensor),
                               context->getOutputBuffer<uint8_t>(kOutputTensor),
                               context->getOutputShape(kOutputTensor));
        case OperandType::TENSOR_QUANT8_ASYMM_SIGNED:
            return relu1Quant8Signed(context->getInputBuffer<int8_t>(kInputTensor),
                                     context->getInputShape(kInputTensor),
                                     context->getOutputBuffer<int8_t>(kOutputTensor),
                                     context->getOutputShape(kOutputTensor));
        default:
            NN_RET_CHECK_FAIL() << "Unsupported tensor type for operation RELU1";
    }
}

bool executeRelu6(IOperationExecutionContext* context) {
    // Bypass execution in the case of zero-sized input.
    if (getNumberOfElements(context->getOutputShape(kOutputTensor)) == 0) return true;
    switch (context->getInputType(kInputTensor)) {
        case OperandType::TENSOR_FLOAT16:
            return relu6Float(context->getInputBuffer<_Float16>(kInputTensor),
                              context->getInputShape(kInputTensor),
                              context->getOutputBuffer<_Float16>(kOutputTensor),
                              context->getOutputShape(kOutputTensor));
        case OperandType::TENSOR_FLOAT32:
            return relu6Float(context->getInputBuffer<float>(kInputTensor),
                              context->getInputShape(kInputTensor),
                              context->getOutputBuffer<float>(kOutputTensor),
                              context->getOutputShape(kOutputTensor));
        case OperandType::TENSOR_QUANT8_ASYMM:
            return relu6Quant8(context->getInputBuffer<uint8_t>(kInputTensor),
                               context->getInputShape(kInputTensor),
                               context->getOutputBuffer<uint8_t>(kOutputTensor),
                               context->getOutputShape(kOutputTensor));
        case OperandType::TENSOR_QUANT8_ASYMM_SIGNED:
            return relu6Quant8Signed(context->getInputBuffer<int8_t>(kInputTensor),
                                     context->getInputShape(kInputTensor),
                                     context->getOutputBuffer<int8_t>(kOutputTensor),
                                     context->getOutputShape(kOutputTensor));
        default:
            NN_RET_CHECK_FAIL() << "Unsupported tensor type for operation RELU6";
    }
}

bool executeLogistic(IOperationExecutionContext* context) {
    // Bypass execution in the case of zero-sized input.
    if (getNumberOfElements(context->getOutputShape(kOutputTensor)) == 0) return true;
    switch (context->getInputType(kInputTensor)) {
        case OperandType::TENSOR_FLOAT16:
            return logisticFloat(context->getInputBuffer<_Float16>(kInputTensor),
                                 context->getInputShape(kInputTensor),
                                 context->getOutputBuffer<_Float16>(kOutputTensor),
                                 context->getOutputShape(kOutputTensor));
        case OperandType::TENSOR_FLOAT32:
            return logisticFloat(context->getInputBuffer<float>(kInputTensor),
                                 context->getInputShape(kInputTensor),
                                 context->getOutputBuffer<float>(kOutputTensor),
                                 context->getOutputShape(kOutputTensor));
        case OperandType::TENSOR_QUANT8_ASYMM:
            return logisticQuant8(context->getInputBuffer<uint8_t>(kInputTensor),
                                  context->getInputShape(kInputTensor),
                                  context->getOutputBuffer<uint8_t>(kOutputTensor),
                                  context->getOutputShape(kOutputTensor));
        case OperandType::TENSOR_QUANT8_ASYMM_SIGNED:
            return logisticQuant8Signed(context->getInputBuffer<int8_t>(kInputTensor),
                                        context->getInputShape(kInputTensor),
                                        context->getOutputBuffer<int8_t>(kOutputTensor),
                                        context->getOutputShape(kOutputTensor));
        default:
            NN_RET_CHECK_FAIL() << "Unsupported tensor type for operation LOGISTIC";
    }
}

bool executeTanh(IOperationExecutionContext* context) {
    // Bypass execution in the case of zero-sized input.
    if (getNumberOfElements(context->getOutputShape(kOutputTensor)) == 0) return true;
    switch (context->getInputType(kInputTensor)) {
        case OperandType::TENSOR_FLOAT16:
            return tanhFloat16(context->getInputBuffer<_Float16>(kInputTensor),
                               context->getInputShape(kInputTensor),
                               context->getOutputBuffer<_Float16>(kOutputTensor),
                               context->getOutputShape(kOutputTensor));
        case OperandType::TENSOR_FLOAT32:
            return tanhFloat32(context->getInputBuffer<float>(kInputTensor),
                               context->getInputShape(kInputTensor),
                               context->getOutputBuffer<float>(kOutputTensor),
                               context->getOutputShape(kOutputTensor));
        case OperandType::TENSOR_QUANT8_ASYMM:
            return tanhQuant8(context->getInputBuffer<uint8_t>(kInputTensor),
                              context->getInputShape(kInputTensor),
                              context->getOutputBuffer<uint8_t>(kOutputTensor),
                              context->getOutputShape(kOutputTensor));
        case OperandType::TENSOR_QUANT8_ASYMM_SIGNED:
            return tanhQuant8Signed(context->getInputBuffer<int8_t>(kInputTensor),
                                    context->getInputShape(kInputTensor),
                                    context->getOutputBuffer<int8_t>(kOutputTensor),
                                    context->getOutputShape(kOutputTensor));
        default:
            NN_RET_CHECK_FAIL() << "Unsupported tensor type for operation TANH";
    }
}

bool executeHardSwish(IOperationExecutionContext* context) {
    // Bypass execution in the case of zero-sized input.
    if (getNumberOfElements(context->getOutputShape(kOutputTensor)) == 0) return true;
    switch (context->getInputType(kInputTensor)) {
        case OperandType::TENSOR_FLOAT16: {
            const Shape& inputShape = context->getInputShape(kInputTensor);
            const Shape& outputShape = context->getOutputShape(kOutputTensor);
            std::vector<float> inputFloat(getNumberOfElements(inputShape));
            std::vector<float> outputFloat(getNumberOfElements(outputShape));
            convertFloat16ToFloat32(context->getInputBuffer<_Float16>(kInputTensor), &inputFloat);
            tflite::reference_ops::HardSwish(convertShapeToTflshape(inputShape), inputFloat.data(),
                                             convertShapeToTflshape(outputShape),
                                             outputFloat.data());
            convertFloat32ToFloat16(outputFloat, context->getOutputBuffer<_Float16>(kOutputTensor));
            return true;
        }
        case OperandType::TENSOR_FLOAT32: {
            tflite::reference_ops::HardSwish(
                    convertShapeToTflshape(context->getInputShape(kInputTensor)),
                    context->getInputBuffer<float>(kInputTensor),
                    convertShapeToTflshape(context->getOutputShape(kOutputTensor)),
                    context->getOutputBuffer<float>(kOutputTensor));
            return true;
        }
        case OperandType::TENSOR_QUANT8_ASYMM:
            return hardSwishQuant(context->getInputBuffer<uint8_t>(kInputTensor),
                                  context->getInputShape(kInputTensor),
                                  context->getOutputBuffer<uint8_t>(kOutputTensor),
                                  context->getOutputShape(kOutputTensor));
        case OperandType::TENSOR_QUANT8_ASYMM_SIGNED:
            return hardSwishQuant(context->getInputBuffer<int8_t>(kInputTensor),
                                  context->getInputShape(kInputTensor),
                                  context->getOutputBuffer<int8_t>(kOutputTensor),
                                  context->getOutputShape(kOutputTensor));
        default:
            NN_RET_CHECK_FAIL() << "Unsupported tensor type for operation TANH";
    }
}

}  // namespace activation

using std::placeholders::_1;
NN_REGISTER_OPERATION(RELU, "RELU", std::bind(activation::validate, OperationType::RELU, _1),
                      std::bind(activation::prepare, OperationType::RELU, _1),
                      activation::executeRelu, .allowZeroSizedInput = true);
NN_REGISTER_OPERATION(RELU1, "RELU1", std::bind(activation::validate, OperationType::RELU1, _1),
                      std::bind(activation::prepare, OperationType::RELU1, _1),
                      activation::executeRelu1, .allowZeroSizedInput = true);
NN_REGISTER_OPERATION(RELU6, "RELU6", std::bind(activation::validate, OperationType::RELU6, _1),
                      std::bind(activation::prepare, OperationType::RELU6, _1),
                      activation::executeRelu6, .allowZeroSizedInput = true);
NN_REGISTER_OPERATION(LOGISTIC, "LOGISTIC",
                      std::bind(activation::validate, OperationType::LOGISTIC, _1),
                      std::bind(activation::prepare, OperationType::LOGISTIC, _1),
                      activation::executeLogistic, .allowZeroSizedInput = true);
NN_REGISTER_OPERATION(TANH, "TANH", std::bind(activation::validate, OperationType::TANH, _1),
                      std::bind(activation::prepare, OperationType::TANH, _1),
                      activation::executeTanh, .allowZeroSizedInput = true);
NN_REGISTER_OPERATION(HARD_SWISH, "HARD_SWISH", activation::validateHardSwish,
                      std::bind(activation::prepare, OperationType::HARD_SWISH, _1),
                      activation::executeHardSwish, .allowZeroSizedInput = true);

}  // namespace nn
}  // namespace android