summaryrefslogtreecommitdiff
path: root/nn/common/operations/Dequantize.cpp
blob: f155eb2867a076af8372ff5ee31971a2da2812ae (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
/*
 * Copyright (C) 2019 The Android Open Source Project
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#include "OperationsUtils.h"
#define LOG_TAG "Operations"

#include "IndexedShapeWrapper.h"
#include "OperationResolver.h"

namespace android {
namespace nn {
namespace dequantize {

constexpr uint32_t kNumInputs = 1;
constexpr uint32_t kInputTensor = 0;

constexpr uint32_t kNumOutputs = 1;
constexpr uint32_t kOutputTensor = 0;

namespace {

template <typename InputType, typename OutputType>
bool compute(const InputType* inputData, const Shape& inputShape, OutputType* outputData) {
    const int numElements = getNumberOfElements(inputShape);
    const int32_t zeroPoint = inputShape.offset;
    const float scale = inputShape.scale;
    for (int i = 0; i < numElements; ++i) {
        const int32_t value = inputData[i];
        outputData[i] = static_cast<OutputType>(scale * (value - zeroPoint));
    }
    return true;
}

template <typename OutputType>
bool computePerChannel(const int8_t* inputData, const Shape& inputShape, OutputType* outputData) {
    // First we calculate a stride which is the number of elements we need to
    // skip to change an index along a dimension with different quantization
    // scales.
    const int channelDim =
            std::get<Operand::SymmPerChannelQuantParams>(inputShape.extraParams).channelDim;
    int stride = 1;
    for (int i = getNumberOfDimensions(inputShape) - 1; i > channelDim; --i) {
        stride *= getSizeOfDimension(inputShape, i);
    }

    const int numElements = getNumberOfElements(inputShape);
    const int32_t zeroPoint = inputShape.offset;

    for (int i = 0; i < numElements; ++i) {
        // To get current index along the quantized dimension we calculate how
        // many even |strides| we looped through and take this number modulo the
        // size of the dimension (so that we don't have an overflow if the
        // channelDim is not 0).
        const int scaleIndex = (i / stride) % getSizeOfDimension(inputShape, channelDim);
        const float scale = std::get<Operand::SymmPerChannelQuantParams>(inputShape.extraParams)
                                    .scales[scaleIndex];
        const int32_t value = inputData[i];
        outputData[i] = static_cast<OutputType>(scale * (value - zeroPoint));
    }
    return true;
}

}  // namespace

bool validate(const IOperationValidationContext* context) {
    NN_RET_CHECK_EQ(context->getNumInputs(), kNumInputs);
    NN_RET_CHECK_EQ(context->getNumOutputs(), kNumOutputs);

    const OperandType inputType = context->getInputType(kInputTensor);
    const OperandType outputType = context->getOutputType(kOutputTensor);

    const Shape& input = context->getInputShape(kInputTensor);
    if (hasKnownRank(input)) {
        NN_RET_CHECK_LE(getNumberOfDimensions(input), 4);
    }

    if (inputType == OperandType::TENSOR_QUANT8_ASYMM &&
        outputType == OperandType::TENSOR_FLOAT32) {
        return validateVersion(context, Version::ANDROID_OC_MR1);
    }

    NN_RET_CHECK(inputType == OperandType::TENSOR_QUANT8_ASYMM ||
                 inputType == OperandType::TENSOR_QUANT8_ASYMM_SIGNED ||
                 inputType == OperandType::TENSOR_QUANT8_SYMM ||
                 inputType == OperandType::TENSOR_QUANT8_SYMM_PER_CHANNEL)
            << "Unsupported input operand type for DEQUANTIZE op: " << inputType;
    NN_RET_CHECK(outputType == OperandType::TENSOR_FLOAT16 ||
                 outputType == OperandType::TENSOR_FLOAT32)
            << "Unsupported output operand type for DEQUANTIZE op: " << outputType;
    return validateVersion(context, Version::ANDROID_Q);
}

bool prepare(IOperationExecutionContext* context) {
    const Shape& input = context->getInputShape(kInputTensor);
    NN_RET_CHECK_LE(getNumberOfDimensions(input), 4);
    Shape output = context->getOutputShape(kOutputTensor);
    output.dimensions = input.dimensions;
    return context->setOutputShape(kOutputTensor, output);
}

bool execute(IOperationExecutionContext* context) {
    // Bypass execution in the case of zero-sized input.
    if (getNumberOfElements(context->getOutputShape(kOutputTensor)) == 0) return true;

    const OperandType inputType = context->getInputType(kInputTensor);
    const OperandType outputType = context->getOutputType(kOutputTensor);

    const Shape& inputShape = context->getInputShape(kInputTensor);
    if (inputType == OperandType::TENSOR_QUANT8_ASYMM) {
        const uint8_t* inputBuffer = context->getInputBuffer<uint8_t>(kInputTensor);
        if (outputType == OperandType::TENSOR_FLOAT16) {
            return compute(inputBuffer, inputShape,
                           context->getOutputBuffer<_Float16>(kOutputTensor));
        } else if (outputType == OperandType::TENSOR_FLOAT32) {
            return compute(inputBuffer, inputShape, context->getOutputBuffer<float>(kOutputTensor));
        }
    } else if (inputType == OperandType::TENSOR_QUANT8_SYMM) {
        const int8_t* inputBuffer = context->getInputBuffer<int8_t>(kInputTensor);
        if (outputType == OperandType::TENSOR_FLOAT16) {
            return compute(inputBuffer, inputShape,
                           context->getOutputBuffer<_Float16>(kOutputTensor));
        } else if (outputType == OperandType::TENSOR_FLOAT32) {
            return compute(inputBuffer, inputShape, context->getOutputBuffer<float>(kOutputTensor));
        }
    } else if (inputType == OperandType::TENSOR_QUANT8_ASYMM_SIGNED) {
        const int8_t* inputBuffer = context->getInputBuffer<int8_t>(kInputTensor);
        if (outputType == OperandType::TENSOR_FLOAT16) {
            return compute(inputBuffer, inputShape,
                           context->getOutputBuffer<_Float16>(kOutputTensor));
        } else if (outputType == OperandType::TENSOR_FLOAT32) {
            return compute(inputBuffer, inputShape, context->getOutputBuffer<float>(kOutputTensor));
        }
    } else if (inputType == OperandType::TENSOR_QUANT8_SYMM_PER_CHANNEL) {
        const int8_t* inputBuffer = context->getInputBuffer<int8_t>(kInputTensor);
        if (outputType == OperandType::TENSOR_FLOAT16) {
            return computePerChannel(inputBuffer, inputShape,
                                     context->getOutputBuffer<_Float16>(kOutputTensor));
        } else if (outputType == OperandType::TENSOR_FLOAT32) {
            return computePerChannel(inputBuffer, inputShape,
                                     context->getOutputBuffer<float>(kOutputTensor));
        }
    }
    NN_RET_CHECK_FAIL() << "Unsupported tensor types combination for dequantize op. (input type: "
                        << inputType << " output type: " << outputType << ")";
}

}  // namespace dequantize

NN_REGISTER_OPERATION(DEQUANTIZE, "DEQUANTIZE", dequantize::validate, dequantize::prepare,
                      dequantize::execute, .allowZeroSizedInput = true);

}  // namespace nn
}  // namespace android