summaryrefslogtreecommitdiff
path: root/nn/common/operations/LocalResponseNormalization.cpp
blob: 435d602f20b5274c0ad1b287a106bf7febd9379f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
/*
 * Copyright (C) 2020 The Android Open Source Project
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#define LOG_TAG "Operations"

#include <tensorflow/lite/kernels/internal/optimized/optimized_ops.h>

#include <algorithm>
#include <vector>

#include "CpuOperationUtils.h"
#include "OperationResolver.h"
#include "Tracing.h"

namespace android {
namespace nn {
namespace local_response_norm {

constexpr char kOperationName[] = "LOCAL_RESPONSE_NORMALIZATION";

constexpr uint32_t kNumInputs = 6;
constexpr uint32_t kInputTensor = 0;
constexpr uint32_t kRadiusScalar = 1;
constexpr uint32_t kBiasScalar = 2;
constexpr uint32_t kAlphaScalar = 3;
constexpr uint32_t kBetaScalar = 4;
constexpr uint32_t kAxisScalar = 5;

constexpr uint32_t kNumOutputs = 1;
constexpr uint32_t kOutputTensor = 0;

namespace {

inline bool localResponseNormFloat32Impl(const float* inputData, const Shape& inputShape,
                                         int32_t radius, float bias, float alpha, float beta,
                                         int32_t axis, float* outputData,
                                         const Shape& outputShape) {
    NNTRACE_TRANS("localResponseNormFloat32");
    const uint32_t outerSize = getNumberOfElements(inputShape, 0, axis);
    const uint32_t axisSize = getSizeOfDimension(inputShape, axis);
    const uint32_t innerSize =
            getNumberOfElements(inputShape, axis + 1, getNumberOfDimensions(inputShape));
    for (uint32_t outer = 0; outer < outerSize; ++outer) {
        const float* inputBase = inputData + outer * axisSize * innerSize;
        float* outputBase = outputData + outer * axisSize * innerSize;
        for (uint32_t inner = 0; inner < innerSize; ++inner, ++inputBase, ++outputBase) {
            for (int32_t i = 0; i < axisSize; i++) {
                const int32_t dBegin = std::max(0, i - radius);
                // Add 1 on dEnd to comply with optimized_ops in TFLite
                const int32_t dEnd = std::min(static_cast<int32_t>(axisSize), i + radius + 1);
                float sum = 0.0f;
                for (int32_t d = dBegin; d < dEnd; d++) {
                    float val = inputBase[d * innerSize];
                    sum += val * val;
                }
                float multiplier = std::pow(bias + alpha * sum, -beta);
                outputBase[i * innerSize] = inputBase[i * innerSize] * multiplier;
            }
        }
    }
    return true;
}

template <typename T>
bool localResponseNorm(const T* inputData, const Shape& inputShape, int32_t radius, T bias, T alpha,
                       T beta, int32_t axis, T* outputData, const Shape& outputShape);

template <>
bool localResponseNorm<float>(const float* inputData, const Shape& inputShape, int32_t radius,
                              float bias, float alpha, float beta, int32_t axis, float* outputData,
                              const Shape& outputShape) {
    int32_t ndim = getNumberOfDimensions(inputShape);
    NN_CHECK(handleNegativeAxis(inputShape, &axis));
    // TFLite optimized implementation only supports computation along the last axis
    if (axis == ndim - 1) {
        NNTRACE_COMP("optimized_ops::LocalResponseNormalization::float");
        tflite::LocalResponseNormalizationParams param = {
                .range = radius, .bias = bias, .alpha = alpha, .beta = beta};
        tflite::optimized_ops::LocalResponseNormalization(
                param, convertShapeToTflshape(inputShape), inputData,
                convertShapeToTflshape(outputShape), outputData);
        return true;
    } else {
        return localResponseNormFloat32Impl(inputData, inputShape, radius, bias, alpha, beta, axis,
                                            outputData, outputShape);
    }
}

template <>
bool localResponseNorm<_Float16>(const _Float16* inputData, const Shape& inputShape, int32_t radius,
                                 _Float16 bias, _Float16 alpha, _Float16 beta, int32_t axis,
                                 _Float16* outputData, const Shape& outputShape) {
    NNTRACE_TRANS("localResponseNormFloat16");
    std::vector<float> inputDataFloat32(getNumberOfElements(inputShape));
    convertFloat16ToFloat32(inputData, &inputDataFloat32);
    std::vector<float> outputDataFloat32(getNumberOfElements(outputShape));

    localResponseNorm<float>(inputDataFloat32.data(), inputShape, radius, bias, alpha, beta, axis,
                             outputDataFloat32.data(), outputShape);
    convertFloat32ToFloat16(outputDataFloat32, outputData);

    return true;
}

template <typename T>
bool executeTyped(IOperationExecutionContext* context) {
    int32_t axis = context->getNumInputs() == kNumInputs
                           ? context->getInputValue<int32_t>(kAxisScalar)
                           : -1;
    NN_RET_CHECK(handleNegativeAxis(context->getInputShape(kInputTensor), &axis));
    return localResponseNorm<T>(
            context->getInputBuffer<T>(kInputTensor), context->getInputShape(kInputTensor),
            context->getInputValue<int32_t>(kRadiusScalar), context->getInputValue<T>(kBiasScalar),
            context->getInputValue<T>(kAlphaScalar), context->getInputValue<T>(kBetaScalar), axis,
            context->getOutputBuffer<T>(kOutputTensor), context->getOutputShape(kOutputTensor));
}

}  // namespace

bool validate(const IOperationValidationContext* context) {
    NN_RET_CHECK(context->getNumInputs() == kNumInputs ||
                 context->getNumInputs() == kNumInputs - 1);
    NN_RET_CHECK_EQ(context->getNumOutputs(), kNumOutputs);

    const OperandType inputType = context->getInputType(kInputTensor);
    std::vector<OperandType> inExpectedTypes;
    std::vector<OperandType> outExpectedTypes;
    auto minSupportedVersion = Version::ANDROID_OC_MR1;
    if (inputType == OperandType::TENSOR_FLOAT32) {
        minSupportedVersion = Version::ANDROID_OC_MR1;
        inExpectedTypes = {
                OperandType::TENSOR_FLOAT32, OperandType::INT32,   OperandType::FLOAT32,
                OperandType::FLOAT32,        OperandType::FLOAT32,
        };
        outExpectedTypes = {OperandType::TENSOR_FLOAT32};
    } else if (inputType == OperandType::TENSOR_FLOAT16) {
        minSupportedVersion = Version::ANDROID_Q;
        inExpectedTypes = {
                OperandType::TENSOR_FLOAT16, OperandType::INT32,   OperandType::FLOAT16,
                OperandType::FLOAT16,        OperandType::FLOAT16,
        };
        outExpectedTypes = {OperandType::TENSOR_FLOAT16};
    } else {
        NN_RET_CHECK_FAIL() << "Unsupported tensor type for operation " << kOperationName;
    }

    if (context->getNumInputs() == kNumInputs) {
        inExpectedTypes.push_back(OperandType::INT32);
        minSupportedVersion = Version::ANDROID_Q;
    } else if (context->getInputShape(kInputTensor).dimensions.size() != 4) {
        minSupportedVersion = Version::ANDROID_Q;
    }

    const Shape& input = context->getInputShape(kInputTensor);
    if (hasKnownRank(input)) {
        NN_RET_CHECK_LE(getNumberOfDimensions(input), 4);
    }
    NN_RET_CHECK(validateInputTypes(context, inExpectedTypes));
    NN_RET_CHECK(validateOutputTypes(context, {inputType}));
    return validateVersion(context, minSupportedVersion);
}

bool prepare(IOperationExecutionContext* context) {
    const Shape& input = context->getInputShape(kInputTensor);
    int32_t numDimensions = getNumberOfDimensions(input);
    int32_t axis = context->getNumInputs() == kNumInputs
                           ? context->getInputValue<int32_t>(kAxisScalar)
                           : -1;
    NN_RET_CHECK_LE(numDimensions, 4);
    NN_RET_CHECK_GE(axis, -numDimensions);
    NN_RET_CHECK_LT(axis, numDimensions);
    return context->setOutputShape(kOutputTensor, input);
}

bool execute(IOperationExecutionContext* context) {
    switch (context->getInputType(kInputTensor)) {
        case OperandType::TENSOR_FLOAT32:
            return executeTyped<float>(context);
        case OperandType::TENSOR_FLOAT16:
            return executeTyped<_Float16>(context);
        default:
            NN_RET_CHECK_FAIL() << "Unsupported tensor type for operation " << kOperationName;
    }
}

}  // namespace local_response_norm

NN_REGISTER_OPERATION(LOCAL_RESPONSE_NORMALIZATION, local_response_norm::kOperationName,
                      local_response_norm::validate, local_response_norm::prepare,
                      local_response_norm::execute);

}  // namespace nn
}  // namespace android