summaryrefslogtreecommitdiff
path: root/nn/runtime/test/TestPartitioning.cpp
blob: 1a2ea21d1fba2f63e4ea7765b34a85402d52e1fd (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
/*
 * Copyright (C) 2017 The Android Open Source Project
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#include <gtest/gtest.h>

#include <algorithm>
#include <filesystem>
#include <functional>
#include <map>
#include <memory>
#include <queue>
#include <set>
#include <string>
#include <type_traits>
#include <utility>
#include <vector>

#include "CompilationBuilder.h"
#include "ControlFlow.h"
#include "ExecutionPlan.h"
#include "HalInterfaces.h"
#include "Manager.h"
#include "ModelBuilder.h"
#include "NeuralNetworks.h"
#include "NeuralNetworksOEM.h"
#include "SampleDriver.h"
#include "TestNeuralNetworksWrapper.h"
#include "Utils.h"
#include "ValidateHal.h"

// Uncomment the following line to generate some debugging output that
// may be useful when analyzing failures:
//
// #define VERBOSE VERBOSE

// These tests do whitebox testing of the graph partitioning
// algorithm.  It is "whitebox" in the sense that we're not evaluating
// whether a particular partitioning is legal, or "good enough"
// according to some metric, but whether it exactly matches the
// expected behavior of the current partitioning algorithm.
//
// A key part of the current partitioning algorithm is to determine
// which device among the available devices should be the one to
// execute a particular operation from the graph.  This determination
// is made "locally" -- i.e., it does not depend on the graph
// topology, only on the properties of the operation in question.
// IDevice::getSupportedOperations() indicates which operations in a
// graph can be executed on a device, and IDevice::getCapabilities()
// indicates how "good" that device is for executing particular kinds
// of operations.  For each operation, the partitioning algorithm
// picks the "best" device that is capable of executing that
// operation; if no device can do so, then the algorithm picks the
// cpu.
//
// As part of this testing approach, we want to make it easy to
// specify which operations in a test graph can be executed on which
// devices.  We accomplish this in the following way:
// - A unary OEM operation is available.
// - There is a collection of operations (each of which has two inputs
//   and one output):
//   - Eight kinds of operations available at driver version V1_0 or
//     later.  They are represented in the graph as ADD or MUL with a
//     particular activation function -- two opcodes times four
//     activation functions means eight available operation kinds.
//     This is a low-level representation detail -- when we specify the
//     behavior of the device or build a graph, we do so in terms of
//     operation encodings 0..7.
//   - Eight kinds of operations available at driver version V1_1 or
//     later.  They are represented in the graph as DIV or SUB with
//     a particular activation function, exactly analogous to ADD
//     and MUL above.  We use operation encodings 8..15 for them.
//   - Four kinds of operations available at driver version V1_2 or
//     later.  They are represented in the graph as MAXIMUM,
//     MINIMUM, POW, or PRELU.  These operations take no activation
//     function, so we only get 4 operation kinds, for which we
//     use operation encodings 16..19.
// - There is another collection of operations (each of which has one input
//   and one output):
//   - Single operation available at driver version V1_3 or
//     later.  It is represented in the graph as HARD_SWISH.
//     These operations take no activation function, for which we
//     use operation encodings 20..20.

// When we instantiate a device for testing purposes, we specify what subset of
// those operations the device is able to execute.
//
// In order to determine whether or not a partitioning matches the
// expected partitioning, we check the number of partitions, check
// which device each partition targets, and compare each partition's
// subgraph, model inputs, model outputs, step model inputs, and
// step model outputs against what is expected.  In order to perform
// that comparison, we build a model to compare against a partition's
// step model and run a graph comparison algorithm on it.  The graph
// comparison and the inputs and outputs comparisons are syntactic
// rather than semantic comparisons -- they don't allow for
// reorderings of inputs and outputs.  Because of this, we need to
// know exactly how the partitioning algorithm orders inputs and
// outputs in order to construct the models and operand lists to
// compare against.  Here are some relevant behaviors of the
// partitioning algorithm:
//
// - It builds a subgraph by walking operations in forward topological
//   order, and adding each operation's input operands and output
//   operands in index order (input followed by output) when that
//   operation is added.  (It does not add an input that has already
//   been added.)
// - It finds model inputs, model outputs, and step model inputs in
//   the order the corresponding operands were added to the subgraph
//   (see ExecutionStep methods getModelInputs(), getModelOutputs(),
//   getTempsAsStepModelInputs(), getOutputsAsStepModelInputs()).
// - It finds temps as step model outputs in numerical order of corresponding
//   operand number in the original model (see ExecutionStep method
//   getTempsAsStepModelOutputs()).
// - When it calls identifyInputsAndOutputs() on the step model, it
//   passes inputs from getModelInputs() in order, followed by temps as
//   step model inputs from getTempsAsStepModelInputs() in order,
//   followed by outputs as step model inputs from
//   getOutputsAsStepModelInputs() in order; and it passes outputs from
//   getModelOutputs() in order followed by step model outputs from
//   getTempsAsStepModelOutputs() in order.
//
// TODO: Maybe the logic for comparing a partition to an expected
//       model should be changed to tolerate reorderings of inputs and
//       outputs, so that when we build models and lists to compare
//       against, we don't need to worry about input and output
//       orderings.  But is there a way to do this that still lets us
//       verify that we have the correct relationships between
//       an (original) model's inputs and outputs and each step model's
//       inputs and outputs, as well as the correct relationship
//       between step model inputs and outputs across partitions?

namespace {

using namespace android::nn::hal;
using CompilationBuilder = ::android::nn::CompilationBuilder;
using Deadline = ::android::nn::Deadline;
using Device = ::android::nn::Device;
using DeviceManager = ::android::nn::DeviceManager;
using ExecutePreference = ::android::nn::test_wrapper::ExecutePreference;
using ExecutePriority = ::android::nn::test_wrapper::ExecutePriority;
using ExecutionPlan = ::android::nn::ExecutionPlan;
using ExecutionStep = ::android::nn::ExecutionStep;
using HalVersion = ::android::nn::HalVersion;
using HidlModel = V1_3::Model;
using LogicalStep = ::android::nn::LogicalStep;
using ModelBuilder = ::android::nn::ModelBuilder;
using Result = ::android::nn::test_wrapper::Result;
using SampleDriver = ::android::nn::sample_driver::SampleDriver;
using WrapperCompilation = ::android::nn::test_wrapper::Compilation;
using WrapperModel = ::android::nn::test_wrapper::Model;
using WrapperOperandType = ::android::nn::test_wrapper::OperandType;
using WrapperSymmPerChannelQuantParams = ::android::nn::test_wrapper::SymmPerChannelQuantParams;
using WrapperType = ::android::nn::test_wrapper::Type;

template <typename T>
using MQDescriptorSync = ::android::hardware::MQDescriptorSync<T>;

constexpr Timing kBadTiming = {.timeOnDevice = UINT64_MAX, .timeInDriver = UINT64_MAX};

Capabilities makeCapabilities(float perf) {
    PerformanceInfo perfInfo = {.execTime = perf, .powerUsage = perf};
    return {.relaxedFloat32toFloat16PerformanceScalar = perfInfo,
            .relaxedFloat32toFloat16PerformanceTensor = perfInfo,
            .operandPerformance =
                    ::android::nn::nonExtensionOperandPerformance<HalVersion::V1_3>(perfInfo),
            .ifPerformance = perfInfo,
            .whilePerformance = perfInfo};
};

void update(Capabilities* capabilities, OperandType type, float perf) {
    PerformanceInfo perfInfo = {.execTime = perf, .powerUsage = perf};
    ::android::nn::update(&capabilities->operandPerformance, type, perfInfo);
}

float lookupExecTime(const Capabilities& capabilities, OperandType type) {
    return ::android::nn::lookup(capabilities.operandPerformance, type).execTime;
}

const uint32_t kNumFuseCodes = 4;
const uint32_t kBadOperation = ~0;

// V1_0 operations
const uint32_t kFirstEncodingADD = 0;
const uint32_t kFirstEncodingMUL = kFirstEncodingADD + kNumFuseCodes;
const uint32_t kFirstEncodingV1_0 = kFirstEncodingADD;
const uint32_t kLastEncodingV1_0 = kFirstEncodingMUL + kNumFuseCodes - 1;

// V1_1 operations
const uint32_t kFirstEncodingDIV = kLastEncodingV1_0 + 1;
const uint32_t kFirstEncodingSUB = kFirstEncodingDIV + kNumFuseCodes;
const uint32_t kFirstEncodingV1_1 = kFirstEncodingDIV;
const uint32_t kLastEncodingV1_1 = kFirstEncodingSUB + kNumFuseCodes - 1;

// V1_2 operations
const uint32_t kFirstEncodingMAXIMUM = kLastEncodingV1_1 + 1;
const uint32_t kFirstEncodingMINIMUM = kFirstEncodingMAXIMUM + 1;
const uint32_t kFirstEncodingPOW = kFirstEncodingMINIMUM + 1;
const uint32_t kFirstEncodingPRELU = kFirstEncodingPOW + 1;
const uint32_t kFirstEncodingV1_2 = kFirstEncodingMAXIMUM;
const uint32_t kLastEncodingV1_2 = kFirstEncodingPRELU;

// V1_3 operations
const uint32_t kFirstEncodingHARD_SWISH = kLastEncodingV1_2 + 1;
const uint32_t kFirstEncodingV1_3 = kFirstEncodingHARD_SWISH;
const uint32_t kLastEncodingV1_3 = kFirstEncodingHARD_SWISH;

const std::map<OperationType, uint32_t> operationToFirstEncoding = {
        {OperationType::ADD, kFirstEncodingADD},
        {OperationType::MUL, kFirstEncodingMUL},
        {OperationType::DIV, kFirstEncodingDIV},
        {OperationType::SUB, kFirstEncodingSUB},
        {OperationType::MAXIMUM, kFirstEncodingMAXIMUM},
        {OperationType::MINIMUM, kFirstEncodingMINIMUM},
        {OperationType::POW, kFirstEncodingPOW},
        {OperationType::PRELU, kFirstEncodingPRELU},
        {OperationType::HARD_SWISH, kFirstEncodingHARD_SWISH},
};

// Sorted in reverse order (std::greater) so that we can use map::lower_bound to
// find an entry whose key is numerically less than or equal to a search value.
// mapped_type is (OperandCode, hasFuseCode).
const std::map<uint32_t, std::pair<uint32_t, bool>, std::greater<>> firstEncodingToOperation = {
        {kFirstEncodingADD, {ANEURALNETWORKS_ADD, true}},
        {kFirstEncodingMUL, {ANEURALNETWORKS_MUL, true}},
        {kFirstEncodingDIV, {ANEURALNETWORKS_DIV, true}},
        {kFirstEncodingSUB, {ANEURALNETWORKS_SUB, true}},
        {kFirstEncodingMAXIMUM, {ANEURALNETWORKS_MAXIMUM, false}},
        {kFirstEncodingMINIMUM, {ANEURALNETWORKS_MINIMUM, false}},
        {kFirstEncodingPOW, {ANEURALNETWORKS_POW, false}},
        {kFirstEncodingPRELU, {ANEURALNETWORKS_PRELU, false}},
        {kFirstEncodingHARD_SWISH, {ANEURALNETWORKS_HARD_SWISH, false}},
};

// Look up the operation with the specified index in a graph, and return the
// operation encoding; or, if for some reason this is not one of the encoded
// operations, then return kBadOperation.
uint32_t lookupOperation(std::function<const Operation&(uint32_t)> getOperation,
                         std::function<const Operand&(uint32_t)> getOperand,
                         std::function<const uint8_t*(uint32_t)> getValue,
                         uint32_t operationIndex) {
    const Operation& operation = getOperation(operationIndex);
    switch (operation.type) {
        case OperationType::ADD:
        case OperationType::MUL:
        case OperationType::DIV:
        case OperationType::SUB: {
            // input2 is the fused activation function
            const Operand& input2 = getOperand(operation.inputs[2]);
            if ((input2.type == OperandType::INT32) &&
                (input2.lifetime == OperandLifeTime::CONSTANT_COPY)) {
                int32_t value;
                CHECK_EQ(sizeof(value), input2.location.length);
                memcpy(&value, getValue(input2.location.offset), input2.location.length);
                return value + operationToFirstEncoding.at(operation.type);
            }
            break;
        }
        default: {
            auto it = operationToFirstEncoding.find(operation.type);
            if (it != operationToFirstEncoding.end()) {
                return it->second;
            }
            break;
        }
    }
    return kBadOperation;
}

uint32_t lookupOperation(const HidlModel& model, const Subgraph& subgraph,
                         uint32_t operationIndex) {
    return lookupOperation(
            [&subgraph](uint32_t index) -> const Operation& { return subgraph.operations[index]; },
            [&subgraph](uint32_t index) -> const Operand& { return subgraph.operands[index]; },
            [&model](uint32_t offset) { return &model.operandValues[offset]; }, operationIndex);
}

#ifdef VERBOSE
// This is a debugging utility function
void dump(const char* name, const ModelBuilder* model) {
    const HidlModel hidlModel = model->makeHidlModel();
    std::cout << name << ": " << toString(hidlModel) << std::endl;
    std::cout << "inputs: " << toString(hidlModel.main.inputIndexes) << std::endl;
    std::cout << "outputs: " << toString(hidlModel.main.outputIndexes) << std::endl;
    for (size_t i = 0, e = hidlModel.main.operations.size(); i < e; i++) {
        std::cout << "operation[" << i << "]: " << toString(hidlModel.main.operations[i])
                  << std::endl;
    }
}
#endif

// This is an IDevice for testing purposes.  It only has a few interesting
// properties, all of which are specified as constructor arguments: device
// capabilities; which subset of operation kinds (0..19) does the device
// support; does the device support the OEM operation; does the device support
// other operations.  The subset is represented with a bitmask, in which
// operation kind K corresponds to the bit (1 << K).  The other operations are
// represented by a set of OperationType.
class PartitioningDriver : public SampleDriver {
   private:
    // Dummy class -- a prepared model must not be nullptr.
    class PartitioningPreparedModel : public IPreparedModel {
       public:
        Return<V1_0::ErrorStatus> execute(const V1_0::Request&,
                                          const sp<V1_0::IExecutionCallback>&) override {
            return V1_0::ErrorStatus::DEVICE_UNAVAILABLE;
        }
        Return<V1_0::ErrorStatus> execute_1_2(const V1_0::Request&, MeasureTiming,
                                              const sp<V1_2::IExecutionCallback>&) override {
            return V1_0::ErrorStatus::DEVICE_UNAVAILABLE;
        }
        Return<V1_3::ErrorStatus> execute_1_3(const V1_3::Request&, MeasureTiming,
                                              const OptionalTimePoint&,
                                              const OptionalTimeoutDuration&,
                                              const sp<V1_3::IExecutionCallback>&) override {
            return V1_3::ErrorStatus::DEVICE_UNAVAILABLE;
        }
        Return<void> executeSynchronously(const V1_0::Request&, MeasureTiming,
                                          executeSynchronously_cb cb) override {
            cb(V1_0::ErrorStatus::DEVICE_UNAVAILABLE, {}, kBadTiming);
            return Void();
        }
        Return<void> executeSynchronously_1_3(const V1_3::Request&, MeasureTiming,
                                              const OptionalTimePoint&,
                                              const OptionalTimeoutDuration&,
                                              executeSynchronously_1_3_cb cb) override {
            cb(V1_3::ErrorStatus::DEVICE_UNAVAILABLE, {}, kBadTiming);
            return Void();
        }
        Return<void> configureExecutionBurst(
                const sp<V1_2::IBurstCallback>& /*callback*/,
                const MQDescriptorSync<V1_2::FmqRequestDatum>& /*requestChannel*/,
                const MQDescriptorSync<V1_2::FmqResultDatum>& /*resultChannel*/,
                configureExecutionBurst_cb cb) override {
            cb(V1_0::ErrorStatus::DEVICE_UNAVAILABLE, nullptr);
            return Void();
        }
        Return<void> executeFenced(const Request&, const hidl_vec<hidl_handle>&, MeasureTiming,
                                   const OptionalTimePoint&, const OptionalTimeoutDuration&,
                                   const OptionalTimeoutDuration&, executeFenced_cb cb) {
            cb(ErrorStatus::DEVICE_UNAVAILABLE, hidl_handle(nullptr), nullptr);
            return Void();
        }
    };

   public:
    enum OEM {
        OEMNo,          // rejected by getSupportedOperations and prepareModel
        OEMIndecisive,  // accepted by getSupportedOperations but not prepareModel
        OEMYes,         // accepted by getSupportedOperations and prepareModel
    };

    PartitioningDriver(const char* name, const char* version, Capabilities capabilities,
                       uint32_t operationMask, OEM oem = OEMNo,
                       std::set<OperationType> operationTypes = {})
        : SampleDriver(name),
          mVersionString(version),
          mCapabilities(capabilities),
          mOperationMask(operationMask),
          mOEM(oem),
          mOperationTypes(std::move(operationTypes)) {
        CHECK_EQ(mOperationTypes.count(OperationType::OEM_OPERATION), size_t(0));
        std::for_each(mOperationTypes.begin(), mOperationTypes.end(), [](OperationType type) {
            CHECK_EQ(operationToFirstEncoding.count(type), size_t(0));
        });
    }
    ~PartitioningDriver() override {}

    Return<void> getVersionString(getVersionString_cb cb) override {
        cb(V1_0::ErrorStatus::NONE, mVersionString);
        return Void();
    }

    Return<V1_3::ErrorStatus> prepareModel_1_3(
            const Model& model, ExecutionPreference, Priority, const OptionalTimePoint&,
            const hidl_vec<hidl_handle>&, const hidl_vec<hidl_handle>&, const CacheToken&,
            const sp<V1_3::IPreparedModelCallback>& cb) override {
        V1_3::ErrorStatus status = V1_3::ErrorStatus::NONE;
        if (mOEM != OEMYes) {
            for (const auto& operation : model.main.operations) {
                if (operation.type == OperationType::OEM_OPERATION) {
                    status = V1_3::ErrorStatus::INVALID_ARGUMENT;
                    break;
                }
            }
        }
        cb->notify_1_3(status, new PartitioningPreparedModel);
        return status;
    }

    Return<DeviceStatus> getStatus() override { return DeviceStatus::AVAILABLE; }

    Return<void> getCapabilities_1_3(getCapabilities_1_3_cb cb) override {
        cb(V1_3::ErrorStatus::NONE, mCapabilities);
        return Void();
    }

    Return<void> getSupportedOperations_1_3(const Model& model,
                                            getSupportedOperations_1_3_cb cb) override {
        if (!android::nn::validateModel(model)) {
            cb(V1_3::ErrorStatus::INVALID_ARGUMENT, std::vector<bool>());
            return Void();
        }
        cb(V1_3::ErrorStatus::NONE, getSupportedOperationsForSubgraph(model, model.main));
        return Void();
    }

    Return<void> getNumberOfCacheFilesNeeded(getNumberOfCacheFilesNeeded_cb cb) override {
        cb(V1_0::ErrorStatus::NONE, /*numModelCache=*/1, /*numDataCache=*/1);
        return Void();
    }

    Return<V1_0::ErrorStatus> prepareModelFromCache(
            const hidl_vec<hidl_handle>&, const hidl_vec<hidl_handle>&, const CacheToken&,
            const sp<V1_2::IPreparedModelCallback>& callback) override {
        callback->notify_1_2(V1_0::ErrorStatus::NONE, new PartitioningPreparedModel);
        return V1_0::ErrorStatus::NONE;
    }

   private:
    std::vector<bool> getSupportedOperationsForSubgraph(const Model& model,
                                                        const Subgraph& subgraph) {
        auto supportsEntireSubgraph = [this, &model, &subgraph](uint32_t refSubgraphOperandIndex) {
            const Operand& refSubgraphOperand = subgraph.operands[refSubgraphOperandIndex];
            const Subgraph& refSubgraph = model.referenced[refSubgraphOperand.location.offset];
            std::vector<bool> supported = getSupportedOperationsForSubgraph(model, refSubgraph);
            return std::all_of(supported.begin(), supported.end(), [](bool x) { return x; });
        };
        const size_t count = subgraph.operations.size();
        std::vector<bool> supported(count);
        for (size_t i = 0; i < count; i++) {
            const Operation operation = subgraph.operations[i];
            if (mOperationTypes.count(operation.type)) {
                if (operation.type == OperationType::IF) {
                    namespace op = android::nn::operation_if;
                    supported[i] =
                            supportsEntireSubgraph(operation.inputs[op::kThenModelOperand]) &&
                            supportsEntireSubgraph(operation.inputs[op::kElseModelOperand]);
                } else if (operation.type == OperationType::WHILE) {
                    namespace op = android::nn::operation_while;
                    supported[i] =
                            supportsEntireSubgraph(operation.inputs[op::kCondModelOperand]) &&
                            supportsEntireSubgraph(operation.inputs[op::kBodyModelOperand]);
                } else {
                    supported[i] = true;
                }
                continue;
            }
            if (operation.type == OperationType::OEM_OPERATION) {
                supported[i] = (mOEM != OEMNo);
                continue;
            }
            supported[i] = false;
            uint32_t operationEncoding = lookupOperation(model, subgraph, i);
            if ((operationEncoding != kBadOperation) &&
                (mOperationMask & (1 << operationEncoding))) {
                supported[i] = true;
            }
        }
        return supported;
    }

    std::string mVersionString;
    Capabilities mCapabilities;
    uint32_t mOperationMask;
    OEM mOEM;
    std::set<OperationType> mOperationTypes;
};

// Like PartitioningDriver, but implementing 1.2
class PartitioningDriverV1_2 : public V1_2::IDevice {
   public:
    PartitioningDriverV1_2(const char* name, const char* version, Capabilities capabilities,
                           uint32_t operationMask,
                           PartitioningDriver::OEM oem = PartitioningDriver::OEMNo,
                           std::set<OperationType> operationTypes = {})
        : mLatestDriver(new PartitioningDriver(name, version, capabilities, operationMask, oem,
                                               operationTypes)) {}
    Return<void> getCapabilities_1_2(getCapabilities_1_2_cb _hidl_cb) override {
        return mLatestDriver->getCapabilities_1_2(_hidl_cb);
    }
    Return<void> getSupportedOperations_1_2(const V1_2::Model& model,
                                            getSupportedOperations_1_2_cb _hidl_cb) override {
        return mLatestDriver->getSupportedOperations_1_2(model, _hidl_cb);
    }
    Return<V1_0::ErrorStatus> prepareModel_1_2(
            const V1_2::Model& model, ExecutionPreference preference,
            const hidl_vec<hidl_handle>& modelCache, const hidl_vec<hidl_handle>& dataCache,
            const CacheToken& token,
            const sp<V1_2::IPreparedModelCallback>& actualCallback) override {
        return mLatestDriver->prepareModel_1_2(model, preference, modelCache, dataCache, token,
                                               actualCallback);
    }
    Return<void> getVersionString(getVersionString_cb _hidl_cb) override {
        return mLatestDriver->getVersionString(_hidl_cb);
    }
    Return<void> getType(getType_cb _hidl_cb) override { return mLatestDriver->getType(_hidl_cb); }
    Return<void> getSupportedExtensions(getSupportedExtensions_cb _hidl_cb) {
        return mLatestDriver->getSupportedExtensions(_hidl_cb);
    }
    Return<void> getNumberOfCacheFilesNeeded(getNumberOfCacheFilesNeeded_cb _hidl_cb) {
        return mLatestDriver->getNumberOfCacheFilesNeeded(_hidl_cb);
    }
    Return<V1_0::ErrorStatus> prepareModelFromCache(
            const hidl_vec<hidl_handle>& modelCache, const hidl_vec<hidl_handle>& dataCache,
            const CacheToken& token, const sp<V1_2::IPreparedModelCallback>& callback) {
        return mLatestDriver->prepareModelFromCache(modelCache, dataCache, token, callback);
    }
    Return<void> getCapabilities_1_1(getCapabilities_1_1_cb _hidl_cb) override {
        return mLatestDriver->getCapabilities_1_1(_hidl_cb);
    }
    Return<void> getSupportedOperations_1_1(const V1_1::Model& model,
                                            getSupportedOperations_1_1_cb _hidl_cb) override {
        return mLatestDriver->getSupportedOperations_1_1(model, _hidl_cb);
    }
    Return<V1_0::ErrorStatus> prepareModel_1_1(
            const V1_1::Model& model, ExecutionPreference preference,
            const sp<V1_0::IPreparedModelCallback>& actualCallback) override {
        return mLatestDriver->prepareModel_1_1(model, preference, actualCallback);
    }
    Return<DeviceStatus> getStatus() override { return mLatestDriver->getStatus(); }
    Return<void> getCapabilities(getCapabilities_cb _hidl_cb) override {
        return mLatestDriver->getCapabilities(_hidl_cb);
    }
    Return<void> getSupportedOperations(const V1_0::Model& model,
                                        getSupportedOperations_cb _hidl_cb) override {
        return mLatestDriver->getSupportedOperations(model, _hidl_cb);
    }
    Return<V1_0::ErrorStatus> prepareModel(
            const V1_0::Model& model,
            const sp<V1_0::IPreparedModelCallback>& actualCallback) override {
        return mLatestDriver->prepareModel(model, actualCallback);
    }

   private:
    const sp<V1_3::IDevice> mLatestDriver;
};

// Like PartitioningDriver, but implementing 1.1
class PartitioningDriverV1_1 : public V1_1::IDevice {
   public:
    PartitioningDriverV1_1(const char* name, const char* version, Capabilities capabilities,
                           uint32_t operationMask,
                           PartitioningDriver::OEM oem = PartitioningDriver::OEMNo,
                           std::set<OperationType> operationTypes = {})
        : mLatestDriver(new PartitioningDriver(name, version, capabilities, operationMask, oem,
                                               operationTypes)) {}
    Return<void> getCapabilities_1_1(getCapabilities_1_1_cb _hidl_cb) override {
        return mLatestDriver->getCapabilities_1_1(_hidl_cb);
    }
    Return<void> getSupportedOperations_1_1(const V1_1::Model& model,
                                            getSupportedOperations_1_1_cb _hidl_cb) override {
        return mLatestDriver->getSupportedOperations_1_1(model, _hidl_cb);
    }
    Return<V1_0::ErrorStatus> prepareModel_1_1(
            const V1_1::Model& model, ExecutionPreference preference,
            const sp<V1_0::IPreparedModelCallback>& actualCallback) override {
        return mLatestDriver->prepareModel_1_1(model, preference, actualCallback);
    }
    Return<DeviceStatus> getStatus() override { return mLatestDriver->getStatus(); }
    Return<void> getCapabilities(getCapabilities_cb _hidl_cb) override {
        return mLatestDriver->getCapabilities(_hidl_cb);
    }
    Return<void> getSupportedOperations(const V1_0::Model& model,
                                        getSupportedOperations_cb _hidl_cb) override {
        return mLatestDriver->getSupportedOperations(model, _hidl_cb);
    }
    Return<V1_0::ErrorStatus> prepareModel(
            const V1_0::Model& model,
            const sp<V1_0::IPreparedModelCallback>& actualCallback) override {
        return mLatestDriver->prepareModel(model, actualCallback);
    }

   private:
    const sp<V1_3::IDevice> mLatestDriver;
};

// Like PartitioningDriver, but implementing 1.0
class PartitioningDriverV1_0 : public V1_0::IDevice {
   public:
    PartitioningDriverV1_0(const char* name, const char* version, Capabilities capabilities,
                           uint32_t operationMask,
                           PartitioningDriver::OEM oem = PartitioningDriver::OEMNo,
                           std::set<OperationType> operationTypes = {})
        : mLatestDriver(new PartitioningDriver(name, version, capabilities, operationMask, oem,
                                               operationTypes)) {}
    Return<void> getCapabilities(getCapabilities_cb _hidl_cb) override {
        return mLatestDriver->getCapabilities(_hidl_cb);
    }
    Return<void> getSupportedOperations(const V1_0::Model& model,
                                        getSupportedOperations_cb _hidl_cb) override {
        return mLatestDriver->getSupportedOperations(model, _hidl_cb);
    }
    Return<V1_0::ErrorStatus> prepareModel(
            const V1_0::Model& model,
            const sp<V1_0::IPreparedModelCallback>& actualCallback) override {
        return mLatestDriver->prepareModel(model, actualCallback);
    }
    Return<DeviceStatus> getStatus() override { return mLatestDriver->getStatus(); }

   private:
    const sp<V1_3::IDevice> mLatestDriver;
};

// This class adds some simple abstractions and utilities on top of
// WrapperModel.  For example, it provides methods that work in terms of
// operation kind (0..7); and because we care about graph topology rather than
// details of operand types and values, it greatly simplifies the process of
// creating operands.
class PartitioningModel : private WrapperModel {
   public:
    using WrapperModel::finish;
    using WrapperModel::getHandle;
    using WrapperModel::identifyInputsAndOutputs;
    using WrapperModel::isValid;
    using WrapperModel::relaxComputationFloat32toFloat16;

    enum class Dimensioned { NO, YES };

    // Create a tensor operand of the specified type, and return the
    // corresponding operand index.
    uint32_t addFloatOperand(Dimensioned dimensioned = Dimensioned::YES) {
        return addOperand(WrapperType::TENSOR_FLOAT32, dimensioned);
    }
    uint32_t addQuantOperand(Dimensioned dimensioned = Dimensioned::YES) {
        return addOperand(WrapperType::TENSOR_QUANT8_ASYMM, dimensioned);
    }
    uint32_t addBooleanOperand(Dimensioned dimensioned = Dimensioned::YES) {
        return addOperand(WrapperType::TENSOR_BOOL8, dimensioned);
    }

    // Create an operand of the specified type, and return the corresponding
    // operand index.
    uint32_t addOperand(WrapperType wrapperType, Dimensioned dimensioned = Dimensioned::YES) {
        auto dimensions = [dimensioned]() -> std::vector<uint32_t> {
            if (dimensioned == Dimensioned::YES) {
                return {1};
            } else {
                return {};
            }
        };

        switch (static_cast<int>(wrapperType)) {
            case ANEURALNETWORKS_BOOL:
            case ANEURALNETWORKS_FLOAT16:
            case ANEURALNETWORKS_FLOAT32:
            case ANEURALNETWORKS_INT32:
            case ANEURALNETWORKS_UINT32:
            case ANEURALNETWORKS_MODEL:
            case ANEURALNETWORKS_OEM_SCALAR: {
                return addOperand(WrapperOperandType{wrapperType, {}});
            }

            case ANEURALNETWORKS_TENSOR_BOOL8:
            case ANEURALNETWORKS_TENSOR_FLOAT16:
            case ANEURALNETWORKS_TENSOR_FLOAT32:
            case ANEURALNETWORKS_TENSOR_OEM_BYTE: {
                return addOperand(WrapperOperandType{wrapperType, dimensions()});
            }

            case ANEURALNETWORKS_TENSOR_INT32:
            case ANEURALNETWORKS_TENSOR_QUANT8_ASYMM:
            case ANEURALNETWORKS_TENSOR_QUANT8_ASYMM_SIGNED:
            case ANEURALNETWORKS_TENSOR_QUANT8_SYMM:
            case ANEURALNETWORKS_TENSOR_QUANT16_ASYMM:
            case ANEURALNETWORKS_TENSOR_QUANT16_SYMM: {
                return addOperand(WrapperOperandType{wrapperType, dimensions(), 1.0f});
            }

            case ANEURALNETWORKS_TENSOR_QUANT8_SYMM_PER_CHANNEL: {
                return addOperand(WrapperOperandType{wrapperType, dimensions(),
                                                     WrapperSymmPerChannelQuantParams({1.0f}, 0)});
            }

            default:
                ADD_FAILURE() << "Unexpected type " << static_cast<uint32_t>(wrapperType);
                return ~uint32_t(0);
        }
    }

    // Create an operand of the specified operand type, and return the
    // corresponding operand index.
    uint32_t addOperand(const WrapperOperandType& wrapperOperandType) {
        mWrapperOperandType.push_back(wrapperOperandType);
        return WrapperModel::addOperand(&wrapperOperandType);
    }

    // Create an operation with any number of inputs and one output, specifying
    // the operation type (e.g., ANEURALNETWORKS_ADD), the input operand
    // indexes, and the output type (e.g., WrapperType::TENSOR_FLOAT32).
    // Returns the output operand index.
    uint32_t addExplicitOperationXTo1(ANeuralNetworksOperationType operationType,
                                      const std::vector<uint32_t>& inputs, WrapperType outputType,
                                      Dimensioned dimensionedOutput = Dimensioned::YES) {
        uint32_t output = addOperand(outputType, dimensionedOutput);
        addOperation(operationType, inputs, {output});
        return output;
    }

    // Create a V1_0 operation with two inputs and one output, specifying the
    // operation kind (where 0 is the first V1_0 operation) and the input
    // operand indexes.
    // Returns the output operand index.
    uint32_t addOperation2To1V1_0(uint32_t operation, const uint32_t input0, const uint32_t input1,
                                  Dimensioned dimensionedOutput = Dimensioned::YES) {
        CHECK_LE(operation, kLastEncodingV1_0 - kFirstEncodingV1_0);
        return addOperation2To1(operation + kFirstEncodingV1_0, input0, input1, dimensionedOutput);
    }

    // Create a V1_1 operation with two inputs and one output, specifying the
    // operation kind (where 0 is the first V1_1 operation) and the input
    // operand indexes.
    // Returns the output operand index.
    uint32_t addOperation2To1V1_1(uint32_t operation, const uint32_t input0, const uint32_t input1,
                                  Dimensioned dimensionedOutput = Dimensioned::YES) {
        CHECK_LE(operation, kLastEncodingV1_1 - kFirstEncodingV1_1);
        return addOperation2To1(operation + kFirstEncodingV1_1, input0, input1, dimensionedOutput);
    }

    // Create a V1_2 operation with two inputs and one output, specifying the
    // operation kind (where 0 is the first V1_2 operation) and the input
    // operand indexes.
    // Returns the output operand index.
    uint32_t addOperation2To1V1_2(uint32_t operation, const uint32_t input0, const uint32_t input1,
                                  Dimensioned dimensionedOutput = Dimensioned::YES) {
        CHECK_LE(operation, kLastEncodingV1_2 - kFirstEncodingV1_2);
        return addOperation2To1(operation + kFirstEncodingV1_2, input0, input1, dimensionedOutput);
    }

    // Create a V1_3 operation with two inputs and one output, specifying the
    // operation kind (where 0 is the first V1_3 operation) and the input
    // operand indexes.
    // Returns the output operand index.
    uint32_t addOperation1To1V1_3(uint32_t operation, const uint32_t input0,
                                  Dimensioned dimensionedOutput = Dimensioned::YES) {
        CHECK_LE(operation, kLastEncodingV1_3 - kFirstEncodingV1_3);
        return addOperation1To1(operation + kFirstEncodingV1_3, input0, dimensionedOutput);
    }

    // Create an OEM operation with one input and one output,
    // specifying the input operand index.  Returns the output operand
    // index.
    uint32_t addOperationOEM1To1(const uint32_t input,
                                 Dimensioned dimensionedOutput = Dimensioned::YES) {
        uint32_t output = addOperandOfSameType(input, dimensionedOutput);
        addOperation(ANEURALNETWORKS_OEM_OPERATION, {input}, {output});
        return output;
    }

    // Create an IF operation with the given condition operand and two
    // referenced models for the true and false cases.
    void addIfOperation(const uint32_t cond, const PartitioningModel& trueModel,
                        const PartitioningModel& falseModel, const std::vector<uint32_t>& inputs,
                        const std::vector<uint32_t>& outputs) {
        const uint32_t opndTrue = addRefModelOperand(trueModel);
        const uint32_t opndFalse = addRefModelOperand(falseModel);
        std::vector<uint32_t> ifInputs = {cond, opndTrue, opndFalse};
        ifInputs.insert(ifInputs.end(), inputs.begin(), inputs.end());
        addOperation(ANEURALNETWORKS_IF, ifInputs, outputs);
    }

    // Create a WHILE operation with the given condition and body referenced models.
    void addWhileOperation(const PartitioningModel& condModel, const PartitioningModel& bodyModel,
                           const std::vector<uint32_t>& inputs,
                           const std::vector<uint32_t>& outputs) {
        const uint32_t condOperand = addRefModelOperand(condModel);
        const uint32_t bodyOperand = addRefModelOperand(bodyModel);
        std::vector<uint32_t> whileInputs = {condOperand, bodyOperand};
        whileInputs.insert(whileInputs.end(), inputs.begin(), inputs.end());
        addOperation(ANEURALNETWORKS_WHILE, whileInputs, outputs);
    }

    // Run the partitioning algorithm to create an ExecutionPlan.
    int partitionTheWork(const std::vector<std::shared_ptr<Device>>& devices,
                         ExecutePreference preference, ExecutePriority priority,
                         const std::optional<Deadline>& deadline, ExecutionPlan* plan) {
        return reinterpret_cast<ModelBuilder*>(getHandle())
                ->partitionTheWork(devices, static_cast<uint32_t>(preference),
                                   static_cast<int32_t>(priority), deadline, plan);
    }

#ifdef VERBOSE
    // This is a debugging utility function.
    void dump(const char* name) const {
        const ModelBuilder* mb = reinterpret_cast<const ModelBuilder*>(getHandle());
        ::dump(name, mb);
    }
#endif

   private:
    // Create an operation with two inputs and one output, specifying
    // the operation kind and the input operand indexes.
    // Returns the output operand index.
    uint32_t addOperation2To1(uint32_t operation, const uint32_t input0, const uint32_t input1,
                              Dimensioned dimensionedOutput = Dimensioned::YES) {
        auto it = firstEncodingToOperation.lower_bound(operation);
        CHECK(it != firstEncodingToOperation.end());
        ANeuralNetworksOperationType type = it->second.first;
        if (it->second.second) {
            int32_t fuseCode = operation - it->first;
            uint32_t input2 = addIntOperand(fuseCode);
            uint32_t output = addOperandOfSameType(input0, dimensionedOutput);
            addOperation(type, {input0, input1, input2}, {output});
            return output;
        } else {
            uint32_t output = addOperandOfSameType(input0, dimensionedOutput);
            addOperation(type, {input0, input1}, {output});
            return output;
        }
    }

    // Create an operation with one inputs and one output, specifying
    // the operation kind and the input operand indexes.
    // Returns the output operand index.
    uint32_t addOperation1To1(uint32_t operation, const uint32_t input0,
                              Dimensioned dimensionedOutput = Dimensioned::YES) {
        auto it = firstEncodingToOperation.lower_bound(operation);
        CHECK(it != firstEncodingToOperation.end());
        ANeuralNetworksOperationType type = it->second.first;

        uint32_t output = addOperandOfSameType(input0, dimensionedOutput);
        addOperation(type, {input0}, {output});
        return output;
    }

    // Create a scalar integer operand of the specified value, and
    // return the corresponding operand index.
    uint32_t addIntOperand(int32_t value) {
        uint32_t operand = addOperand(WrapperType::INT32);
        setOperandValue(operand, &value, sizeof(value));
        return operand;
    }

    // Create an operand from a model for control flow graphs.
    uint32_t addRefModelOperand(const PartitioningModel& model) {
        const uint32_t index = addOperand(WrapperType::MODEL);
        WrapperModel::setOperandValueFromModel(index, &model);
        return index;
    }

    // Create an operand of the same type as the specified operand,
    // and return the operand index of the new operand.
    uint32_t addOperandOfSameType(uint32_t operand, Dimensioned dimensioned = Dimensioned::YES) {
        WrapperOperandType type = mWrapperOperandType.at(operand);
        for (auto& dimension : type.dimensions) {
            dimension = (dimensioned == Dimensioned::YES);
        }
        mWrapperOperandType.push_back(type);
        return WrapperModel::addOperand(&type);
    }

    // operand index to operand type
    std::vector<WrapperOperandType> mWrapperOperandType;
};

// This class adds some utilities on top of WrapperCompilation.
class PartitioningCompilation : public WrapperCompilation {
   public:
    PartitioningCompilation(const PartitioningModel* model,
                            const std::vector<std::shared_ptr<Device>>& devices) {
        ModelBuilder* m = reinterpret_cast<ModelBuilder*>(model->getHandle());
        CompilationBuilder* c = nullptr;
        int result = m->createCompilation(&c, devices);
        EXPECT_EQ(result, 0);
        mCompilation = reinterpret_cast<ANeuralNetworksCompilation*>(c);
    }

    Result setPartitioning(uint32_t partitioning) {
        return static_cast<Result>(builder()->setPartitioning(partitioning));
    }

    using WrapperCompilation::finish;

    const ExecutionPlan& getExecutionPlan() const { return builder()->forTest_getExecutionPlan(); }

   private:
    CompilationBuilder* builder() { return reinterpret_cast<CompilationBuilder*>(getHandle()); }

    const CompilationBuilder* builder() const {
        return reinterpret_cast<const CompilationBuilder*>(getHandle());
    }
};

#ifdef VERBOSE
#define RETURN_TRUE()                                                 \
    {                                                                 \
        std::cerr << "returning true from " << __LINE__ << std::endl; \
        return true;                                                  \
    }
#else
#define RETURN_TRUE() \
    { return true; }
#endif
#ifdef VERBOSE
#define RETURN_FALSE(MESSAGE)                                                  \
    {                                                                          \
        std::cerr << "returning false from " << __LINE__ MESSAGE << std::endl; \
        return false;                                                          \
    }
#else
#define RETURN_FALSE(MESSAGE) \
    { return false; }
#endif

class PartitioningTest : public ::testing::Test {
   protected:
    using RemapVectorType = ExecutionStep::RemapVectorType;
    using StepModelOutputSetType = ExecutionStep::StepModelOutputSetType;

    virtual void SetUp() {}

    // From a vector of DeviceSpecification, create a vector of
    // Devices.
    struct DeviceSpecification {
        DeviceSpecification(const std::string& name, const Capabilities& capabilities,
                            uint32_t operationMask,
                            PartitioningDriver::OEM oem = PartitioningDriver::OEMNo)
            : mName(name),
              mVersionString(kVersionString),
              mCapabilities(capabilities),
              mOperationMask(operationMask),
              mOEM(oem) {}
        DeviceSpecification(const std::string& name, float perf, uint32_t operationMask,
                            PartitioningDriver::OEM oem = PartitioningDriver::OEMNo,
                            std::set<OperationType> operationTypes = {})
            : DeviceSpecification(name, perf, perf, operationMask, oem, operationTypes) {}
        DeviceSpecification(const std::string& name, float perf, float perfRelaxed,
                            uint32_t operationMask,
                            PartitioningDriver::OEM oem = PartitioningDriver::OEMNo,
                            std::set<OperationType> operationTypes = {})
            : DeviceSpecification(name, kVersionString, perf, perfRelaxed, operationMask, oem,
                                  operationTypes) {}
        DeviceSpecification(const std::string& name, const std::string& version, float perf,
                            uint32_t operationMask,
                            PartitioningDriver::OEM oem = PartitioningDriver::OEMNo,
                            std::set<OperationType> operationTypes = {})
            : DeviceSpecification(name, version, perf, perf, operationMask, oem, operationTypes) {}
        DeviceSpecification(const std::string& name, const std::string& version, float perf,
                            float perfRelaxed, uint32_t operationMask,
                            PartitioningDriver::OEM oem = PartitioningDriver::OEMNo,
                            std::set<OperationType> operationTypes = {})
            : mName(name),
              mVersionString(version),
              mOperationMask(operationMask),
              mOEM(oem),
              mOperationTypes(std::move(operationTypes)) {
            PerformanceInfo perfInfo = {.execTime = perf, .powerUsage = perf};
            PerformanceInfo perfRelaxedInfo = {.execTime = perfRelaxed, .powerUsage = perfRelaxed};
            mCapabilities = {
                    .relaxedFloat32toFloat16PerformanceScalar = perfRelaxedInfo,
                    .relaxedFloat32toFloat16PerformanceTensor = perfRelaxedInfo,
                    .operandPerformance =
                            ::android::nn::nonExtensionOperandPerformance<HalVersion::V1_3>(
                                    perfInfo),
                    .ifPerformance = perfInfo,
                    .whilePerformance = perfInfo};
        }
        DeviceSpecification(const std::string& name, float perf, HalVersion halVersion,
                            uint32_t operationMaskV1_0, uint32_t operationMaskV1_1 = 0,
                            uint32_t operationMaskV1_2 = 0, uint32_t operationMaskV1_3 = 0)
            : DeviceSpecification(
                      name, perf, perf,
                      makeOperationMask(halVersion, operationMaskV1_0, operationMaskV1_1,
                                        operationMaskV1_2, operationMaskV1_3)) {
            mHalVersion = halVersion;
        }

        std::string mName;
        std::string mVersionString;
        Capabilities mCapabilities;
        HalVersion mHalVersion = HalVersion::LATEST;
        uint32_t mOperationMask;
        PartitioningDriver::OEM mOEM = PartitioningDriver::OEMNo;
        std::set<OperationType> mOperationTypes;

        static constexpr char kVersionString[] = "JUST_AN_EXAMPLE";

       private:
        // This function takes three operation masks aligned at the low-order
        // bit -- one mask each for V1_0, V1_1, and V1_2 -- and produces a single
        // composite operation mask, formed by shifting each of the input
        // operation masks appropriately and ORing the results together.
        //
        // For convenience, any bits of an input mask that are too high order
        // for that mask are discarded -- this allows ~0 to be a legal input
        // mask.
        //
        // For the sake of example, assume that each low order mask is 4 bits
        // wide, and take some artistic license to write literals in binary.
        // Then:
        //
        //     assert(makeOperationMask(HalVersion::V1_2, 0b0110, 0b1001, 0b0101) ==
        //            0b 0101 1001 0110);
        //
        // This is used by a DeviceSpecification constructor to build a mask of
        // operations to be supported by the device.
        static uint32_t makeOperationMask(HalVersion halVersion, uint32_t operationMaskV1_0,
                                          uint32_t operationMaskV1_1, uint32_t operationMaskV1_2,
                                          uint32_t operationMaskV1_3) {
            if (halVersion < HalVersion::V1_3) {
                CHECK(!operationMaskV1_3);
            }
            if (halVersion < HalVersion::V1_2) {
                CHECK(!operationMaskV1_2);
            }
            if (halVersion < HalVersion::V1_1) {
                CHECK(!operationMaskV1_1);
            }
            auto maskOfWidth = [](uint32_t width) -> uint32_t { return (1U << width) - 1; };
            static const uint32_t kOperationMaskV1_0 =
                    maskOfWidth(kLastEncodingV1_0 - kFirstEncodingV1_0 + 1);
            static const uint32_t kOperationMaskV1_1 =
                    maskOfWidth(kLastEncodingV1_1 - kFirstEncodingV1_1 + 1);
            static const uint32_t kOperationMaskV1_2 =
                    maskOfWidth(kLastEncodingV1_2 - kFirstEncodingV1_2 + 1);
            static const uint32_t kOperationMaskV1_3 =
                    maskOfWidth(kLastEncodingV1_3 - kFirstEncodingV1_3 + 1);
            return ((operationMaskV1_0 & kOperationMaskV1_0) << kFirstEncodingV1_0) |
                   ((operationMaskV1_1 & kOperationMaskV1_1) << kFirstEncodingV1_1) |
                   ((operationMaskV1_2 & kOperationMaskV1_2) << kFirstEncodingV1_2) |
                   ((operationMaskV1_3 & kOperationMaskV1_3) << kFirstEncodingV1_3);
        }
    };
    static std::vector<std::shared_ptr<Device>> makeDevices(
            std::vector<DeviceSpecification> specifications) {
        std::vector<std::shared_ptr<Device>> devices;
        for (const auto& specification : specifications) {
            V1_0::IDevice* halDriver = nullptr;
            switch (specification.mHalVersion) {
                case HalVersion::V1_3:
                    halDriver = new PartitioningDriver(
                            specification.mName.c_str(), specification.mVersionString.c_str(),
                            specification.mCapabilities, specification.mOperationMask,
                            specification.mOEM, specification.mOperationTypes);
                    break;
                case HalVersion::V1_2:
                    halDriver = new PartitioningDriverV1_2(
                            specification.mName.c_str(), specification.mVersionString.c_str(),
                            specification.mCapabilities, specification.mOperationMask,
                            specification.mOEM, specification.mOperationTypes);
                    break;
                case HalVersion::V1_1:
                    halDriver = new PartitioningDriverV1_1(
                            specification.mName.c_str(), specification.mVersionString.c_str(),
                            specification.mCapabilities, specification.mOperationMask,
                            specification.mOEM, specification.mOperationTypes);
                    break;
                case HalVersion::V1_0:
                    halDriver = new PartitioningDriverV1_0(
                            specification.mName.c_str(), specification.mVersionString.c_str(),
                            specification.mCapabilities, specification.mOperationMask,
                            specification.mOEM, specification.mOperationTypes);
                    break;
                default:
                    ADD_FAILURE() << "Unexpected";
            }
            auto device = DeviceManager::forTest_makeDriverDevice(specification.mName, halDriver);
            devices.push_back(device);
        }
        devices.push_back(DeviceManager::getCpuDevice());
        return devices;
    }

    /*-- Graph comparision ----------------------------------------------------------------*/

    // An operand with certain values for its lifetime does not have a
    // defining operation in the graph.  For the purposes of the graph
    // comparison algorithm, we encode the "defining operation" index of
    // such an operand as follows:
    // - NO_VALUE       kPseudoDefiningOperationNoValue
    // - SUBGRAPH_INPUT kPseudoDefiningOperationModelInput0 + (position in list of inputs)
    // - CONSTANT_COPY  kPseudoDefiningOperationConstantCopy0 + (constant value)
    //                    Note: For the graphs we build in this test, we
    //                          only expect to see 4-byte constants within
    //                          a very restricted range, so we only make
    //                          room for such constants in our encoding
    //                          space.
    // We do not expect to see CONSTANT_REFERENCE, and so we do not handle
    // it.
    //
    // The encoding is intended to be relatively human readable; it is not
    // designed to represent some optimal balance of ranges for the items
    // within its scope (actual operations, inputs, constants).

    enum PseudoDefiningOperationEncodings : uint32_t {
        kPseudoDefiningOperationModelInput0 = 0x80000000U,
        kPseudoDefiningOperationConstantCopy0 = 0x90000000U,
        kPseudoDefiningOperationNoValue = 0xeeeeeeeeU,

        // lowest value for special encoding
        kPseudoDefiningOperationBase = 0x80000000U,

        // range of encoded input or constant
        kPseudoDefiningOperationRange = 0x10000000U,
    };

    // Build a map from operand to defining operation.
    // TODO: Replace map with vector?
    void buildDefinitionMap(const ModelBuilder* model, std::map<uint32_t, uint32_t>* defMap) {
        // actual definitions
        ASSERT_LT(model->operationCount(), kPseudoDefiningOperationBase);
        for (uint32_t i = 0, e = model->operationCount(); i < e; i++) {
            const Operation& operation = model->getOperation(i);
            for (uint32_t output : operation.outputs) {
                (*defMap)[output] = i;
            }
        }
        // inputs
        ASSERT_LT(model->inputCount(), kPseudoDefiningOperationRange);
        for (uint32_t i = 0, e = model->inputCount(); i < e; i++) {
            (*defMap)[model->getInputOperandIndex(i)] = kPseudoDefiningOperationModelInput0 + i;
        }
        // look for NO_VALUE and CONSTANT_COPY
        for (uint32_t i = 0, e = model->operandCount(); i < e; i++) {
            const Operand& operand = model->getOperand(i);
            switch (operand.lifetime) {
                case OperandLifeTime::NO_VALUE:
                    (*defMap)[i] = kPseudoDefiningOperationNoValue;
                    break;
                case OperandLifeTime::CONSTANT_COPY: {
                    ASSERT_EQ(operand.location.length, sizeof(uint32_t));
                    uint32_t value;
                    memcpy(&value, model->getPointerToOperandValue(operand.location.offset),
                           sizeof(uint32_t));
                    ASSERT_LT(value, kPseudoDefiningOperationNoValue);
                    (*defMap)[i] = kPseudoDefiningOperationConstantCopy0 + value;
                    break;
                }
                case OperandLifeTime::TEMPORARY_VARIABLE:
                case OperandLifeTime::SUBGRAPH_INPUT:
                case OperandLifeTime::SUBGRAPH_OUTPUT:
                    // already handled
                    break;
                default:
                    FAIL();
                    break;
            }
        }
        // sanity check
        ASSERT_EQ(model->operandCount(), defMap->size());
    }

#ifdef VERBOSE
    void dump(const char* name, const std::map<uint32_t, uint32_t>* aMap) {
        auto writeNum = [](uint32_t num) {
            if (num >= kPseudoDefiningOperationBase) {
                std::cout << "0x" << std::hex << num << std::dec;
            } else {
                std::cout << num;
            }
        };

        std::cout << name << ": { ";
        bool gotOne = false;
        for (const auto& entry : *aMap) {
            if (gotOne) {
                std::cout << ", ";
            } else {
                gotOne = true;
            }
            std::cout << "(";
            writeNum(entry.first);
            std::cout << ", ";
            writeNum(entry.second);
            std::cout << ")";
        }
        std::cout << " }" << std::endl;
    }
#endif

    bool compare(const Operand& operandA, const Operand& operandB) {
        if (operandA.type != operandB.type || operandA.dimensions != operandB.dimensions ||
            operandA.numberOfConsumers != operandB.numberOfConsumers ||
            operandA.scale != operandB.scale || operandA.zeroPoint != operandB.zeroPoint) {
            return false;
        }
        return true;
    }

    // Compare two graphs.  We ignore operand and operation indexes (i.e.,
    // two nodes can be the same even if they are numbered differently)
    // but we also ignore semantics (e.g., even if an operation kind is
    // such that the operand is commutative, we still pay attention to the
    // order of its input operands).
    //
    // The comparison algorithm works by walking modelA from outputs
    // towards inputs, along the edge from each operand to its
    // defining operation, and then along the edges to the operation's
    // input operands.  At each step along the way, we try to match up
    // operands and operations from modelA with equivalent operands
    // and operations from modelB.
    //
    // We start by assuming that modelA's outputs and modelB's outputs
    // match positionally (e.g., modelA's first output operand is
    // equivalent to modelB's first output operand).  Once we've
    // discovered two equivalent operands (such as those outputs), we
    // place them in a work queue.  We repeatedly pull operands off
    // the queue and compare their defining operations and those
    // operations' input operands, to discover more pairs of
    // equivalent operands.  If we ever find operations that do not
    // match (e.g., because operation kind differs), or operands that
    // do not match (e.g., because operand type differs); or if we
    // ever find a conflict (we've already decided that operand A's
    // equivalent operand is B0, but it looks like we need its
    // equivalent operand to be B1); then the graphs compare unequal.
    // Otherwise, we'll eventually exhaust the work queue, and
    // conclude that the graphs compare equal.
    //
    // As a side effect of the comparison, we produce a map
    // *inputsAndOutputsBToA that maps from each of the model input and output
    // operand numbers of modelB to the corresponding operand numbers of modelA.
    // If the comparison returns false, the contents of the map are undefined.
    bool compare(const ModelBuilder* modelA, const ModelBuilder* modelB,
                 std::map<uint32_t, uint32_t>* inputsAndOutputsBToA) {
        CHECK(inputsAndOutputsBToA != nullptr);
        EXPECT_TRUE(inputsAndOutputsBToA->empty());

#ifdef VERBOSE
        ::dump("compare(A)", modelA);
        ::dump("compare(B)", modelB);
#endif

        if (modelA->operandCount() != modelB->operandCount() ||
            modelA->operationCount() != modelB->operationCount() ||
            modelA->inputCount() != modelB->inputCount() ||
            modelA->outputCount() != modelB->outputCount()) {
            RETURN_FALSE();
        }

        // Maps from operand index to index of defining operation.
        std::map<uint32_t, uint32_t> defsA, defsB;
        buildDefinitionMap(modelA, &defsA);
        buildDefinitionMap(modelB, &defsB);
        if (HasFatalFailure()) return false;

        // Maps from operand index in modelA to equivalent operand index
        // in modelB; and from operation index in modelA to equivalent
        // operation index in modelB.
        std::map<uint32_t, uint32_t> equivalentOperandsAToB;
        std::map<uint32_t, uint32_t> equivalentOperationsAToB;

        // Queue of operand indexes from modelA, each of whose defining
        // operations are to be checked for equivalence with modelB.
        std::queue<uint32_t> workQueueOperandsA;

        // Seed operand equivalence map and work queue from model outputs.
        for (uint32_t i = 0, e = modelA->outputCount(); i < e; i++) {
            uint32_t outputA = modelA->getOutputOperandIndex(i);
            uint32_t outputB = modelB->getOutputOperandIndex(i);
            if (!compare(modelA->getOperand(outputA), modelB->getOperand(outputB))) {
                RETURN_FALSE();
            }
            equivalentOperandsAToB[outputA] = outputB;
            workQueueOperandsA.push(outputA);
        }

#ifdef VERBOSE
        dump("defsA", &defsA);
        dump("defsB", &defsB);
#endif

        // Process the queue.
        uint32_t pseudoDefinitionCount = 0;
        while (!workQueueOperandsA.empty()) {
#ifdef VERBOSE
            dump("equivalentOperandsAToB", &equivalentOperandsAToB);
            dump("equivalentOperationsAToB", &equivalentOperationsAToB);
#endif
            uint32_t operandIndexA = workQueueOperandsA.front();
#ifdef VERBOSE
            std::cout << "operandIndexA: " << operandIndexA << std::endl;
#endif
            workQueueOperandsA.pop();
            uint32_t operandIndexB = equivalentOperandsAToB.at(operandIndexA);

            uint32_t operationIndexA = defsA.at(operandIndexA);
            uint32_t operationIndexB = defsB.at(operandIndexB);
            auto it = equivalentOperationsAToB.find(operationIndexA);
            if (it != equivalentOperationsAToB.end()) {
                if (it->second != operationIndexB) {
                    RETURN_FALSE();
                }
                continue;
            }

            // We haven't identified an equivalent operation for
            // operationIndexA.

            if ((operationIndexA >= kPseudoDefiningOperationBase) !=
                (operationIndexB >= kPseudoDefiningOperationBase)) {
                RETURN_FALSE();
            }
            // Either both operands have pseudo-definitions, or neither
            // does.
            if (operationIndexA >= kPseudoDefiningOperationBase) {
                // Both operands have pseudo-definitions.
                if (operationIndexA != operationIndexB) {
                    RETURN_FALSE();
                }
                equivalentOperationsAToB[operationIndexA] = operationIndexB;
                ++pseudoDefinitionCount;
                continue;
            }

            // If we get here, neither operation A nor operation B is a
            // pseudo-definition.

            const Operation& operationA = modelA->getOperation(operationIndexA);
            const Operation& operationB = modelB->getOperation(operationIndexB);
            if (operationA.type != operationB.type ||
                operationA.inputs.size() != operationB.inputs.size() ||
                operationA.outputs.size() != operationB.outputs.size()) {
                RETURN_FALSE();
            }
            equivalentOperationsAToB[operationIndexA] = operationIndexB;
            for (uint32_t i = 0, e = operationA.inputs.size(); i < e; i++) {
                uint32_t inputA = operationA.inputs[i];
                uint32_t inputB = operationB.inputs[i];
                auto it = equivalentOperandsAToB.find(inputA);
                if (it != equivalentOperandsAToB.end()) {
                    if (it->second != inputB) {
                        RETURN_FALSE();
                    }
                    continue;
                }
                // We haven't identified an equivalent operand for inputA.
                if (!compare(modelA->getOperand(inputA), modelB->getOperand(inputB))) {
                    RETURN_FALSE();
                }
                equivalentOperandsAToB[inputA] = inputB;
                workQueueOperandsA.push(inputA);
            }
        }

        // Sanity check
        if (modelA->operandCount() != defsA.size() || modelA->operandCount() != defsB.size() ||
            modelA->operandCount() != equivalentOperandsAToB.size() ||
            modelA->operationCount() + pseudoDefinitionCount != equivalentOperationsAToB.size()) {
            RETURN_FALSE();
        }

        // Build *inputsAndOutputsBToA
        for (uint32_t aInputIndex : modelA->getInputOperandIndexes()) {
            (*inputsAndOutputsBToA)[equivalentOperandsAToB.at(aInputIndex)] = aInputIndex;
        }
        for (uint32_t aOutputIndex : modelA->getOutputOperandIndexes()) {
            (*inputsAndOutputsBToA)[equivalentOperandsAToB.at(aOutputIndex)] = aOutputIndex;
        }

        RETURN_TRUE();
    }

    /*-------------------------------------------------------------------------------------*/

    // As a side effect of the comparison, we produce a map
    // *inputsAndOutputsModelToStep that maps from each of the model input and
    // output operand numbers of "model" to the corresponding operand numbers of
    // the step model from "step".  If the comparison returns false, the contents
    // of the map are undefined.
    bool compare(const ExecutionStep* step, const PartitioningModel* model,
                 std::shared_ptr<Device> device,
                 std::map<uint32_t, uint32_t>* inputsAndOutputsModelToStep) {
        return (step->getDevice() == device) &&
               compare(step->getStepModel(),
                       reinterpret_cast<const ModelBuilder*>(model->getHandle()),
                       inputsAndOutputsModelToStep);
    }

    void compare(const std::shared_ptr<LogicalStep> logicalStep, const PartitioningModel* model,
                 std::shared_ptr<Device> device, const RemapVectorType& modelInputs,
                 const RemapVectorType& modelOutputs, const RemapVectorType& tempsAsStepModelInputs,
                 const StepModelOutputSetType& tempsAsStepModelOutputs,
                 const RemapVectorType& outputsAsStepModelInputs) {
        ASSERT_TRUE(logicalStep->isExecution());
        const ExecutionStep* step = logicalStep->executionStep();
        std::map<uint32_t, uint32_t> inputsAndOutputsModelToStep;
        ASSERT_NO_FATAL_FAILURE(
                ASSERT_TRUE(compare(step, model, device, &inputsAndOutputsModelToStep)));
        ASSERT_TRUE(compareRemapVectors(inputsAndOutputsModelToStep, step->getModelInputs(),
                                        modelInputs));
        ASSERT_TRUE(compareRemapVectors(inputsAndOutputsModelToStep, step->getModelOutputs(),
                                        modelOutputs));
        ASSERT_TRUE(compareRemapVectors(inputsAndOutputsModelToStep,
                                        step->getTempsAsStepModelInputs(), tempsAsStepModelInputs));
        ASSERT_TRUE(compareStepModelOutputSets(inputsAndOutputsModelToStep,
                                               step->getTempsAsStepModelOutputs(),
                                               tempsAsStepModelOutputs));
        ASSERT_TRUE(compareRemapVectors(inputsAndOutputsModelToStep,
                                        step->getOutputsAsStepModelInputs(),
                                        outputsAsStepModelInputs));
    }

   private:
    static bool compareRemapVectors(const std::map<uint32_t, uint32_t>& inputsAndOutputsModelToStep,
                                    const RemapVectorType& step, RemapVectorType model) {
        std::transform(model.begin(), model.end(), model.begin(),
                       [&inputsAndOutputsModelToStep](const RemapVectorType::value_type& val) {
                           return std::make_pair(val.first,
                                                 inputsAndOutputsModelToStep.at(val.second));
                       });
        return step == model;
    }

    static bool compareStepModelOutputSets(
            const std::map<uint32_t, uint32_t>& inputsAndOutputsModelToStep,
            const StepModelOutputSetType& step, const StepModelOutputSetType& model) {
        StepModelOutputSetType modelTransformed;
        std::transform(
                model.begin(), model.end(), std::inserter(modelTransformed, modelTransformed.end()),
                [&inputsAndOutputsModelToStep](const StepModelOutputSetType::value_type& val) {
                    return std::make_pair(val.first, inputsAndOutputsModelToStep.at(val.second));
                });
        return step == modelTransformed;
    }
};

TEST_F(PartitioningTest, SimpleModel) {
    PartitioningModel model;
    uint32_t opnd0 = model.addFloatOperand();
    uint32_t opnd1 = model.addFloatOperand();
    uint32_t opnd2 = model.addOperation2To1V1_0(0, opnd0, opnd1);
    uint32_t opnd3 = model.addFloatOperand();
    uint32_t opnd4 = model.addOperation2To1V1_0(1, opnd2, opnd3);
    model.identifyInputsAndOutputs({opnd0, opnd1, opnd3}, {opnd4});
    model.finish();
    ASSERT_TRUE(model.isValid());

    // Simple partition (two devices are each capable of everything, one is the best).
    // No need to compare the original model to the model from the plan -- we
    // didn't actually do any partitioning.
    const auto devicesA = makeDevices({{"bad", 0.9, ~0U}, {"good", 0.5, ~0U}});
    ExecutionPlan planA;
    ASSERT_EQ(model.partitionTheWork(devicesA, ExecutePreference::PREFER_LOW_POWER,
                                     ExecutePriority::DEFAULT, {}, &planA),
              ANEURALNETWORKS_NO_ERROR);
    ASSERT_EQ(planA.forTest_getKind(), ExecutionPlan::Kind::SIMPLE);
    ASSERT_NE(planA.forTest_simpleGetDevice().get(), nullptr);
    ASSERT_EQ(planA.forTest_simpleGetDevice()->getName(), "good");

    // Simple partition (two devices are each capable of everything, none better than CPU).
    // No need to compare the original model to the model from the plan -- we
    // didn't actually do any partitioning.
    const auto devicesC = makeDevices({{"bad", 1.1, ~0U}, {"bad2", 1.0, ~0U}});
    ExecutionPlan planC;
    ASSERT_EQ(model.partitionTheWork(devicesC, ExecutePreference::PREFER_LOW_POWER,
                                     ExecutePriority::DEFAULT, {}, &planC),
              ANEURALNETWORKS_NO_ERROR);
    ASSERT_EQ(planC.forTest_getKind(), ExecutionPlan::Kind::SIMPLE);
    ASSERT_EQ(planC.forTest_simpleGetDevice(), DeviceManager::getCpuDevice());

    // Compound partition (two devices, each is capable of one of the
    // two operations).  We could do more extensive checking here --
    // for example, verify that each step within the plan has the
    // correct (model and step model)x(inputs and outputs).
    const auto devicesB = makeDevices({{"0", 0.9, 1 << 0}, {"1", 0.5, 1 << 1}});
    ExecutionPlan planB;
    ASSERT_EQ(model.partitionTheWork(devicesB, ExecutePreference::PREFER_LOW_POWER,
                                     ExecutePriority::DEFAULT, {}, &planB),
              ANEURALNETWORKS_NO_ERROR);
    ASSERT_EQ(planB.forTest_getKind(), ExecutionPlan::Kind::COMPOUND);
    const auto& stepsB = planB.forTest_compoundGetSteps();
    ASSERT_EQ(stepsB.size(), size_t(2));
    {
        // Build a model to compare against the step model from stepsB[0].
        PartitioningModel modelB0;
        uint32_t b0Opnd0 = modelB0.addFloatOperand();
        uint32_t b0Opnd1 = modelB0.addFloatOperand();
        uint32_t b0Opnd2 = modelB0.addOperation2To1V1_0(0, b0Opnd0, b0Opnd1);
        modelB0.identifyInputsAndOutputs({b0Opnd0, b0Opnd1}, {b0Opnd2});
        modelB0.finish();
        ASSERT_TRUE(modelB0.isValid());

        ASSERT_NO_FATAL_FAILURE(
                compare(stepsB[0], &modelB0, devicesB[0],
                        RemapVectorType{{opnd0, b0Opnd0}, {opnd1, b0Opnd1}},  // modelInputs
                        RemapVectorType{},                                    // modelOutputs
                        RemapVectorType{},                         // tempsAsStepModelInputs
                        StepModelOutputSetType{{opnd2, b0Opnd2}},  // tempsAsStepModelOutputs
                        RemapVectorType{}));                       // outputsAsStepModelInputs;
    }
    {
        // Build a model to compare against the step model from stepsB[1].
        PartitioningModel modelB1;
        uint32_t b1Opnd2 = modelB1.addFloatOperand();
        uint32_t b1Opnd3 = modelB1.addFloatOperand();
        uint32_t b1Opnd4 = modelB1.addOperation2To1V1_0(1, b1Opnd2, b1Opnd3);
        // Note: In the partitioning algorithm, step model inputs follow
        // model inputs.  In the original model "model", opnd2 is not
        // an input; so in the step model "modelB1", the corresponding
        // input b1Opnd2 is a step model input, and must follow the
        // model input b1Opnd3.
        modelB1.identifyInputsAndOutputs({b1Opnd3, b1Opnd2}, {b1Opnd4});
        modelB1.finish();
        ASSERT_TRUE(modelB1.isValid());

        ASSERT_NO_FATAL_FAILURE(compare(
                stepsB[1], &modelB1, devicesB[1], RemapVectorType{{opnd3, b1Opnd3}},  // modelInputs
                RemapVectorType{{opnd4, b1Opnd4}},  // modelOutputs
                RemapVectorType{{opnd2, b1Opnd2}},  // tempsAsStepModelInputs
                StepModelOutputSetType{},           // tempsAsStepModelOutputs
                RemapVectorType{}));                // outputsAsStepModelInputs
    }
}

TEST_F(PartitioningTest, SliceModel) {
    PartitioningModel model;
    uint32_t opnd0 = model.addFloatOperand();
    uint32_t opnd1 = model.addFloatOperand();
    uint32_t opnd2 = model.addOperation2To1V1_0(0, opnd0, opnd1);
    uint32_t opnd3 = model.addOperation2To1V1_0(1, opnd0, opnd1);
    uint32_t opnd4 = model.addOperation2To1V1_1(0, opnd0, opnd1);
    uint32_t opnd5 = model.addOperation2To1V1_2(0, opnd2, opnd3);
    uint32_t opnd6 = model.addOperation1To1V1_3(0, opnd2);
    model.identifyInputsAndOutputs({opnd0, opnd1}, {opnd2, opnd4, opnd5, opnd6});
    model.finish();
    ASSERT_TRUE(model.isValid());

    // Simple partition (V1_0, V1_1, V1_2, V1_3 devices are available; V1_3 has best perf).
    // No need to compare the original model to the model from the plan -- we
    // didn't actually do any partitioning.
    const auto devicesA = makeDevices({{"V1_0", 0.8, HalVersion::V1_0, ~0U},
                                       {"V1_1", 0.7, HalVersion::V1_1, ~0U, ~0U},
                                       {"V1_2", 0.6, HalVersion::V1_2, ~0U, ~0U, ~0U},
                                       {"V1_3", 0.5, HalVersion::V1_3, ~0U, ~0U, ~0U, ~0U}});
    ExecutionPlan planA;
    ASSERT_EQ(model.partitionTheWork(devicesA, ExecutePreference::PREFER_LOW_POWER,
                                     ExecutePriority::DEFAULT, {}, &planA),
              ANEURALNETWORKS_NO_ERROR);
    ASSERT_EQ(planA.forTest_getKind(), ExecutionPlan::Kind::SIMPLE);
    ASSERT_NE(planA.forTest_simpleGetDevice().get(), nullptr);
    ASSERT_EQ(planA.forTest_simpleGetDevice()->getName(), "V1_3");

    // Compound partition (V1_0, V1_1, V1_2 devices are available, in decreasing
    // order of performance; model is distributed across all three devices).
    const auto devicesB = makeDevices({{"V1_0", 0.6, HalVersion::V1_0, ~0U},
                                       {"V1_1", 0.7, HalVersion::V1_1, ~0U, ~0U},
                                       {"V1_2", 0.8, HalVersion::V1_2, ~0U, ~0U, ~0U},
                                       {"V1_3", 0.9, HalVersion::V1_3, ~0U, ~0U, ~0U, ~0U}});
    ExecutionPlan planB;
    ASSERT_EQ(model.partitionTheWork(devicesB, ExecutePreference::PREFER_LOW_POWER,
                                     ExecutePriority::DEFAULT, {}, &planB),
              ANEURALNETWORKS_NO_ERROR);
    ASSERT_EQ(planB.forTest_getKind(), ExecutionPlan::Kind::COMPOUND);
    const auto& stepsB = planB.forTest_compoundGetSteps();
    ASSERT_EQ(stepsB.size(), size_t(4));
    {
        // Build a model to compare against the step model from stepsB[0].
        PartitioningModel modelB0;
        uint32_t b0Opnd0 = modelB0.addFloatOperand();
        uint32_t b0Opnd1 = modelB0.addFloatOperand();
        uint32_t b0Opnd2 = modelB0.addOperation2To1V1_1(0, b0Opnd0, b0Opnd1);
        modelB0.identifyInputsAndOutputs({b0Opnd0, b0Opnd1}, {b0Opnd2});
        modelB0.finish();
        ASSERT_TRUE(modelB0.isValid());

        ASSERT_NO_FATAL_FAILURE(
                compare(stepsB[0], &modelB0, devicesB[1],
                        RemapVectorType{{opnd0, b0Opnd0}, {opnd1, b0Opnd1}},  // modelInputs
                        RemapVectorType{{opnd4, b0Opnd2}},                    // modelOutputs
                        RemapVectorType{},         // tempsAsStepModelInputs
                        StepModelOutputSetType{},  // tempsAsStepModelOutputs
                        RemapVectorType{}));       // outputsAsStepModelInputs
    }
    {
        // Build a model to compare against the step model from stepsB[1].
        PartitioningModel modelB1;
        uint32_t b1Opnd0 = modelB1.addFloatOperand();
        uint32_t b1Opnd1 = modelB1.addFloatOperand();
        uint32_t b1Opnd2 = modelB1.addOperation2To1V1_0(0, b1Opnd0, b1Opnd1);
        uint32_t b1Opnd3 = modelB1.addOperation2To1V1_0(1, b1Opnd0, b1Opnd1);
        modelB1.identifyInputsAndOutputs({b1Opnd0, b1Opnd1}, {b1Opnd2, b1Opnd3});
        modelB1.finish();
        ASSERT_TRUE(modelB1.isValid());

        ASSERT_NO_FATAL_FAILURE(
                compare(stepsB[1], &modelB1, devicesB[0],
                        RemapVectorType{{opnd0, b1Opnd0}, {opnd1, b1Opnd1}},  // modelInputs
                        RemapVectorType{{opnd2, b1Opnd2}},                    // modelOutputs
                        RemapVectorType{},                         // tempsAsStepModelInputs
                        StepModelOutputSetType{{opnd3, b1Opnd3}},  // tempsAsStepModelOutputs
                        RemapVectorType{}));                       // outputsAsStepModelInputs
    }
    {
        // Build a model to compare against the step model from stepsB[2].
        PartitioningModel modelB2;
        uint32_t b2Opnd0 = modelB2.addFloatOperand();
        uint32_t b2Opnd1 = modelB2.addOperation1To1V1_3(0, b2Opnd0);
        // Note: In the partitioning algorithm, temps that are
        // step model inputs precede model outputs that are step model
        // inputs.
        modelB2.identifyInputsAndOutputs({b2Opnd0}, {b2Opnd1});
        modelB2.finish();
        ASSERT_TRUE(modelB2.isValid());

        ASSERT_NO_FATAL_FAILURE(
                compare(stepsB[2], &modelB2, devicesB[3], RemapVectorType{},  // modelInputs
                        RemapVectorType{{opnd6, b2Opnd1}},                    // modelOutputs
                        RemapVectorType{},                    // tempsAsStepModelInputs
                        StepModelOutputSetType{},             // tempsAsStepModelOutputs
                        RemapVectorType{{opnd2, b2Opnd0}}));  // outputsAsStepModelInputs
    }
    {
        // Build a model to compare against the step model from stepsB[3].
        PartitioningModel modelB3;
        uint32_t b3Opnd0 = modelB3.addFloatOperand();
        uint32_t b3Opnd1 = modelB3.addFloatOperand();
        uint32_t b3Opnd2 = modelB3.addOperation2To1V1_2(0, b3Opnd0, b3Opnd1);
        // Note: In the partitioning algorithm, temps that are
        // step model inputs precede model outputs that are step model
        // inputs.  In the original model "model", opnd3 is a temp and
        // opnd2 is a model output; so in the step model "modelB3", the
        // corresponding inputs b3Opnd1 and b3Opnd0 must appear in
        // that order.
        modelB3.identifyInputsAndOutputs({b3Opnd1, b3Opnd0}, {b3Opnd2});
        modelB3.finish();
        ASSERT_TRUE(modelB3.isValid());

        ASSERT_NO_FATAL_FAILURE(
                compare(stepsB[3], &modelB3, devicesB[2], RemapVectorType{},  // modelInputs
                        RemapVectorType{{opnd5, b3Opnd2}},                    // modelOutputs
                        RemapVectorType{{opnd3, b3Opnd1}},    // tempsAsStepModelInputs
                        StepModelOutputSetType{},             // tempsAsStepModelOutputs
                        RemapVectorType{{opnd2, b3Opnd0}}));  // outputsAsStepModelInputs
    }

    // TODO: Make sure this still works when we have multiple devices
    // of same version available for slicing. An easy (?) choice would
    // be to route the two different V1_0 operations to different
    // devices.
}

TEST_F(PartitioningTest, SliceModelToEmpty) {
    PartitioningModel model;
    uint32_t opnd0 = model.addFloatOperand();
    uint32_t opnd1 = model.addOperation1To1V1_3(0, opnd0);
    model.identifyInputsAndOutputs({opnd0}, {opnd1});
    model.finish();
    ASSERT_TRUE(model.isValid());

    // Only the V1_3 device can handle any operations in the model.
    // No need to compare the original model to the model from the plan -- we
    // didn't actually do any partitioning.
    const auto devices = makeDevices({{"V1_0", 0.6, HalVersion::V1_0, ~0U},
                                      {"V1_1", 0.7, HalVersion::V1_1, ~0U, ~0U},
                                      {"V1_2", 0.8, HalVersion::V1_2, ~0U, ~0U, ~0U},
                                      {"V1_3", 0.9, HalVersion::V1_3, ~0U, ~0U, ~0U, ~0U}});
    ExecutionPlan plan;
    ASSERT_EQ(model.partitionTheWork(devices, ExecutePreference::PREFER_LOW_POWER,
                                     ExecutePriority::DEFAULT, {}, &plan),
              ANEURALNETWORKS_NO_ERROR);
    ASSERT_EQ(plan.forTest_getKind(), ExecutionPlan::Kind::SIMPLE);
    ASSERT_NE(plan.forTest_simpleGetDevice().get(), nullptr);
    ASSERT_EQ(plan.forTest_simpleGetDevice()->getName(), "V1_3");
}

TEST_F(PartitioningTest, Cpu) {
    // Here's a model where some operations execute only on the Cpu.
    // To make things interesting, we produce three partitions --
    // device, cpu, same-device.

    static const uint32_t kCpuOp = 1;
    static const uint32_t kDevOp = 2;

    const auto devices = makeDevices({{"1", 0.5, 1 << kDevOp}});

    PartitioningModel model;

    uint32_t opnd0 = model.addFloatOperand();
    uint32_t opnd1 = model.addFloatOperand();

    uint32_t opnd2 = model.addOperation2To1V1_0(kDevOp, opnd0, opnd1);
    uint32_t opnd3 = model.addOperation2To1V1_0(kDevOp, opnd0, opnd2);

    uint32_t opnd4 = model.addOperation2To1V1_0(kCpuOp, opnd0, opnd3);
    uint32_t opnd5 = model.addOperation2To1V1_0(kCpuOp, opnd2, opnd4);

    uint32_t opnd6 = model.addFloatOperand();

    uint32_t opnd7 = model.addOperation2To1V1_0(kDevOp, opnd3, opnd5);
    uint32_t opnd8 = model.addOperation2To1V1_0(kDevOp, opnd6, opnd7);

    model.identifyInputsAndOutputs({opnd0, opnd1, opnd6}, {opnd4, opnd8});
    model.finish();
    ASSERT_TRUE(model.isValid());

    ExecutionPlan plan;
    ASSERT_EQ(model.partitionTheWork(devices, ExecutePreference::PREFER_LOW_POWER,
                                     ExecutePriority::DEFAULT, {}, &plan),
              ANEURALNETWORKS_NO_ERROR);
    ASSERT_EQ(plan.forTest_getKind(), ExecutionPlan::Kind::COMPOUND);
    const auto& steps = plan.forTest_compoundGetSteps();
    ASSERT_EQ(steps.size(), size_t(3));
    {
        const auto& step0 = steps[0];

        // Build a model to compare against the step model from steps[0].
        PartitioningModel model0;
        uint32_t m0Opnd0 = model0.addFloatOperand();
        uint32_t m0Opnd1 = model0.addFloatOperand();
        uint32_t m0Opnd2 = model0.addOperation2To1V1_0(kDevOp, m0Opnd0, m0Opnd1);
        uint32_t m0Opnd3 = model0.addOperation2To1V1_0(kDevOp, m0Opnd0, m0Opnd2);
        model0.identifyInputsAndOutputs({m0Opnd0, m0Opnd1}, {m0Opnd2, m0Opnd3});
        model0.finish();
        ASSERT_TRUE(model0.isValid());

        ASSERT_NO_FATAL_FAILURE(
                compare(step0, &model0, devices[0],
                        RemapVectorType{{opnd0, m0Opnd0}, {opnd1, m0Opnd1}},  // modelInputs
                        RemapVectorType{},                                    // modelOutputs
                        RemapVectorType{},  // tempsAsStepModelInputs
                        StepModelOutputSetType{{opnd2, m0Opnd2},
                                               {opnd3, m0Opnd3}},  // tempsAsStepModelOutputs
                        RemapVectorType{}));                       // outputsAsStepModelInputs
    }
    {
        const auto& step1 = steps[1];

        // Build a model to compare against the step model from steps[1].
        PartitioningModel model1;
        uint32_t m1Opnd0 = model1.addFloatOperand();
        uint32_t m1Opnd3 = model1.addFloatOperand();
        uint32_t m1Opnd4 = model1.addOperation2To1V1_0(kCpuOp, m1Opnd0, m1Opnd3);
        uint32_t m1Opnd2 = model1.addFloatOperand();
        uint32_t m1Opnd5 = model1.addOperation2To1V1_0(kCpuOp, m1Opnd2, m1Opnd4);
        model1.identifyInputsAndOutputs({m1Opnd0, m1Opnd3, m1Opnd2}, {m1Opnd4, m1Opnd5});
        model1.finish();
        ASSERT_TRUE(model1.isValid());

        ASSERT_NO_FATAL_FAILURE(compare(
                step1, &model1, DeviceManager::getCpuDevice(),
                RemapVectorType{{opnd0, m1Opnd0}},                    // modelInputs
                RemapVectorType{{opnd4, m1Opnd4}},                    // modelOutputs
                RemapVectorType{{opnd3, m1Opnd3}, {opnd2, m1Opnd2}},  // tempsAsStepModelInputs
                StepModelOutputSetType{{opnd5, m1Opnd5}},             // tempsAsStepModelOutputs
                RemapVectorType{}));                                  // outputsAsStepModelInputs
    }
    {
        const auto& step2 = steps[2];

        // Build a model to compare against the step model from steps[2].
        PartitioningModel model2;
        uint32_t m2Opnd3 = model2.addFloatOperand();
        uint32_t m2Opnd5 = model2.addFloatOperand();
        uint32_t m2Opnd7 = model2.addOperation2To1V1_0(kDevOp, m2Opnd3, m2Opnd5);
        uint32_t m2Opnd6 = model2.addFloatOperand();
        uint32_t m2Opnd8 = model2.addOperation2To1V1_0(kDevOp, m2Opnd6, m2Opnd7);
        model2.identifyInputsAndOutputs({m2Opnd6, m2Opnd3, m2Opnd5}, {m2Opnd8});
        model2.finish();
        ASSERT_TRUE(model2.isValid());

        ASSERT_NO_FATAL_FAILURE(compare(
                step2, &model2, devices[0], RemapVectorType{{opnd6, m2Opnd6}},  // modelInputs
                RemapVectorType{{opnd8, m2Opnd8}},                              // modelOutputs
                RemapVectorType{{opnd3, m2Opnd3}, {opnd5, m2Opnd5}},  // tempsAsStepModelInputs
                StepModelOutputSetType{},                             // tempsAsStepModelOutputs
                RemapVectorType{}));                                  // outputsAsStepModelInputs
    }
}

TEST_F(PartitioningTest, SetPartitioning) {
    PartitioningModel model;
    uint32_t opnd0 = model.addFloatOperand();
    uint32_t opnd1 = model.addFloatOperand();
    uint32_t opnd2 =
            model.addOperation2To1V1_0(0, opnd0, opnd1, PartitioningModel::Dimensioned::NO);
    uint32_t opnd3 = model.addFloatOperand();
    uint32_t opnd4 = model.addOperation2To1V1_0(1, opnd2, opnd3);
    model.identifyInputsAndOutputs({opnd0, opnd1, opnd3}, {opnd4});
    model.finish();
    ASSERT_TRUE(model.isValid());

    // We expect that we cannot successfully partition, because we
    // have an intermediate operand (opnd2) without dimensions, and
    // this is not currently handled.

    // One device that can and should execute operation 0.
    const auto devices = makeDevices({{"hw", 0.5, (1 << 0)}});

    // Test kPartitioningNo.  We should not even attempt partitioning,
    // so there should be a SIMPLE plan on CPU.
    // No need to compare the original model to the model from the plan -- we
    // didn't actually do any partitioning.
    PartitioningCompilation cPNo(&model, devices);
    ASSERT_EQ(cPNo.setPartitioning(DeviceManager::kPartitioningNo), Result::NO_ERROR);
    ASSERT_EQ(cPNo.finish(), Result::NO_ERROR);
    ASSERT_EQ(cPNo.getExecutionPlan().forTest_getKind(), ExecutionPlan::Kind::SIMPLE);
    ASSERT_EQ(cPNo.getExecutionPlan().forTest_simpleGetDevice(), DeviceManager::getCpuDevice());

    // Test kPartitioningWithFallback.  We should attempt
    // partitioning, reach the end of the partitioning process (so we
    // have an unsuccessful execution plan), discover the dimensionless
    // intermediate operand, then fallback to CPU with a SIMPLE plan, and
    // finally return success.
    // No need to compare the original model to the model from the plan -- we
    // didn't actually do any partitioning.
    PartitioningCompilation cPWithFallback(&model, devices);
    ASSERT_EQ(cPWithFallback.setPartitioning(DeviceManager::kPartitioningWithFallback),
              Result::NO_ERROR);
    ASSERT_EQ(cPWithFallback.finish(), Result::NO_ERROR);
    ASSERT_EQ(cPWithFallback.getExecutionPlan().forTest_getKind(), ExecutionPlan::Kind::SIMPLE);
    ASSERT_EQ(cPWithFallback.getExecutionPlan().forTest_simpleGetDevice(),
              DeviceManager::getCpuDevice());

    // Test kPartitioningWithoutFallback.  We should attempt
    // partitioning, and fail.
    PartitioningCompilation cPWithoutFallback(&model, devices);
    ASSERT_EQ(cPWithoutFallback.setPartitioning(DeviceManager::kPartitioningWithoutFallback),
              Result::NO_ERROR);
    ASSERT_EQ(cPWithoutFallback.finish(), Result::OP_FAILED);
    ASSERT_TRUE(cPWithoutFallback.getExecutionPlan().forTest_hasStepModelOutputsOfUnknownSize());
    ASSERT_EQ(cPWithoutFallback.getExecutionPlan().forTest_getKind(), ExecutionPlan::Kind::ERROR);
}

// Regression test for http://b/69166603:
//     "partitioned compilation and execution yields wrong results when model output is step model
//     input"
TEST_F(PartitioningTest, ModelOutputAsStepModelInput) {
    PartitioningModel model;
    uint32_t opnd0 = model.addFloatOperand();
    uint32_t opnd1 = model.addFloatOperand();
    uint32_t opnd2 = model.addOperation2To1V1_0(0, opnd0, opnd1);
    uint32_t opnd3 = model.addOperation2To1V1_0(1, opnd2, opnd2);
    model.identifyInputsAndOutputs({opnd0, opnd1}, {opnd2, opnd3});
    model.finish();
    ASSERT_TRUE(model.isValid());

    // Compound partition (two devices, each is capable of one of the
    // two operations).  We could do more extensive checking here --
    // for example, verify that each step within the plan has the
    // correct (model and step model)x(inputs and outputs).
    const auto devices = makeDevices({{"0", 0.5, 1 << 0}, {"1", 0.5, 1 << 1}});
    ExecutionPlan plan;
    ASSERT_EQ(model.partitionTheWork(devices, ExecutePreference::PREFER_LOW_POWER,
                                     ExecutePriority::DEFAULT, {}, &plan),
              ANEURALNETWORKS_NO_ERROR);
    ASSERT_EQ(plan.forTest_getKind(), ExecutionPlan::Kind::COMPOUND);
    const auto& steps = plan.forTest_compoundGetSteps();
    ASSERT_EQ(steps.size(), size_t(2));
    {
        // Build a model to compare against the step model from steps[0].
        PartitioningModel model0;
        uint32_t m0Opnd0 = model0.addFloatOperand();
        uint32_t m0Opnd1 = model0.addFloatOperand();
        uint32_t m0Opnd2 = model0.addOperation2To1V1_0(0, m0Opnd0, m0Opnd1);
        model0.identifyInputsAndOutputs({m0Opnd0, m0Opnd1}, {m0Opnd2});
        model0.finish();
        ASSERT_TRUE(model0.isValid());
        ASSERT_NO_FATAL_FAILURE(
                compare(steps[0], &model0, devices[0],
                        RemapVectorType{{opnd0, m0Opnd0}, {opnd1, m0Opnd1}},  // modelInputs
                        RemapVectorType{{opnd2, m0Opnd2}},                    // modelOutputs
                        RemapVectorType{},         // tempsAsStepModelInputs
                        StepModelOutputSetType{},  // tempsAsStepModelOutputs
                        RemapVectorType{}));       // outputsAsStepModelInputs
    }
    {
        // Build a model to compare against the step model from steps[1].
        PartitioningModel model1;
        uint32_t m1Opnd2 = model1.addFloatOperand();
        uint32_t m1Opnd3 = model1.addOperation2To1V1_0(1, m1Opnd2, m1Opnd2);
        model1.identifyInputsAndOutputs({m1Opnd2}, {m1Opnd3});
        model1.finish();
        ASSERT_TRUE(model1.isValid());

        ASSERT_NO_FATAL_FAILURE(
                compare(steps[1], &model1, devices[1], RemapVectorType{},  // modelInputs
                        RemapVectorType{{opnd3, m1Opnd3}},                 // modelOutputs
                        RemapVectorType{},                                 // tempsAsStepModelInputs
                        StepModelOutputSetType{},             // tempsAsStepModelOutputs
                        RemapVectorType{{opnd2, m1Opnd2}}));  // outputsAsStepModelInputs
    }
}

TEST_F(PartitioningTest, OemOperations) {
    // Trivial model consisting solely of OEM operation.
    PartitioningModel model;
    uint32_t opndIn = model.addFloatOperand();
    uint32_t opndOut = model.addOperationOEM1To1(opndIn);
    model.identifyInputsAndOutputs({opndIn}, {opndOut});
    model.finish();
    ASSERT_TRUE(model.isValid());

    // Verify that the best driver than can run an OEM operation is
    // used, even if it is not better than the CPU.
    // No need to compare the original model to the model from the plan -- we
    // didn't actually do any partitioning.
    const auto devicesBestOEM = makeDevices({{"badOEM", 1.5, ~0U, PartitioningDriver::OEMYes},
                                             {"noOEM", 0.5, ~0U, PartitioningDriver::OEMNo},
                                             {"goodOEM", 1.2, ~0U, PartitioningDriver::OEMYes}});
    PartitioningCompilation compilationBestOEM(&model, devicesBestOEM);
    ASSERT_EQ(compilationBestOEM.finish(), Result::NO_ERROR);
    const auto& planBestOEM = compilationBestOEM.getExecutionPlan();
    ASSERT_EQ(planBestOEM.forTest_getKind(), ExecutionPlan::Kind::SIMPLE);
    ASSERT_NE(planBestOEM.forTest_simpleGetDevice().get(), nullptr);
    ASSERT_EQ(planBestOEM.forTest_simpleGetDevice()->getName(), "goodOEM");

    // Verify that we get an error if no driver can run an OEM operation.
    const auto devicesNoOEM = makeDevices({{"noOEM", 0.5, ~0U, PartitioningDriver::OEMNo}});
    PartitioningCompilation compilationNoOEM(&model, devicesNoOEM);
    ASSERT_EQ(compilationNoOEM.finish(), Result::BAD_DATA);

    // Verify that we get an error if a driver can SUPPORT but not PREPARE an OEM operation.
    const auto devicesIndecisiveOEM =
            makeDevices({{"indecisiveOEM", 0.5, ~0U, PartitioningDriver::OEMIndecisive}});
    PartitioningCompilation compilationIndecisiveOEM(&model, devicesIndecisiveOEM);
    ASSERT_NE(compilationIndecisiveOEM.finish(), Result::NO_ERROR);

    // Verify that we get an error if there are no drivers (only CPU fallback).
    PartitioningCompilation compilationNoDrivers(&model, makeDevices({}) /* no drivers */);
    ASSERT_EQ(compilationNoDrivers.finish(), Result::BAD_DATA);
}

TEST_F(PartitioningTest, RelaxedFP) {
    const auto devices = makeDevices({// Best choice for non-relaxed model.
                                      {"f32", 0.8, 0.9 /* relaxed */, ~0U},
                                      // Best choice for relaxed model.
                                      {"f16", 0.9, 0.8 /* relaxed */, ~0U}});

    auto TrivialTest = [&devices](bool doRelax, const char* expectDevice) {
        // Trivial model consisting solely of one operation.
        SCOPED_TRACE(expectDevice);
        PartitioningModel model;
        uint32_t opnd0 = model.addFloatOperand();
        uint32_t opnd1 = model.addFloatOperand();
        uint32_t opnd2 = model.addOperation2To1V1_0(0, opnd0, opnd1);
        model.identifyInputsAndOutputs({opnd0, opnd1}, {opnd2});
        model.relaxComputationFloat32toFloat16(doRelax);
        model.finish();
        ASSERT_TRUE(model.isValid());
        // Verify that the model will be executed on the appropriate device.
        // No need to compare the original model to the model from the plan -- we
        // didn't actually do any partitioning.
        ExecutionPlan plan;
        ASSERT_EQ(model.partitionTheWork(devices, ExecutePreference::PREFER_LOW_POWER,
                                         ExecutePriority::DEFAULT, {}, &plan),
                  ANEURALNETWORKS_NO_ERROR);
        ASSERT_EQ(plan.forTest_getKind(), ExecutionPlan::Kind::SIMPLE);
        ASSERT_EQ(plan.forTest_simpleGetDevice()->getName(), expectDevice);
    };

    ASSERT_NO_FATAL_FAILURE(TrivialTest(false, "f32"));
    ASSERT_NO_FATAL_FAILURE(TrivialTest(true, "f16"));
}

TEST_F(PartitioningTest, Perf) {
    // The various type names used here are confusing.
    //
    // OperandType (from HAL file), WrapperType (from NeuralNetworksWrapper.h),
    // and OperandCode (from NeuralNetworks.h) are different enums representing
    // the same type kind -- e.g., OperandType::FLOAT32, WrapperType::FLOAT32,
    // ANEURALNETWORKS_FLOAT32.  Corresponding enumerators have the same value.
    //
    // WrapperOperandType is the NeuralNetworksWrapper.h representation of a
    // full operand type (WrapperType plus dimensions plus other attributes).

    auto TestType = [](OperandType operandType) {
        if (operandType == OperandType::SUBGRAPH) {
            // SUBGRAPH capabilities are handled differently.
            return;
        }
        SCOPED_TRACE(toString(operandType));
        // Trivial model consisting solely of OEM operation.  We
        // pick OEM operation because this allows us to use
        // inputs and outputs of any number and type.
        PartitioningModel model;
        uint32_t opndIn = model.addOperand(static_cast<WrapperType>(operandType));
        uint32_t opndOut = model.addOperationOEM1To1(opndIn);
        model.identifyInputsAndOutputs({opndIn}, {opndOut});
        model.finish();
        ASSERT_TRUE(model.isValid());

        const Capabilities baseCapabilities = makeCapabilities(0.5);

        {
            // better than base
            Capabilities goodCapabilities = baseCapabilities;
            update(&goodCapabilities, operandType, 0.25);

            const auto devices =
                    makeDevices({{"base", baseCapabilities, ~0U, PartitioningDriver::OEMYes},
                                 {"good", goodCapabilities, ~0U, PartitioningDriver::OEMYes}});

            // Verify that model will be executed on "good".
            // No need to compare the original model to the model from the plan -- we
            // didn't actually do any partitioning.
            ExecutionPlan plan;
            ASSERT_EQ(model.partitionTheWork(devices, ExecutePreference::PREFER_LOW_POWER,
                                             ExecutePriority::DEFAULT, {}, &plan),
                      ANEURALNETWORKS_NO_ERROR);
            ASSERT_EQ(plan.forTest_getKind(), ExecutionPlan::Kind::SIMPLE);
            ASSERT_EQ(plan.forTest_simpleGetDevice()->getName(), "good");
        }

        {
            // worse than base
            Capabilities badCapabilities = baseCapabilities;
            update(&badCapabilities, operandType, 0.75);
            const auto devices =
                    makeDevices({{"base", baseCapabilities, ~0U, PartitioningDriver::OEMYes},
                                 {"bad", badCapabilities, ~0U, PartitioningDriver::OEMYes}});

            // Verify that model will be executed on "base".
            // No need to compare the original model to the model from the plan -- we
            // didn't actually do any partitioning.
            ExecutionPlan plan;
            ASSERT_EQ(model.partitionTheWork(devices, ExecutePreference::PREFER_LOW_POWER,
                                             ExecutePriority::DEFAULT, {}, &plan),
                      ANEURALNETWORKS_NO_ERROR);
            ASSERT_EQ(plan.forTest_getKind(), ExecutionPlan::Kind::SIMPLE);
            ASSERT_EQ(plan.forTest_simpleGetDevice()->getName(), "base");
        }
    };

    for (uint32_t type = static_cast<uint32_t>(OperandTypeRange::FUNDAMENTAL_MIN);
         type <= static_cast<uint32_t>(OperandTypeRange::FUNDAMENTAL_MAX); ++type) {
        TestType(static_cast<OperandType>(type));
    }
    for (uint32_t type = static_cast<uint32_t>(OperandTypeRange::OEM_MIN);
         type <= static_cast<uint32_t>(OperandTypeRange::OEM_MAX); ++type) {
        TestType(static_cast<OperandType>(type));
    }
}

// Test token rehashing during the compilation step.
class CacheTest : public PartitioningTest {
   protected:
    virtual void SetUp() override {
        PartitioningTest::SetUp();
        char cacheDirTemp[] = "/data/local/tmp/TestCompilationCachingXXXXXX";
        char* cacheDir = mkdtemp(cacheDirTemp);
        ASSERT_NE(cacheDir, nullptr);
        mCacheDir = cacheDir;
    }

    virtual void TearDown() override {
        if (!::testing::Test::HasFailure()) {
            std::filesystem::remove_all(mCacheDir);
        }
        PartitioningTest::TearDown();
    }

    void expectUniqueTokens(const std::vector<std::vector<uint8_t>>& tokens) {
        for (uint32_t i = 0; i < tokens.size(); i++) {
            SCOPED_TRACE(i);
            for (uint32_t j = i + 1; j < tokens.size(); j++) {
                SCOPED_TRACE(j);
                EXPECT_NE(tokens[i], tokens[j]);
            }
        }
    }

    // Launch a single run of the partitioner against the provided model and device list with
    // cache token privided as tokenIn. Find the partition for the device with deviceName.
    // Record the transformed token into tokenOut. Two or more partitions may be on the same device.
    // "devicePartitionIndex" specifies the index of the ExecutionStep corresponding to the
    // partition of interest, within the sequence of ExecutionSteps on the target device.
    // If tokenIn is empty, no caching information will be provided to the partitioner.
    void getTransformedCacheTokenSingle(const PartitioningModel& model,
                                        const std::vector<std::shared_ptr<Device>>& devices,
                                        const char* deviceName, const std::vector<uint8_t>& tokenIn,
                                        ExecutePreference preference, ExecutePriority priority,
                                        uint32_t devicePartitionIndex,
                                        std::vector<uint8_t>* tokenOut) {
        // Compile the model and get the execution plan.
        PartitioningCompilation compilation(&model, devices);
        if (!tokenIn.empty()) {
            compilation.setCaching(mCacheDir.c_str(), tokenIn);
        }
        compilation.setPreference(preference);
        compilation.setPriority(priority);
        ASSERT_EQ(compilation.finish(), Result::NO_ERROR);
        const ExecutionPlan& plan = compilation.getExecutionPlan();

        // Find the cache info for the device.
        const uint8_t* token = nullptr;
        if (plan.forTest_getKind() == ExecutionPlan::Kind::SIMPLE) {
            ASSERT_EQ(devicePartitionIndex, 0u);
            ASSERT_EQ(plan.forTest_simpleGetDevice()->getName(), deviceName);
            token = plan.forTest_simpleGetCacheToken();
        } else if (plan.forTest_getKind() == ExecutionPlan::Kind::COMPOUND) {
            const auto& steps = plan.forTest_compoundGetSteps();
            uint32_t executionStepCount = 0;
            for (const auto& step : steps) {
                if (step->isExecution() &&
                    step->executionStep()->getDevice()->getName() == deviceName) {
                    if (devicePartitionIndex == executionStepCount) {
                        token = step->executionStep()->forTest_getCacheToken();
                        break;
                    }
                    executionStepCount++;
                }
            }
        } else {
            FAIL();
        }

        // Retrieve the transformed token from the cache info.
        if (token == nullptr) {
            tokenOut->clear();
        } else {
            tokenOut->resize(ANEURALNETWORKS_BYTE_SIZE_OF_CACHE_TOKEN);
            std::copy(token, token + ANEURALNETWORKS_BYTE_SIZE_OF_CACHE_TOKEN, tokenOut->begin());
        }
    }

    // A wrapper of getTransformedCacheTokenSingle, which runs getTransformedCacheTokenSingle
    // multiple times and checks if the transformation provides consistent result.
    // Two or more partitions may be on the same device. "devicePartitionIndex" specifies the index
    // of the ExecutionStep corresponding to the partition of interest, within the sequence of
    // ExecutionSteps on the target device.
    void getTransformedCacheToken(const PartitioningModel& model,
                                  const std::vector<std::shared_ptr<Device>>& devices,
                                  const char* deviceName, const std::vector<uint8_t>& tokenIn,
                                  ExecutePreference preference, ExecutePriority priority,
                                  std::vector<uint8_t>* tokenOut,
                                  uint32_t devicePartitionIndex = 0) {
        getTransformedCacheTokenSingle(model, devices, deviceName, tokenIn, preference, priority,
                                       devicePartitionIndex, tokenOut);

        // Test if the runtime maps to the same cache token every time for the same compilation
        // setup.
        for (uint32_t i = 0; i < 10; i++) {
            std::vector<uint8_t> token;
            SCOPED_TRACE(i);
            getTransformedCacheTokenSingle(model, devices, deviceName, tokenIn, preference,
                                           priority, devicePartitionIndex, &token);
            EXPECT_EQ(*tokenOut, token);
        }
    }

    void createModelForCachingTests(PartitioningModel* model) {
        uint32_t opnd0 = model->addFloatOperand();
        uint32_t opnd1 = model->addFloatOperand();
        uint32_t opnd2 = model->addOperation2To1V1_0(0, opnd0, opnd1);
        uint32_t opnd3 = model->addFloatOperand();
        uint32_t opnd4 = model->addOperation2To1V1_0(1, opnd2, opnd3);
        model->identifyInputsAndOutputs({opnd0, opnd1, opnd3}, {opnd4});
        model->finish();
        ASSERT_TRUE(model->isValid());
    }

    // The first model returned in "models" is the main model.
    void createControlFlowModelForCachingTests(
            std::vector<std::unique_ptr<PartitioningModel>>* models) {
        CHECK(models != nullptr);

        auto trueModel = std::make_unique<PartitioningModel>();
        {
            const uint32_t opnd0 = trueModel->addFloatOperand();
            const uint32_t opnd1 = trueModel->addFloatOperand();
            const uint32_t opnd2 = trueModel->addOperation2To1V1_0(0, opnd0, opnd1);
            trueModel->identifyInputsAndOutputs({opnd0, opnd1}, {opnd2});
            trueModel->finish();
            ASSERT_TRUE(trueModel->isValid());
        }

        auto falseModel = std::make_unique<PartitioningModel>();
        {
            const uint32_t opnd0 = falseModel->addFloatOperand();
            const uint32_t opnd1 = falseModel->addFloatOperand();
            const uint32_t opnd2 = falseModel->addOperation2To1V1_0(0, opnd0, opnd1);
            falseModel->identifyInputsAndOutputs({opnd0, opnd1}, {opnd2});
            falseModel->finish();
            ASSERT_TRUE(falseModel->isValid());
        }

        auto mainModel = std::make_unique<PartitioningModel>();
        {
            const uint32_t opnd0 = mainModel->addBooleanOperand();
            const uint32_t opnd1 = mainModel->addFloatOperand();
            const uint32_t opnd2 = mainModel->addFloatOperand();
            const uint32_t opnd3 = mainModel->addFloatOperand();
            mainModel->addIfOperation(opnd0, *trueModel, *falseModel, {opnd1, opnd2}, {opnd3});
            mainModel->identifyInputsAndOutputs({opnd0, opnd1, opnd2}, {opnd3});
            mainModel->finish();
            ASSERT_TRUE(mainModel->isValid());
        }

        models->clear();
        models->push_back(std::move(mainModel));
        models->push_back(std::move(trueModel));
        models->push_back(std::move(falseModel));
    }

    std::string mCacheDir;
};

// Test the case when no token is provided by the application and the execution plan has a
// simple body.
TEST_F(CacheTest, CacheTokenNoneSimpleBody) {
    PartitioningModel model;
    createModelForCachingTests(&model);

    // deviceA can execute the whole model.
    const auto deviceA = makeDevices({
            {"deviceA", 0.5, ~0U},
    });

    std::vector<uint8_t> tokenIn, tokenOut;
    getTransformedCacheToken(model, deviceA, "deviceA", tokenIn,
                             ExecutePreference::PREFER_FAST_SINGLE_ANSWER, ExecutePriority::DEFAULT,
                             &tokenOut);
    EXPECT_TRUE(tokenOut.empty());
}

// Test if the runtime maps to different cache tokens for devices with different names in
// execution plan with a simple body.
TEST_F(CacheTest, CacheTokenDifferentDeviceNamesSimpleBody) {
    PartitioningModel model;
    createModelForCachingTests(&model);

    // Two devices that can both execute the whole model.
    const auto deviceA = makeDevices({{"deviceA", 0.5, ~0U}});
    const auto deviceB = makeDevices({{"deviceB", 0.5, ~0U}});

    std::vector<uint8_t> tokenIn(ANEURALNETWORKS_BYTE_SIZE_OF_CACHE_TOKEN, 0);
    std::vector<uint8_t> deviceAToken, deviceBToken;
    getTransformedCacheToken(model, deviceA, "deviceA", tokenIn,
                             ExecutePreference::PREFER_FAST_SINGLE_ANSWER, ExecutePriority::DEFAULT,
                             &deviceAToken);
    getTransformedCacheToken(model, deviceB, "deviceB", tokenIn,
                             ExecutePreference::PREFER_FAST_SINGLE_ANSWER, ExecutePriority::DEFAULT,
                             &deviceBToken);
    expectUniqueTokens({deviceAToken, deviceBToken});
}

// Test if the runtime maps to different cache tokens for devices with different version strings in
// execution plan with a simple body.
TEST_F(CacheTest, CacheTokenDifferentDeviceVersionStringsSimpleBody) {
    PartitioningModel model;
    createModelForCachingTests(&model);

    // Two devices that can both execute the whole model.
    const auto deviceA_1_0 = makeDevices({{"deviceA", "1.0", 0.5, ~0U}});
    const auto deviceA_1_1 = makeDevices({{"deviceA", "1.1", 0.5, ~0U}});

    std::vector<uint8_t> tokenIn(ANEURALNETWORKS_BYTE_SIZE_OF_CACHE_TOKEN, 0);
    std::vector<uint8_t> deviceA_1_0_Token, deviceA_1_1_Token;
    getTransformedCacheToken(model, deviceA_1_0, "deviceA", tokenIn,
                             ExecutePreference::PREFER_FAST_SINGLE_ANSWER, ExecutePriority::DEFAULT,
                             &deviceA_1_0_Token);
    getTransformedCacheToken(model, deviceA_1_1, "deviceA", tokenIn,
                             ExecutePreference::PREFER_FAST_SINGLE_ANSWER, ExecutePriority::DEFAULT,
                             &deviceA_1_1_Token);
    expectUniqueTokens({deviceA_1_0_Token, deviceA_1_1_Token});
}

// Test if the runtime maps to different cache tokens for compilations with different preferences
// in execution plan with a simple body.
TEST_F(CacheTest, CacheTokenDifferentPreferencesSimpleBody) {
    PartitioningModel model;
    createModelForCachingTests(&model);

    // One device that can execute the whole model.
    const auto deviceA = makeDevices({{"deviceA", 0.5, ~0U}});

    std::vector<uint8_t> fastToken, powerToken, sustainedToken;
    std::vector<uint8_t> tokenIn(ANEURALNETWORKS_BYTE_SIZE_OF_CACHE_TOKEN, 0);
    getTransformedCacheToken(model, deviceA, "deviceA", tokenIn,
                             ExecutePreference::PREFER_FAST_SINGLE_ANSWER, ExecutePriority::DEFAULT,
                             &fastToken);
    getTransformedCacheToken(model, deviceA, "deviceA", tokenIn,
                             ExecutePreference::PREFER_LOW_POWER, ExecutePriority::DEFAULT,
                             &powerToken);
    getTransformedCacheToken(model, deviceA, "deviceA", tokenIn,
                             ExecutePreference::PREFER_SUSTAINED_SPEED, ExecutePriority::DEFAULT,
                             &sustainedToken);
    expectUniqueTokens({fastToken, powerToken, sustainedToken});
}

// Test if the runtime maps to different cache tokens for compilations with different priorities
// in execution plan with a simple body.
TEST_F(CacheTest, CacheTokenDifferentPrioritiesSimpleBody) {
    PartitioningModel model;
    createModelForCachingTests(&model);

    // One device that can execute the whole model.
    const auto deviceA = makeDevices({{"deviceA", 0.5, ~0U}});

    std::vector<uint8_t> lowToken, mediumToken, highToken;
    std::vector<uint8_t> tokenIn(ANEURALNETWORKS_BYTE_SIZE_OF_CACHE_TOKEN, 0);
    getTransformedCacheToken(model, deviceA, "deviceA", tokenIn,
                             ExecutePreference::PREFER_FAST_SINGLE_ANSWER, ExecutePriority::LOW,
                             &lowToken);
    getTransformedCacheToken(model, deviceA, "deviceA", tokenIn,
                             ExecutePreference::PREFER_FAST_SINGLE_ANSWER, ExecutePriority::MEDIUM,
                             &mediumToken);
    getTransformedCacheToken(model, deviceA, "deviceA", tokenIn,
                             ExecutePreference::PREFER_FAST_SINGLE_ANSWER, ExecutePriority::HIGH,
                             &highToken);
    expectUniqueTokens({lowToken, mediumToken, highToken});
}

// Test if the runtime maps to different cache tokens for compilations with different tokens
// provided by application in execution plan with a simple body.
TEST_F(CacheTest, CacheTokenDifferentTokensSimpleBody) {
    PartitioningModel model;
    createModelForCachingTests(&model);

    // One device that can execute the whole model.
    const auto deviceA = makeDevices({{"deviceA", 0.5, ~0U}});

    std::vector<uint8_t> tokenOut1, tokenOut2;
    std::vector<uint8_t> tokenIn1(ANEURALNETWORKS_BYTE_SIZE_OF_CACHE_TOKEN, 0);
    std::vector<uint8_t> tokenIn2(ANEURALNETWORKS_BYTE_SIZE_OF_CACHE_TOKEN, 1);
    getTransformedCacheToken(model, deviceA, "deviceA", tokenIn1,
                             ExecutePreference::PREFER_FAST_SINGLE_ANSWER, ExecutePriority::DEFAULT,
                             &tokenOut1);
    getTransformedCacheToken(model, deviceA, "deviceA", tokenIn2,
                             ExecutePreference::PREFER_FAST_SINGLE_ANSWER, ExecutePriority::DEFAULT,
                             &tokenOut2);
    expectUniqueTokens({tokenOut1, tokenOut2});
}

// Test the case when no token is provided by the application and the execution plan has a
// compound body.
TEST_F(CacheTest, CacheTokenNoneCompoundBody) {
    PartitioningModel model;
    createModelForCachingTests(&model);

    // DeviceA executes the first operation only.
    const auto devices = makeDevices({{"deviceA", 0.8, ~0U}, {"deviceB", 0.5, 1 << 1}});

    std::vector<uint8_t> tokenIn, tokenOut;
    getTransformedCacheToken(model, devices, "deviceA", tokenIn,
                             ExecutePreference::PREFER_FAST_SINGLE_ANSWER, ExecutePriority::DEFAULT,
                             &tokenOut);
    EXPECT_TRUE(tokenOut.empty());
    getTransformedCacheToken(model, devices, "deviceB", tokenIn,
                             ExecutePreference::PREFER_FAST_SINGLE_ANSWER, ExecutePriority::DEFAULT,
                             &tokenOut);
    EXPECT_TRUE(tokenOut.empty());
}

// Test if the runtime maps to different cache tokens for devices with different names in
// execution plan with a compound body.
TEST_F(CacheTest, CacheTokenDifferentDeviceNamesCompoundBody) {
    PartitioningModel model;
    createModelForCachingTests(&model);

    // DeviceA executes the first operation only.
    const auto devices1 = makeDevices({{"deviceA", 0.8, ~0U}, {"deviceC", 0.5, 1 << 1}});
    // DeviceB executes the first operation only.
    const auto devices2 = makeDevices({{"deviceB", 0.8, ~0U}, {"deviceC", 0.5, 1 << 1}});

    std::vector<uint8_t> tokenIn(ANEURALNETWORKS_BYTE_SIZE_OF_CACHE_TOKEN, 0);
    std::vector<uint8_t> deviceAToken, deviceBToken;
    getTransformedCacheToken(model, devices1, "deviceA", tokenIn,
                             ExecutePreference::PREFER_FAST_SINGLE_ANSWER, ExecutePriority::DEFAULT,
                             &deviceAToken);
    getTransformedCacheToken(model, devices2, "deviceB", tokenIn,
                             ExecutePreference::PREFER_FAST_SINGLE_ANSWER, ExecutePriority::DEFAULT,
                             &deviceBToken);
    expectUniqueTokens({deviceAToken, deviceBToken});
}

// Test if the runtime maps to different cache tokens for devices with different names in
// execution plan with a compound body.
TEST_F(CacheTest, CacheTokenDifferentDeviceVersionStringsCompoundBody) {
    PartitioningModel model;
    createModelForCachingTests(&model);

    // DeviceA executes the first operation only.
    const auto devices1 = makeDevices({{"deviceA", "1.0", 0.8, ~0U}, {"deviceB", 0.5, 1 << 1}});
    // DeviceB executes the first operation only.
    const auto devices2 = makeDevices({{"deviceA", "1.1", 0.8, ~0U}, {"deviceB", 0.5, 1 << 1}});

    std::vector<uint8_t> tokenIn(ANEURALNETWORKS_BYTE_SIZE_OF_CACHE_TOKEN, 0);
    std::vector<uint8_t> deviceA_1_0_Token, deviceA_1_1_Token;
    getTransformedCacheToken(model, devices1, "deviceA", tokenIn,
                             ExecutePreference::PREFER_FAST_SINGLE_ANSWER, ExecutePriority::DEFAULT,
                             &deviceA_1_0_Token);
    getTransformedCacheToken(model, devices2, "deviceA", tokenIn,
                             ExecutePreference::PREFER_FAST_SINGLE_ANSWER, ExecutePriority::DEFAULT,
                             &deviceA_1_1_Token);
    expectUniqueTokens({deviceA_1_0_Token, deviceA_1_1_Token});
}

// Test if the runtime maps to different cache tokens for compilations with different preferences
// in execution plan with a compound body.
TEST_F(CacheTest, CacheTokenDifferentPreferencesCompoundBody) {
    PartitioningModel model;
    createModelForCachingTests(&model);

    // DeviceA executes the first operation only.
    const auto devices = makeDevices({{"deviceA", 0.8, ~0U}, {"deviceB", 0.5, 1 << 1}});

    std::vector<uint8_t> fastToken, powerToken, sustainedToken;
    std::vector<uint8_t> tokenIn(ANEURALNETWORKS_BYTE_SIZE_OF_CACHE_TOKEN, 0);
    getTransformedCacheToken(model, devices, "deviceA", tokenIn,
                             ExecutePreference::PREFER_FAST_SINGLE_ANSWER, ExecutePriority::DEFAULT,
                             &fastToken);
    getTransformedCacheToken(model, devices, "deviceA", tokenIn,
                             ExecutePreference::PREFER_LOW_POWER, ExecutePriority::DEFAULT,
                             &powerToken);
    getTransformedCacheToken(model, devices, "deviceA", tokenIn,
                             ExecutePreference::PREFER_SUSTAINED_SPEED, ExecutePriority::DEFAULT,
                             &sustainedToken);
    expectUniqueTokens({fastToken, powerToken, sustainedToken});
}

// Test if the runtime maps to different cache tokens for compilations with different priorities
// in execution plan with a compound body.
TEST_F(CacheTest, CacheTokenDifferentPrioritiesCompoundBody) {
    PartitioningModel model;
    createModelForCachingTests(&model);

    // DeviceA executes the first operation only.
    const auto devices = makeDevices({{"deviceA", 0.8, ~0U}, {"deviceB", 0.5, 1 << 1}});

    std::vector<uint8_t> lowToken, mediumToken, highToken;
    std::vector<uint8_t> tokenIn(ANEURALNETWORKS_BYTE_SIZE_OF_CACHE_TOKEN, 0);
    getTransformedCacheToken(model, devices, "deviceA", tokenIn,
                             ExecutePreference::PREFER_FAST_SINGLE_ANSWER, ExecutePriority::LOW,
                             &lowToken);
    getTransformedCacheToken(model, devices, "deviceA", tokenIn,
                             ExecutePreference::PREFER_FAST_SINGLE_ANSWER, ExecutePriority::MEDIUM,
                             &mediumToken);
    getTransformedCacheToken(model, devices, "deviceA", tokenIn,
                             ExecutePreference::PREFER_FAST_SINGLE_ANSWER, ExecutePriority::HIGH,
                             &highToken);
    expectUniqueTokens({lowToken, mediumToken, highToken});
}

// Test if the runtime maps to different cache tokens for compilations with different tokens
// provided by application in execution plan with a compound body.
TEST_F(CacheTest, CacheTokenDifferentTokensCompoundBody) {
    PartitioningModel model;
    createModelForCachingTests(&model);

    // DeviceA executes the first operation only.
    const auto devices = makeDevices({{"deviceA", 0.8, ~0U}, {"deviceB", 0.5, 1 << 1}});

    std::vector<uint8_t> tokenOut1, tokenOut2;
    std::vector<uint8_t> tokenIn1(ANEURALNETWORKS_BYTE_SIZE_OF_CACHE_TOKEN, 0);
    std::vector<uint8_t> tokenIn2(ANEURALNETWORKS_BYTE_SIZE_OF_CACHE_TOKEN, 1);
    getTransformedCacheToken(model, devices, "deviceA", tokenIn1,
                             ExecutePreference::PREFER_FAST_SINGLE_ANSWER, ExecutePriority::DEFAULT,
                             &tokenOut1);
    getTransformedCacheToken(model, devices, "deviceA", tokenIn2,
                             ExecutePreference::PREFER_FAST_SINGLE_ANSWER, ExecutePriority::DEFAULT,
                             &tokenOut2);
    expectUniqueTokens({tokenOut1, tokenOut2});
}

// Test if the runtime maps to different cache tokens for compilations with different partitioning
// outcome in execution plan with a compound body.
TEST_F(CacheTest, CacheTokenDifferentPartitionsCompoundBody) {
    PartitioningModel model;
    createModelForCachingTests(&model);

    // DeviceA executes the whole model.
    const auto devices1 = makeDevices({{"deviceA", 0.8, ~0U}, {"deviceB", 0.5, 0U}});
    // DeviceA executes the first operation only.
    const auto devices2 = makeDevices({{"deviceA", 0.8, ~0U}, {"deviceB", 0.5, 1 << 1}});
    // DeviceA executes the second operation only.
    const auto devices3 = makeDevices({{"deviceA", 0.8, ~0U}, {"deviceB", 0.5, 1 << 0}});

    std::vector<uint8_t> tokenIn(ANEURALNETWORKS_BYTE_SIZE_OF_CACHE_TOKEN, 0);
    std::vector<uint8_t> tokenOut1, tokenOut2, tokenOut3;
    getTransformedCacheToken(model, devices1, "deviceA", tokenIn,
                             ExecutePreference::PREFER_FAST_SINGLE_ANSWER, ExecutePriority::DEFAULT,
                             &tokenOut1);
    getTransformedCacheToken(model, devices2, "deviceA", tokenIn,
                             ExecutePreference::PREFER_FAST_SINGLE_ANSWER, ExecutePriority::DEFAULT,
                             &tokenOut2);
    getTransformedCacheToken(model, devices3, "deviceA", tokenIn,
                             ExecutePreference::PREFER_FAST_SINGLE_ANSWER, ExecutePriority::DEFAULT,
                             &tokenOut3);
    expectUniqueTokens({tokenOut1, tokenOut2, tokenOut3});
}

// Test if the runtime maps different referenced models to different cache tokens.
TEST_F(CacheTest, CacheTokenDifferentReferenceModelPartitions) {
    std::vector<std::unique_ptr<PartitioningModel>> models;
    createControlFlowModelForCachingTests(&models);
    const auto& main = *models[0];

    // DeviceA executes the two referenced models but does not support IF.
    // There will be two partitions on deviceA.
    const auto devices = makeDevices({{"deviceA", 0.8, ~0U}});

    std::vector<uint8_t> tokenIn(ANEURALNETWORKS_BYTE_SIZE_OF_CACHE_TOKEN, 0);
    std::vector<uint8_t> tokenOut1, tokenOut2;
    getTransformedCacheToken(main, devices, "deviceA", tokenIn,
                             ExecutePreference::PREFER_FAST_SINGLE_ANSWER, ExecutePriority::DEFAULT,
                             &tokenOut1, /*devicePartitionIndex=*/0);
    getTransformedCacheToken(main, devices, "deviceA", tokenIn,
                             ExecutePreference::PREFER_FAST_SINGLE_ANSWER, ExecutePriority::DEFAULT,
                             &tokenOut2, /*devicePartitionIndex=*/1);
    expectUniqueTokens({tokenOut1, tokenOut2});
}

// Very basic tests of some of the PerformanceInfo functionality.
// Placed in this file because partitioning is the consumer of this functionality.
class PerfTest : public ::testing::Test {};

TEST_F(PerfTest, Lookup) {
    // Derive an arbitrary (but reproducible) performance value from an OperandType.
    // We'll use this to ensure that we can save and then recover a type's performance.
    auto typePerf = [](OperandType type) { return float(static_cast<uint32_t>(type)); };

    Capabilities capabilities = makeCapabilities(-1.0f);

    for (uint32_t type = static_cast<uint32_t>(OperandTypeRange::FUNDAMENTAL_MIN);
         type <= static_cast<uint32_t>(OperandTypeRange::FUNDAMENTAL_MAX); ++type) {
        OperandType operandType = static_cast<OperandType>(type);
        update(&capabilities, operandType, typePerf(operandType));
    }
    for (uint32_t type = static_cast<uint32_t>(OperandTypeRange::OEM_MIN);
         type <= static_cast<uint32_t>(OperandTypeRange::OEM_MAX); ++type) {
        OperandType operandType = static_cast<OperandType>(type);
        update(&capabilities, operandType, typePerf(operandType));
    }

    // Make sure lookup retrieves the values stored by update

    for (uint32_t type = static_cast<uint32_t>(OperandTypeRange::FUNDAMENTAL_MIN);
         type <= static_cast<uint32_t>(OperandTypeRange::FUNDAMENTAL_MAX); ++type) {
        OperandType operandType = static_cast<OperandType>(type);
        if (operandType == OperandType::SUBGRAPH) {
            // SUBGRAPH capabilities are handled differently.
            continue;
        }
        SCOPED_TRACE(toString(operandType));
        EXPECT_EQ(lookupExecTime(capabilities, operandType), typePerf(operandType));
    }
    for (uint32_t type = static_cast<uint32_t>(OperandTypeRange::OEM_MIN);
         type <= static_cast<uint32_t>(OperandTypeRange::OEM_MAX); ++type) {
        OperandType operandType = static_cast<OperandType>(type);
        SCOPED_TRACE(toString(operandType));
        EXPECT_EQ(lookupExecTime(capabilities, operandType), typePerf(operandType));
    }

    // Check the behavior of a missing type

    OperandType operandType =
            static_cast<OperandType>(static_cast<uint32_t>(OperandTypeRange::BASE_MAX) + 1);
    EXPECT_EQ(lookupExecTime(capabilities, operandType), FLT_MAX);
}

class ControlFlowPartitioningTest : public PartitioningTest {
   protected:
    // opnd0 --> +-----+
    //           | ADD | --> opnd2
    // opnd1 --> +-----+
    std::unique_ptr<PartitioningModel> createBranchOrBodyModel() {
        auto model = std::make_unique<PartitioningModel>();
        const uint32_t opnd0 = model->addFloatOperand();
        const uint32_t opnd1 = model->addFloatOperand();
        const uint32_t opnd2 = model->addOperation2To1V1_0(0, opnd0, opnd1);
        model->identifyInputsAndOutputs({opnd0, opnd1}, {opnd2});
        model->finish();
        EXPECT_TRUE(model->isValid());
        return model;
    }

    // opnd0 --> +-------+
    //           | EQUAL | --> opnd2
    // opnd1 --> +-------+
    std::unique_ptr<PartitioningModel> createCondModel() {
        auto model = std::make_unique<PartitioningModel>();
        const uint32_t opnd0 = model->addFloatOperand();
        const uint32_t opnd1 = model->addFloatOperand();
        const uint32_t opnd2 = model->addExplicitOperationXTo1(
                ANEURALNETWORKS_EQUAL, {opnd0, opnd1}, WrapperType::TENSOR_BOOL8);
        model->identifyInputsAndOutputs({opnd0, opnd1}, {opnd2});
        model->finish();
        EXPECT_TRUE(model->isValid());
        return model;
    }

    // opnd0 --> +----+
    // opnd1 --> | IF | --> opnd3
    // opnd2 --> +----+
    std::vector<std::unique_ptr<PartitioningModel>> createIfModel(
            bool firstOuterInputUnknownSize = false) {
        auto thenModel = createBranchOrBodyModel();
        auto elseModel = createBranchOrBodyModel();

        auto mainModel = std::make_unique<PartitioningModel>();
        const uint32_t opnd0 = mainModel->addBooleanOperand();
        const uint32_t opnd1 = mainModel->addFloatOperand(
                firstOuterInputUnknownSize ? PartitioningModel::Dimensioned::NO
                                           : PartitioningModel::Dimensioned::YES);
        const uint32_t opnd2 = mainModel->addFloatOperand();
        const uint32_t opnd3 = mainModel->addFloatOperand();
        mainModel->addIfOperation(opnd0, *thenModel, *elseModel, {opnd1, opnd2}, {opnd3});
        mainModel->identifyInputsAndOutputs({opnd0, opnd1, opnd2}, {opnd3});
        mainModel->finish();
        EXPECT_TRUE(mainModel->isValid());

        std::vector<std::unique_ptr<PartitioningModel>> models;
        models.push_back(std::move(mainModel));
        models.push_back(std::move(thenModel));
        models.push_back(std::move(elseModel));
        return std::move(models);
    }

    // opnd0 --> +-------+
    //           | WHILE | --> opnd2
    // opnd1 --> +-------+
    std::vector<std::unique_ptr<PartitioningModel>> createWhileModel(
            bool firstOuterInputUnknownSize = false) {
        auto condModel = createCondModel();
        auto bodyModel = createBranchOrBodyModel();

        auto mainModel = std::make_unique<PartitioningModel>();
        const uint32_t opnd0 = mainModel->addFloatOperand(
                firstOuterInputUnknownSize ? PartitioningModel::Dimensioned::NO
                                           : PartitioningModel::Dimensioned::YES);
        const uint32_t opnd1 = mainModel->addFloatOperand();
        const uint32_t opnd2 = mainModel->addFloatOperand();
        mainModel->addWhileOperation(*condModel, *bodyModel, {opnd0, opnd1}, {opnd2});
        mainModel->identifyInputsAndOutputs({opnd0, opnd1}, {opnd2});
        mainModel->finish();
        EXPECT_TRUE(mainModel->isValid());

        std::vector<std::unique_ptr<PartitioningModel>> models;
        models.push_back(std::move(mainModel));
        models.push_back(std::move(condModel));
        models.push_back(std::move(bodyModel));
        return std::move(models);
    }
};

TEST_F(ControlFlowPartitioningTest, IF_Interpreted) {
    const auto models = createIfModel();

    // The device supports the referenced models but does not support IF.
    const auto devices = makeDevices({{"V1_0", 0.9, HalVersion::V1_0, ~0U}});

    ExecutionPlan plan;
    ASSERT_EQ(models[0]->partitionTheWork(devices, ExecutePreference::PREFER_LOW_POWER,
                                          ExecutePriority::DEFAULT, {}, &plan),
              ANEURALNETWORKS_NO_ERROR);
    ASSERT_EQ(plan.forTest_getKind(), ExecutionPlan::Kind::COMPOUND);
    const auto& steps = plan.forTest_compoundGetSteps();
    ASSERT_EQ(steps.size(), size_t(4));
    ASSERT_TRUE(steps[0]->isIf());
    ASSERT_TRUE(steps[1]->isExecution());
    ASSERT_TRUE(steps[2]->isGoto());
    ASSERT_TRUE(steps[3]->isExecution());
    ASSERT_EQ(steps[1]->executionStep()->getDevice()->getName(), "V1_0");
    ASSERT_EQ(steps[3]->executionStep()->getDevice()->getName(), "V1_0");
}

TEST_F(ControlFlowPartitioningTest, WHILE_Interpreted) {
    const auto models = createWhileModel();

    // The device supports the body model but does not support WHILE or the
    // condition model (because of EQUAL).
    const auto devices = makeDevices({{"V1_0", 0.9, HalVersion::V1_0, ~0U}});

    ExecutionPlan plan;
    ASSERT_EQ(models[0]->partitionTheWork(devices, ExecutePreference::PREFER_LOW_POWER,
                                          ExecutePriority::DEFAULT, {}, &plan),
              ANEURALNETWORKS_NO_ERROR);
    ASSERT_EQ(plan.forTest_getKind(), ExecutionPlan::Kind::COMPOUND);
    const auto& steps = plan.forTest_compoundGetSteps();
    ASSERT_EQ(steps.size(), size_t(5));
    ASSERT_TRUE(steps[0]->isWhile());
    ASSERT_TRUE(steps[1]->isExecution());
    ASSERT_TRUE(steps[2]->isGoto());
    ASSERT_TRUE(steps[3]->isExecution());
    ASSERT_TRUE(steps[4]->isGoto());
    ASSERT_EQ(steps[1]->executionStep()->getDevice()->getName(),
              DeviceManager::getCpuDevice()->getName());
    ASSERT_EQ(steps[3]->executionStep()->getDevice()->getName(), "V1_0");
}

TEST_F(ControlFlowPartitioningTest, IF_SimplePlan) {
    const auto models = createIfModel();

    // The device supports all operations.
    const auto devices =
            makeDevices({{"ALL", 0.9, ~0U, PartitioningDriver::OEMNo, {OperationType::IF}}});

    ExecutionPlan plan;
    ASSERT_EQ(models[0]->partitionTheWork(devices, ExecutePreference::PREFER_LOW_POWER,
                                          ExecutePriority::DEFAULT, {}, &plan),
              ANEURALNETWORKS_NO_ERROR);
    ASSERT_EQ(plan.forTest_getKind(), ExecutionPlan::Kind::SIMPLE);
    ASSERT_EQ(plan.forTest_simpleGetDevice()->getName(), "ALL");
}

TEST_F(ControlFlowPartitioningTest, WHILE_SimplePlan) {
    const auto models = createWhileModel();

    // The device supports all operations.
    const auto devices = makeDevices({{"ALL",
                                       0.9,
                                       ~0U,
                                       PartitioningDriver::OEMNo,
                                       {OperationType::WHILE, OperationType::EQUAL}}});

    ExecutionPlan plan;
    ASSERT_EQ(models[0]->partitionTheWork(devices, ExecutePreference::PREFER_LOW_POWER,
                                          ExecutePriority::DEFAULT, {}, &plan),
              ANEURALNETWORKS_NO_ERROR);
    ASSERT_EQ(plan.forTest_getKind(), ExecutionPlan::Kind::SIMPLE);
    ASSERT_EQ(plan.forTest_simpleGetDevice()->getName(), "ALL");
}

TEST_F(ControlFlowPartitioningTest, IF_UnknownSize) {
    const auto models = createIfModel(/*firstOuterInputUnknownSize=*/true);

    // The device supports all operations but the partitioner ignores its IF
    // support due to http://b/159076604#comment5.
    const auto devices =
            makeDevices({{"ALL", 0.9, ~0U, PartitioningDriver::OEMNo, {OperationType::IF}}});

    ExecutionPlan plan;
    ASSERT_EQ(models[0]->partitionTheWork(devices, ExecutePreference::PREFER_LOW_POWER,
                                          ExecutePriority::DEFAULT, {}, &plan),
              ANEURALNETWORKS_NO_ERROR);
    // The control flow interpreter does not support unknown size (b/132458982).
    ASSERT_EQ(plan.forTest_getKind(), ExecutionPlan::Kind::SIMPLE);
    ASSERT_EQ(plan.forTest_simpleGetDevice()->getName(), DeviceManager::getCpuDevice()->getName());
}

TEST_F(ControlFlowPartitioningTest, WHILE_UnknownSize) {
    const auto models = createWhileModel(/*firstOuterInputUnknownSize=*/true);

    // The device supports all operations but the partitioner ignores its WHILE
    // support due to http://b/159076604#comment5.
    const auto devices = makeDevices({{"ALL",
                                       0.9,
                                       ~0U,
                                       PartitioningDriver::OEMNo,
                                       {OperationType::WHILE, OperationType::EQUAL}}});

    ExecutionPlan plan;
    ASSERT_EQ(models[0]->partitionTheWork(devices, ExecutePreference::PREFER_LOW_POWER,
                                          ExecutePriority::DEFAULT, {}, &plan),
              ANEURALNETWORKS_NO_ERROR);
    // The control flow interpreter does not support unknown size (b/132458982).
    ASSERT_EQ(plan.forTest_getKind(), ExecutionPlan::Kind::SIMPLE);
    ASSERT_EQ(plan.forTest_simpleGetDevice()->getName(), DeviceManager::getCpuDevice()->getName());
}

}  // namespace