summaryrefslogtreecommitdiff
path: root/nn/common/operations/Gather.cpp
blob: 5571a6501a42af9a7d46090e6abf97612e5bac54 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
/*
 * Copyright (C) 2018 The Android Open Source Project
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#define LOG_TAG "Operations"

#include "OperationResolver.h"
#include "OperationsUtils.h"
#include "Tracing.h"

namespace android {
namespace nn {
namespace gather {

constexpr char kOperationName[] = "GATHER";

constexpr uint32_t kNumInputs = 3;
constexpr uint32_t kInputTensor = 0;
constexpr uint32_t kInputAxis = 1;
constexpr uint32_t kInputIndices = 2;

constexpr uint32_t kNumOutputs = 1;
constexpr uint32_t kOutputTensor = 0;

namespace {

template <typename T>
inline bool eval(const T* inputData, const Shape& inputShape, int32_t axis,
                 const int32_t* indicesData, const Shape& indicesShape, T* outputData) {
    const auto outerSize = getNumberOfElements(inputShape, 0, axis);
    const auto axisSize = getSizeOfDimension(inputShape, axis);
    const auto innerSize =
            getNumberOfElements(inputShape, axis + 1, getNumberOfDimensions(inputShape));
    const auto indicesCount = getNumberOfElements(indicesShape);
    for (uint32_t outer = 0; outer < outerSize; ++outer) {
        for (uint32_t outputIndex = 0; outputIndex < indicesCount; ++outputIndex) {
            const auto inputIndex = static_cast<uint32_t>(indicesData[outputIndex]);
            NN_RET_CHECK_LE(0u, inputIndex);
            NN_RET_CHECK_LT(inputIndex, axisSize);
            std::memcpy(outputData + (outer * indicesCount + outputIndex) * innerSize,
                        inputData + (outer * axisSize + inputIndex) * innerSize,
                        sizeof(T) * innerSize);
        }
    }
    return true;
}

}  // namespace

Result<Version> validate(const IOperationValidationContext* context) {
    NN_RET_CHECK_EQ(context->getNumInputs(), kNumInputs);
    NN_RET_CHECK_EQ(context->getNumOutputs(), kNumOutputs);
    OperandType inputType = context->getInputType(kInputTensor);
    NN_RET_CHECK(inputType == OperandType::TENSOR_FLOAT16 ||
                 inputType == OperandType::TENSOR_FLOAT32 ||
                 inputType == OperandType::TENSOR_INT32 ||
                 inputType == OperandType::TENSOR_QUANT8_ASYMM ||
                 inputType == OperandType::TENSOR_QUANT8_ASYMM_SIGNED)
            << "Unsupported tensor type for operation " << kOperationName;
    NN_RET_CHECK(validateInputTypes(context,
                                    {inputType, OperandType::INT32, OperandType::TENSOR_INT32}));
    NN_RET_CHECK(validateOutputTypes(context, {inputType}));
    if (inputType == OperandType::TENSOR_QUANT8_ASYMM_SIGNED) {
        return Version::ANDROID_R;
    } else {
        return Version::ANDROID_Q;
    }
}

bool prepare(IOperationExecutionContext* context) {
    Shape input = context->getInputShape(kInputTensor);
    int32_t axis = context->getInputValue<int32_t>(kInputAxis);
    NN_RET_CHECK(handleNegativeAxis(input, &axis));
    Shape indices = context->getInputShape(kInputIndices);
    Shape output = context->getOutputShape(kOutputTensor);

    output.dimensions.clear();
    output.dimensions.reserve(getNumberOfDimensions(input) + getNumberOfDimensions(indices) - 1);
    output.dimensions.insert(output.dimensions.end(), input.dimensions.begin(),
                             input.dimensions.begin() + axis);
    output.dimensions.insert(output.dimensions.end(), indices.dimensions.begin(),
                             indices.dimensions.end());
    output.dimensions.insert(output.dimensions.end(), input.dimensions.begin() + axis + 1,
                             input.dimensions.end());

    return context->setOutputShape(kOutputTensor, output);
}

bool execute(IOperationExecutionContext* context) {
    int32_t axis = context->getInputValue<int32_t>(kInputAxis);
    NN_RET_CHECK(handleNegativeAxis(context->getInputShape(kInputTensor), &axis));
    switch (context->getInputType(kInputTensor)) {
        case OperandType::TENSOR_FLOAT16:
            return eval(context->getInputBuffer<_Float16>(kInputTensor),
                        context->getInputShape(kInputTensor), axis,
                        context->getInputBuffer<int32_t>(kInputIndices),
                        context->getInputShape(kInputIndices),
                        context->getOutputBuffer<_Float16>(kOutputTensor));
        case OperandType::TENSOR_FLOAT32:
            return eval(context->getInputBuffer<float>(kInputTensor),
                        context->getInputShape(kInputTensor), axis,
                        context->getInputBuffer<int32_t>(kInputIndices),
                        context->getInputShape(kInputIndices),
                        context->getOutputBuffer<float>(kOutputTensor));
        case OperandType::TENSOR_INT32:
            return eval(context->getInputBuffer<int32_t>(kInputTensor),
                        context->getInputShape(kInputTensor), axis,
                        context->getInputBuffer<int32_t>(kInputIndices),
                        context->getInputShape(kInputIndices),
                        context->getOutputBuffer<int32_t>(kOutputTensor));
        case OperandType::TENSOR_QUANT8_ASYMM:
            return eval(context->getInputBuffer<uint8_t>(kInputTensor),
                        context->getInputShape(kInputTensor), axis,
                        context->getInputBuffer<int32_t>(kInputIndices),
                        context->getInputShape(kInputIndices),
                        context->getOutputBuffer<uint8_t>(kOutputTensor));
        case OperandType::TENSOR_QUANT8_ASYMM_SIGNED:
            return eval(context->getInputBuffer<int8_t>(kInputTensor),
                        context->getInputShape(kInputTensor), axis,
                        context->getInputBuffer<int32_t>(kInputIndices),
                        context->getInputShape(kInputIndices),
                        context->getOutputBuffer<int8_t>(kOutputTensor));
        default:
            NN_RET_CHECK_FAIL() << "Unsupported tensor type for operation " << kOperationName;
    }
}

}  // namespace gather

NN_REGISTER_OPERATION(GATHER, gather::kOperationName, gather::validate, gather::prepare,
                      gather::execute);

}  // namespace nn
}  // namespace android