summaryrefslogtreecommitdiff
path: root/peripheral/keystore/chaabi/src/intel_keymaster.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'peripheral/keystore/chaabi/src/intel_keymaster.cpp')
-rw-r--r--peripheral/keystore/chaabi/src/intel_keymaster.cpp1450
1 files changed, 1450 insertions, 0 deletions
diff --git a/peripheral/keystore/chaabi/src/intel_keymaster.cpp b/peripheral/keystore/chaabi/src/intel_keymaster.cpp
new file mode 100644
index 0000000..12ad18b
--- /dev/null
+++ b/peripheral/keystore/chaabi/src/intel_keymaster.cpp
@@ -0,0 +1,1450 @@
+/*
+ * Copyright (C) 2016 The Android Open Source Project
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#include <errno.h>
+#include <cstdlib>
+#include <string>
+
+#include <keystore/keystore.h>
+
+#include <hardware/hardware.h>
+#include <hardware/keymaster0.h>
+
+#include <openssl/evp.h>
+#include <openssl/bio.h>
+#include <openssl/rsa.h>
+#include <openssl/err.h>
+#include <openssl/x509.h>
+
+#include <cutils/properties.h>
+#include <UniquePtr.h>
+
+#include "intelkeymaster_firmware_api.h"
+#include "intelkeymaster_middleware_api.h"
+// For debugging
+//#define LOG_NDEBUG 0
+
+#define LOG_TAG "IntelKeyMaster"
+#include <cutils/log.h>
+
+struct BIGNUM_Delete {
+ void operator()(BIGNUM* p) const {
+ BN_free(p);
+ }
+};
+typedef UniquePtr<BIGNUM, BIGNUM_Delete> Unique_BIGNUM;
+
+struct EVP_PKEY_Delete {
+ void operator()(EVP_PKEY* p) const {
+ EVP_PKEY_free(p);
+ }
+};
+typedef UniquePtr<EVP_PKEY, EVP_PKEY_Delete> Unique_EVP_PKEY;
+
+struct PKCS8_PRIV_KEY_INFO_Delete {
+ void operator()(PKCS8_PRIV_KEY_INFO* p) const {
+ PKCS8_PRIV_KEY_INFO_free(p);
+ }
+};
+typedef UniquePtr<PKCS8_PRIV_KEY_INFO, PKCS8_PRIV_KEY_INFO_Delete> Unique_PKCS8_PRIV_KEY_INFO;
+
+struct RSA_Delete {
+ void operator()(RSA* p) const {
+ RSA_free(p);
+ }
+};
+typedef UniquePtr<RSA, RSA_Delete> Unique_RSA;
+
+struct Malloc_Free {
+ void operator()(void* p) const { free(p); }
+};
+
+typedef UniquePtr<keymaster0_device_t> Unique_keymaster_device_t;
+
+/* intel keymaster functions */
+int intel_keymaster_generate_rsa_keypair(const keymaster_rsa_keygen_params_t* rsa_params,
+ uint8_t** keyBlob, size_t* keyBlobLength);
+
+int intel_keymaster_import_rsa_keypair(const RSA *rsa,
+ uint8_t** keyBlob, size_t* keyBlobLength);
+
+EVP_PKEY* intel_keymaster_unwrap_key(const uint8_t* keyBlob, const size_t keyBlobLength);
+
+int intel_keymaster_sign_rsa(const uint8_t* keyBlob, const size_t keyBlobLength,
+ const uint8_t* data, const size_t dataLength,
+ uint8_t** signedData, size_t* signedDataLength);
+
+int intel_keymaster_verify_rsa(const uint8_t* keyBlob, const size_t keyBlobLength,
+ const uint8_t* signedData, const size_t signedDataLength,
+ const uint8_t* signature, const size_t signatureLength);
+
+/**
+ * Many OpenSSL APIs take ownership of an argument on success but don't free the argument
+ * on failure. This means we need to tell our scoped pointers when we've transferred ownership,
+ * without triggering a warning by not using the result of release().
+ */
+#define OWNERSHIP_TRANSFERRED(obj) \
+ typeof (obj.release()) _dummy __attribute__((unused)) = obj.release()
+
+/*
+ * Size in bytes of an empty RSA public key modulus. Used as an error code.
+ */
+#define NULL_RSA_MODULUS_SIZE_IN_BYTES 0
+
+/*
+ * Checks this thread's OpenSSL error queue and logs if
+ * necessary.
+ */
+static void logOpenSSLError(const char* location) {
+ int error = ERR_get_error();
+
+ if (error != 0) {
+ char message[256];
+ ERR_error_string_n(error, message, sizeof(message));
+ ALOGE("OpenSSL error in %s %d: %s", location, error, message);
+ }
+
+ ERR_clear_error();
+ ERR_remove_state(0);
+}
+
+static int wrap_key(EVP_PKEY* pkey, int type, uint8_t** keyBlob, size_t* keyBlobLength) {
+ /*
+ * Find the length of each size. Public key is not needed anymore but must be kept for
+ * alignment purposes.
+ */
+ int publicLen = 0;
+ int privateLen = i2d_PrivateKey(pkey, NULL);
+
+ if (privateLen <= 0) {
+ ALOGE("private key size was too big");
+ return -1;
+ }
+
+ /* int type + int size + private key data + int size + public key data */
+ *keyBlobLength = get_softkey_header_size() + sizeof(type) + sizeof(publicLen) + privateLen
+ + sizeof(privateLen) + publicLen;
+
+ UniquePtr<unsigned char, Malloc_Free> derData(static_cast<unsigned char*>(malloc(*keyBlobLength)));
+
+ if (derData.get() == NULL) {
+ ALOGE("could not allocate memory for key blob");
+ return -1;
+ }
+ unsigned char* p = derData.get();
+
+ /* Write the magic value for software keys. */
+ p = add_softkey_header(p, *keyBlobLength);
+
+ /* Write key type to allocated buffer */
+ for (int i = sizeof(type) - 1; i >= 0; i--) {
+ *p++ = (type >> (8*i)) & 0xFF;
+ }
+
+ /* Write public key to allocated buffer */
+ for (int i = sizeof(publicLen) - 1; i >= 0; i--) {
+ *p++ = (publicLen >> (8*i)) & 0xFF;
+ }
+
+ /* Write private key to allocated buffer */
+ for (int i = sizeof(privateLen) - 1; i >= 0; i--) {
+ *p++ = (privateLen >> (8*i)) & 0xFF;
+ }
+ if (i2d_PrivateKey(pkey, &p) != privateLen) {
+ logOpenSSLError("wrap_key");
+ return -1;
+ }
+
+ *keyBlob = derData.release();
+
+ return 0;
+}
+
+static EVP_PKEY* unwrap_key(const uint8_t* keyBlob, const size_t keyBlobLength) {
+ long publicLen = 0;
+ long privateLen = 0;
+ const uint8_t* p = keyBlob;
+ const uint8_t *const end = keyBlob + keyBlobLength;
+ int type = 0;
+
+ if (keyBlob == NULL) {
+ ALOGE("supplied key blob was NULL");
+ return NULL;
+ }
+
+ // Should be large enough for:
+ // int32 magic, int32 type, int32 pubLen, char* pub, int32 privLen, char* priv
+ if (keyBlobLength < (get_softkey_header_size() + sizeof(type) + sizeof(publicLen) + 1
+ + sizeof(privateLen) + 1)) {
+ ALOGE("key blob appears to be truncated");
+ return NULL;
+ }
+
+ if (!is_softkey(p, keyBlobLength)) {
+ ALOGE("cannot read key; it was not made by this keymaster");
+ return NULL;
+ }
+ p += get_softkey_header_size();
+
+ for (size_t i = 0; i < sizeof(type); i++) {
+ type = (type << 8) | *p++;
+ }
+
+ for (size_t i = 0; i < sizeof(publicLen); i++) {
+ publicLen = (publicLen << 8) | *p++;
+ }
+ if (p + publicLen > end) {
+ ALOGE("public key length encoding error: size=%ld, end=%td", publicLen, end - p);
+ return NULL;
+ }
+
+ p += publicLen;
+ if (end - p < 2) {
+ ALOGE("private key truncated");
+ return NULL;
+ }
+ for (size_t i = 0; i < sizeof(privateLen); i++) {
+ privateLen = (privateLen << 8) | *p++;
+ }
+ if (p + privateLen > end) {
+ ALOGE("private key length encoding error: size=%ld, end=%td", privateLen, end - p);
+ return NULL;
+ }
+
+ Unique_EVP_PKEY pkey(EVP_PKEY_new());
+ if (pkey.get() == NULL) {
+ logOpenSSLError("unwrap_key");
+ return NULL;
+ }
+ EVP_PKEY* tmp = pkey.get();
+
+ if (d2i_PrivateKey(type, &tmp, &p, privateLen) == NULL) {
+ logOpenSSLError("unwrap_key");
+ return NULL;
+ }
+
+ return pkey.release();
+}
+
+__attribute__ ((visibility ("default")))
+int intel_keymaster_generate_keypair(const keymaster0_device_t*,
+ const keymaster_keypair_t key_type, const void* key_params,
+ uint8_t** keyBlob, size_t* keyBlobLength) {
+
+ if (key_type == TYPE_RSA) {
+ return intel_keymaster_generate_rsa_keypair(
+ reinterpret_cast<const keymaster_rsa_keygen_params_t*>(key_params),
+ keyBlob, keyBlobLength);
+ }
+
+ Unique_EVP_PKEY pkey(EVP_PKEY_new());
+ if (pkey.get() == NULL) {
+ logOpenSSLError("intel_keymaster_generate_keypair");
+ return -1;
+ }
+
+ if (key_params == NULL) {
+ ALOGW("key_params == null");
+ return -1;
+ } else {
+ ALOGW("Unsupported key type %d", key_type);
+ return -1;
+ }
+
+ if (wrap_key(pkey.get(), EVP_PKEY_type(pkey->type), keyBlob, keyBlobLength)) {
+ return -1;
+ }
+
+ return 0;
+}
+
+__attribute__ ((visibility ("default")))
+int intel_keymaster_import_keypair(const keymaster0_device_t*,
+ const uint8_t* key, const size_t key_length,
+ uint8_t** key_blob, size_t* key_blob_length) {
+ if (key == NULL) {
+ ALOGW("input key == NULL");
+ return -1;
+ } else if (key_blob == NULL || key_blob_length == NULL) {
+ ALOGW("output key blob or length == NULL");
+ return -1;
+ }
+
+ Unique_PKCS8_PRIV_KEY_INFO pkcs8(d2i_PKCS8_PRIV_KEY_INFO(NULL, &key, key_length));
+ if (pkcs8.get() == NULL) {
+ logOpenSSLError("intel_keymaster_import_keypair");
+ return -1;
+ }
+
+ /* assign to EVP */
+ Unique_EVP_PKEY pkey(EVP_PKCS82PKEY(pkcs8.get()));
+ if (pkey.get() == NULL) {
+ logOpenSSLError("intel_keymaster_import_keypair");
+ return -1;
+ }
+
+ int type = EVP_PKEY_type(pkey->type);
+ if (type == EVP_PKEY_RSA) {
+ Unique_RSA rsa(EVP_PKEY_get1_RSA(pkey.get()));
+ if (rsa.get() == NULL) {
+ ALOGE("rsa == NULL");
+ return -1;
+ }
+ return intel_keymaster_import_rsa_keypair(rsa.get(), key_blob, key_blob_length);
+ }
+
+ if (wrap_key(pkey.get(), EVP_PKEY_type(pkey->type), key_blob, key_blob_length)) {
+ return -1;
+ }
+
+ return 0;
+}
+
+__attribute__ ((visibility ("default")))
+int intel_keymaster_get_keypair_public(const struct keymaster0_device*,
+ const uint8_t* key_blob, const size_t key_blob_length,
+ uint8_t** x509_data, size_t* x509_data_length) {
+
+ if (x509_data == NULL || x509_data_length == NULL) {
+ ALOGW("output public key buffer == NULL");
+ return -1;
+ }
+
+ Unique_EVP_PKEY pkey(unwrap_key(key_blob, key_blob_length));
+ if (pkey.get() == NULL) {
+ /* if the keyblob cannot be unwrapped using the softkey method,
+ then assume it is intel generated keyblob
+ */
+ pkey.reset(intel_keymaster_unwrap_key(key_blob, key_blob_length));
+ if (pkey.get() == NULL) {
+ return -1;
+ }
+ }
+
+ int len = i2d_PUBKEY(pkey.get(), NULL);
+ if (len <= 0) {
+ logOpenSSLError("intel_keymaster_get_keypair_public");
+ return -1;
+ }
+
+ UniquePtr<uint8_t, Malloc_Free> key(static_cast<uint8_t*>(malloc(len)));
+ if (key.get() == NULL) {
+ ALOGE("Could not allocate memory for public key data");
+ return -1;
+ }
+
+ unsigned char* tmp = reinterpret_cast<unsigned char*>(key.get());
+ if (i2d_PUBKEY(pkey.get(), &tmp) != len) {
+ logOpenSSLError("intel_keymaster_get_keypair_public");
+ return -1;
+ }
+
+ ALOGV("Length of x509 data is %d", len);
+ *x509_data_length = len;
+ *x509_data = key.release();
+
+ return 0;
+}
+
+static int sign_rsa(EVP_PKEY* pkey, keymaster_rsa_sign_params_t* sign_params, const uint8_t* data,
+ const size_t dataLength, uint8_t** signedData, size_t* signedDataLength) {
+ if (sign_params->digest_type != DIGEST_NONE) {
+ ALOGW("Cannot handle digest type %d", sign_params->digest_type);
+ return -1;
+ } else if (sign_params->padding_type != PADDING_NONE) {
+ ALOGW("Cannot handle padding type %d", sign_params->padding_type);
+ return -1;
+ }
+
+ Unique_RSA rsa(EVP_PKEY_get1_RSA(pkey));
+ if (rsa.get() == NULL) {
+ logOpenSSLError("openssl_sign_rsa");
+ return -1;
+ }
+
+ UniquePtr<uint8_t, Malloc_Free> signedDataPtr(reinterpret_cast<uint8_t*>(malloc(dataLength)));
+ if (signedDataPtr.get() == NULL) {
+ logOpenSSLError("openssl_sign_rsa");
+ return -1;
+ }
+
+ unsigned char* tmp = reinterpret_cast<unsigned char*>(signedDataPtr.get());
+ if (RSA_private_encrypt(dataLength, data, tmp, rsa.get(), RSA_NO_PADDING) <= 0) {
+ logOpenSSLError("openssl_sign_rsa");
+ return -1;
+ }
+
+ *signedDataLength = dataLength;
+ *signedData = signedDataPtr.release();
+
+ return 0;
+}
+
+__attribute__ ((visibility ("default")))
+int intel_keymaster_sign_data(const keymaster0_device_t*,
+ const void* params,
+ const uint8_t* keyBlob, const size_t keyBlobLength,
+ const uint8_t* data, const size_t dataLength,
+ uint8_t** signedData, size_t* signedDataLength) {
+ if (data == NULL) {
+ ALOGW("input data to sign == NULL");
+ return -1;
+ } else if (signedData == NULL || signedDataLength == NULL) {
+ ALOGW("output signature buffer == NULL");
+ return -1;
+ }
+
+ Unique_EVP_PKEY pkey(unwrap_key(keyBlob, keyBlobLength));
+ if (pkey.get() == NULL) {
+ /* if the keyblob cannot be unwrapped using the softkey method,
+ then assume it is intel generated keyblob
+ */
+ return intel_keymaster_sign_rsa(keyBlob, keyBlobLength,
+ data, dataLength,
+ signedData, signedDataLength);
+ }
+
+ int type = EVP_PKEY_type(pkey->type);
+ if (type == EVP_PKEY_RSA) {
+ keymaster_rsa_sign_params_t* sign_params = (keymaster_rsa_sign_params_t*) params;
+ return sign_rsa(pkey.get(), sign_params, data, dataLength, signedData, signedDataLength);
+ } else {
+ ALOGW("Unsupported key type");
+ return -1;
+ }
+}
+
+static int verify_rsa(EVP_PKEY* pkey, keymaster_rsa_sign_params_t* sign_params,
+ const uint8_t* signedData, const size_t signedDataLength, const uint8_t* signature,
+ const size_t signatureLength) {
+ if (sign_params->digest_type != DIGEST_NONE) {
+ ALOGW("Cannot handle digest type %d", sign_params->digest_type);
+ return -1;
+ } else if (sign_params->padding_type != PADDING_NONE) {
+ ALOGW("Cannot handle padding type %d", sign_params->padding_type);
+ return -1;
+ } else if (signatureLength != signedDataLength) {
+ ALOGW("signed data length must be signature length");
+ return -1;
+ }
+
+ Unique_RSA rsa(EVP_PKEY_get1_RSA(pkey));
+ if (rsa.get() == NULL) {
+ logOpenSSLError("verify_rsa");
+ return -1;
+ }
+
+ UniquePtr<uint8_t, Malloc_Free> dataPtr(reinterpret_cast<uint8_t*>(malloc(signedDataLength)));
+ if (dataPtr.get() == NULL) {
+ logOpenSSLError("verify_rsa");
+ return -1;
+ }
+
+ unsigned char* tmp = reinterpret_cast<unsigned char*>(dataPtr.get());
+ if (!RSA_public_decrypt(signatureLength, signature, tmp, rsa.get(), RSA_NO_PADDING)) {
+ logOpenSSLError("verify_rsa");
+ return -1;
+ }
+
+ int result = 0;
+ for (size_t i = 0; i < signedDataLength; i++) {
+ result |= tmp[i] ^ signedData[i];
+ }
+
+ return result == 0 ? 0 : -1;
+}
+
+__attribute__ ((visibility ("default")))
+int intel_keymaster_verify_data(const keymaster0_device_t*,
+ const void* params,
+ const uint8_t* keyBlob, const size_t keyBlobLength,
+ const uint8_t* signedData, const size_t signedDataLength,
+ const uint8_t* signature, const size_t signatureLength) {
+
+ if (signedData == NULL || signature == NULL) {
+ ALOGW("data or signature buffers == NULL");
+ return -1;
+ }
+
+ Unique_EVP_PKEY pkey(unwrap_key(keyBlob, keyBlobLength));
+ if (pkey.get() == NULL) {
+ /* if the keyblob cannot be unwrapped using the softkey method,
+ then assume it is intel generated keyblob
+ */
+ return intel_keymaster_verify_rsa(keyBlob, keyBlobLength,
+ signedData, signedDataLength,
+ signature, signatureLength);
+ }
+
+ int type = EVP_PKEY_type(pkey->type);
+ if (type == EVP_PKEY_RSA) {
+ keymaster_rsa_sign_params_t* sign_params = (keymaster_rsa_sign_params_t*) params;
+ return verify_rsa(pkey.get(), sign_params, signedData, signedDataLength, signature,
+ signatureLength);
+ } else {
+ ALOGW("Unsupported key type %d", type);
+ return -1;
+ }
+
+}
+
+int intel_keymaster_generate_rsa_keypair(const keymaster_rsa_keygen_params_t* rsa_params,
+ uint8_t** keyBlob, size_t* keyBlobLength)
+{
+ UniquePtr<intel_keymaster_firmware_cmd_t, Malloc_Free> cmd_buf(
+ static_cast<intel_keymaster_firmware_cmd_t *>(malloc(INTEL_KEYMASTER_MAX_MESSAGE_SIZE)));
+ UniquePtr<intel_keymaster_firmware_rsp_t, Malloc_Free> rsp_buf(
+ static_cast<intel_keymaster_firmware_rsp_t *>(malloc(INTEL_KEYMASTER_MAX_MESSAGE_SIZE)));
+ intel_keymaster_keygen_params_t *keygen_params;
+ intel_keymaster_rsa_keygen_params_t *rsa_keygen_params;
+ uint32_t cmd_len, rsp_len;
+ sep_keymaster_return_t sep_ret;
+ intel_keymaster_key_blob_t *key_blob;
+ uint32_t rsp_result_and_data_length;
+
+ if ((rsa_params == NULL) || (keyBlob == NULL) || (keyBlobLength == NULL)) {
+ return -1;
+ }
+
+ if (cmd_buf.get() == NULL) {
+ return -1;
+ }
+
+ if (rsp_buf.get() == NULL) {
+ return -1;
+ }
+
+ keygen_params = (intel_keymaster_keygen_params_t *)cmd_buf->cmd_data;
+ keygen_params->key_type = KEY_TYPE_RSA;
+ rsa_keygen_params = (intel_keymaster_rsa_keygen_params_t *)keygen_params->key_params;
+ rsa_keygen_params->modulus_size = rsa_params->modulus_size;
+ rsa_keygen_params->reserved = 0;
+ rsa_keygen_params->public_exponent = rsa_params->public_exponent;
+ cmd_buf->cmd_id = KEYMASTER_CMD_GENERATE_KEYPAIR;
+ cmd_buf->cmd_data_length = sizeof(intel_keymaster_rsa_keygen_params_t) +
+ offsetof(intel_keymaster_keygen_params_t, key_params);
+ cmd_len = cmd_buf->cmd_data_length + offsetof(intel_keymaster_firmware_cmd_t, cmd_data);
+
+ rsp_len = INTEL_KEYMASTER_MAX_MESSAGE_SIZE;
+ sep_ret = sep_keymaster_send_cmd((uint8_t *)cmd_buf.get(), cmd_len, (uint8_t *)rsp_buf.get(),
+ &rsp_len);
+
+ if (sep_ret != SEP_KEYMASTER_SUCCESS) {
+ ALOGE("sep_keymaster_send_cmd() returned error %d", sep_ret);
+ return -1;
+ }
+
+ // response should contain at least rsp_id, rsp_result_and_data_length and result
+ if (rsp_len < offsetof(intel_keymaster_firmware_rsp_t, rsp_data)) {
+ ALOGE("response is too short, rsp_len = %u", rsp_len);
+ return -1;
+ }
+
+ // rsp_result_and_data_length should include at least the result field
+ if (rsp_buf->rsp_result_and_data_length < sizeof(intel_keymaster_result_t)) {
+ ALOGE("rsp_result_and_data_length too small, rsp_result_and_data_length = %u",
+ rsp_buf->rsp_result_and_data_length);
+ return -1;
+ }
+
+ // the result must indicate success
+ if (rsp_buf->result != KEYMASTER_RESULT_SUCCESS) {
+ ALOGE("firmware returned result is not successful, result = 0x%x", rsp_buf->result);
+ return -1;
+ }
+
+ key_blob = (intel_keymaster_key_blob_t *)rsp_buf->rsp_data;
+
+ if (key_blob->key_blob_length == 0) {
+ ALOGE("key_blob_length is 0");
+ return -1;
+ }
+
+ rsp_result_and_data_length = key_blob->key_blob_length +
+ offsetof(intel_keymaster_key_blob_t, key_blob) + sizeof(intel_keymaster_result_t);
+ if (rsp_result_and_data_length != rsp_buf->rsp_result_and_data_length) {
+ ALOGE("calculated rsp_result_and_data_length %u does not match rsp_result_and_data_length "
+ "%u in structure",
+ rsp_result_and_data_length, rsp_buf->rsp_result_and_data_length);
+ return -1;
+ }
+
+ if (rsp_buf->rsp_result_and_data_length + offsetof(intel_keymaster_firmware_rsp_t, result) !=
+ rsp_len) {
+ ALOGE("rsp_result_and_data_length %u is inconsistent with rsp_len %u",
+ rsp_buf->rsp_result_and_data_length, rsp_len);
+ return -1;
+ }
+
+ *keyBlobLength = key_blob->key_blob_length;
+ /* freeing memory allocated here is the responsibility of the caller several layers above */
+ *keyBlob = (uint8_t *)malloc(key_blob->key_blob_length);
+ if (*keyBlob == NULL) {
+ ALOGE("memory allocation for keyBlob failed");
+ return -1;
+ }
+
+ memcpy(*keyBlob, key_blob->key_blob, key_blob->key_blob_length);
+
+ return 0;
+}
+
+int intel_keymaster_import_rsa_keypair(const RSA *rsa,
+ uint8_t** keyBlob, size_t* keyBlobLength)
+{
+ UniquePtr<intel_keymaster_firmware_cmd_t, Malloc_Free> cmd_buf(
+ static_cast<intel_keymaster_firmware_cmd_t *>(malloc(INTEL_KEYMASTER_MAX_MESSAGE_SIZE)));
+ UniquePtr<intel_keymaster_firmware_rsp_t, Malloc_Free> rsp_buf(
+ static_cast<intel_keymaster_firmware_rsp_t *>(malloc(INTEL_KEYMASTER_MAX_MESSAGE_SIZE)));
+ intel_keymaster_import_key_t *import_params;
+ intel_keymaster_rsa_key_t *rsa_key;
+ uint32_t cmd_len, rsp_len;
+ sep_keymaster_return_t sep_ret;
+ intel_keymaster_key_blob_t *key_blob;
+ uint32_t rsp_result_and_data_length;
+ uint32_t modulus_length, public_exponent_length, private_exponent_length;
+
+ if ((rsa == NULL) || (rsa->n == NULL) || (rsa->e == NULL) || (rsa->d == NULL) ||
+ (keyBlob == NULL) || (keyBlobLength == NULL)) {
+ return -1;
+ }
+
+ if (cmd_buf.get() == NULL) {
+ return -1;
+ }
+
+ if (rsp_buf.get() == NULL) {
+ return -1;
+ }
+
+ modulus_length = BN_num_bytes(rsa->n);
+ public_exponent_length = BN_num_bytes(rsa->e);
+ private_exponent_length = BN_num_bytes(rsa->d);
+
+ cmd_buf->cmd_id = KEYMASTER_CMD_IMPORT_KEYPAIR;
+ cmd_buf->cmd_data_length = modulus_length + public_exponent_length + private_exponent_length +
+ offsetof(intel_keymaster_rsa_key_t, bytes) +
+ offsetof(intel_keymaster_import_key_t, key_data);
+ cmd_len = cmd_buf->cmd_data_length + offsetof(intel_keymaster_firmware_cmd_t, cmd_data);
+
+ if (cmd_len > INTEL_KEYMASTER_MAX_MESSAGE_SIZE) {
+ ALOGE("combination of modulus, public exponent and private exponent length is too big,"
+ " modulus_length = %u, public_exponent_length = %u, private_exponent_length = %u",
+ modulus_length, public_exponent_length, private_exponent_length);
+ return -1;
+ }
+
+ import_params = (intel_keymaster_import_key_t *)cmd_buf->cmd_data;
+ import_params->key_type = KEY_TYPE_RSA;
+ rsa_key = (intel_keymaster_rsa_key_t *)import_params->key_data;
+ rsa_key->modulus_length = modulus_length;
+ rsa_key->public_exponent_length = public_exponent_length;
+ rsa_key->private_exponent_length = private_exponent_length;
+ BN_bn2bin(rsa->n, rsa_key->bytes);
+ BN_bn2bin(rsa->e, rsa_key->bytes + modulus_length);
+ BN_bn2bin(rsa->d, rsa_key->bytes + modulus_length + public_exponent_length);
+
+ rsp_len = INTEL_KEYMASTER_MAX_MESSAGE_SIZE;
+ sep_ret = sep_keymaster_send_cmd((uint8_t *)cmd_buf.get(), cmd_len, (uint8_t *)rsp_buf.get(),
+ &rsp_len);
+
+ if (sep_ret != SEP_KEYMASTER_SUCCESS) {
+ ALOGE("sep_keymaster_send_cmd() returned error %d", sep_ret);
+ return -1;
+ }
+
+ // response should contain at least rsp_id, rsp_result_and_data_length and result
+ if (rsp_len < offsetof(intel_keymaster_firmware_rsp_t, rsp_data)) {
+ ALOGE("response is too short, rsp_len = %u", rsp_len);
+ return -1;
+ }
+
+ // rsp_result_and_data_length should include at least the result field
+ if (rsp_buf->rsp_result_and_data_length < sizeof(intel_keymaster_result_t)) {
+ ALOGE("rsp_result_and_data_length too small, rsp_result_and_data_length = %u",
+ rsp_buf->rsp_result_and_data_length);
+ return -1;
+ }
+
+ // the result must indicate success
+ if (rsp_buf->result != KEYMASTER_RESULT_SUCCESS) {
+ ALOGE("firmware returned result is not successful, result = 0x%x", rsp_buf->result);
+ return -1;
+ }
+
+ key_blob = (intel_keymaster_key_blob_t *)rsp_buf->rsp_data;
+
+ if (key_blob->key_blob_length == 0) {
+ ALOGE("key_blob_length is 0");
+ return -1;
+ }
+
+ if (key_blob->key_blob_length > MAX_KEY_BLOB_SIZE) {
+ ALOGE("key_blob_length is too large");
+ return -1;
+ }
+
+ rsp_result_and_data_length = key_blob->key_blob_length +
+ offsetof(intel_keymaster_key_blob_t, key_blob) + sizeof(intel_keymaster_result_t);
+ if (rsp_result_and_data_length != rsp_buf->rsp_result_and_data_length) {
+ ALOGE("calculated rsp_result_and_data_length %u does not match rsp_result_and_data_length "
+ "%u in structure",
+ rsp_result_and_data_length, rsp_buf->rsp_result_and_data_length);
+ return -1;
+ }
+
+ if (rsp_buf->rsp_result_and_data_length + offsetof(intel_keymaster_firmware_rsp_t, result) !=
+ rsp_len) {
+ ALOGE("rsp_result_and_data_length %u is inconsistent with rsp_len %u",
+ rsp_buf->rsp_result_and_data_length, rsp_len);
+ return -1;
+ }
+
+ *keyBlobLength = key_blob->key_blob_length;
+ /* freeing memory allocated here is the responsibility of the caller several layers above */
+ *keyBlob = (uint8_t *)malloc(key_blob->key_blob_length);
+ if (*keyBlob == NULL) {
+ ALOGE("memory allocation for keyBlob failed");
+ return -1;
+ }
+
+ memcpy(*keyBlob, key_blob->key_blob, key_blob->key_blob_length);
+
+ return 0;
+}
+
+EVP_PKEY* intel_keymaster_unwrap_key(const uint8_t* keyBlob, const size_t keyBlobLength)
+{
+ UniquePtr<intel_keymaster_firmware_cmd_t, Malloc_Free> cmd_buf(
+ static_cast<intel_keymaster_firmware_cmd_t *>(malloc(INTEL_KEYMASTER_MAX_MESSAGE_SIZE)));
+ UniquePtr<intel_keymaster_firmware_rsp_t, Malloc_Free> rsp_buf(
+ static_cast<intel_keymaster_firmware_rsp_t *>(malloc(INTEL_KEYMASTER_MAX_MESSAGE_SIZE)));
+ intel_keymaster_key_blob_t *key_blob;
+ uint32_t cmd_len, rsp_len;
+ sep_keymaster_return_t sep_ret;
+ intel_keymaster_public_key_t *public_key;
+ intel_keymaster_rsa_public_key_t *rsa_public_key;
+ uint32_t rsp_result_and_data_length;
+
+ if ((keyBlob == NULL) || (keyBlobLength == 0) || (keyBlobLength > MAX_KEY_BLOB_SIZE)) {
+ return NULL;
+ }
+
+ if (cmd_buf.get() == NULL) {
+ return NULL;
+ }
+
+ if (rsp_buf.get() == NULL) {
+ return NULL;
+ }
+
+ cmd_buf->cmd_id = KEYMASTER_CMD_GET_KEYPAIR_PUBLIC;
+ cmd_buf->cmd_data_length = keyBlobLength + offsetof(intel_keymaster_key_blob_t, key_blob);
+ cmd_len = cmd_buf->cmd_data_length + offsetof(intel_keymaster_firmware_cmd_t, cmd_data);
+
+ if (cmd_len > INTEL_KEYMASTER_MAX_MESSAGE_SIZE) {
+ ALOGE("keyBlob is too big, keyBlobLength = %u", keyBlobLength);
+ return NULL;
+ }
+
+ key_blob = (intel_keymaster_key_blob_t *)cmd_buf->cmd_data;
+ key_blob->key_blob_length = keyBlobLength;
+ memcpy(key_blob->key_blob, keyBlob, keyBlobLength);
+
+ rsp_len = INTEL_KEYMASTER_MAX_MESSAGE_SIZE;
+ sep_ret = sep_keymaster_send_cmd((uint8_t *)cmd_buf.get(), cmd_len, (uint8_t *)rsp_buf.get(),
+ &rsp_len);
+
+ if (sep_ret != SEP_KEYMASTER_SUCCESS) {
+ ALOGE("sep_keymaster_send_cmd() returned error %d", sep_ret);
+ return NULL;
+ }
+
+ // response should contain at least rsp_id, rsp_result_and_data_length and result
+ if (rsp_len < offsetof(intel_keymaster_firmware_rsp_t, rsp_data)) {
+ ALOGE("response is too short, rsp_len = %u", rsp_len);
+ return NULL;
+ }
+
+ // rsp_result_and_data_length should include at least the result field
+ if (rsp_buf->rsp_result_and_data_length < sizeof(intel_keymaster_result_t)) {
+ ALOGE("rsp_result_and_data_length too small, rsp_result_and_data_length = %u",
+ rsp_buf->rsp_result_and_data_length);
+ return NULL;
+ }
+
+ // the result must indicate success
+ if (rsp_buf->result != KEYMASTER_RESULT_SUCCESS) {
+ ALOGE("firmware returned result is not successful, result = 0x%x", rsp_buf->result);
+ return NULL;
+ }
+
+ public_key = (intel_keymaster_public_key_t *)rsp_buf->rsp_data;
+
+ if (public_key->key_type != KEY_TYPE_RSA) {
+ ALOGE("key type other than RSA is not yet supported");
+ return NULL;
+ }
+
+ rsa_public_key = (intel_keymaster_rsa_public_key_t *)public_key->public_key_data;
+
+ if (rsa_public_key->modulus_length > MAX_MODULUS_LENGTH) {
+ ALOGE("Modulus Length is too large");
+ return NULL;
+ }
+
+ if (rsa_public_key->public_exponent_length > MAX_EXPONENT_LENGTH) {
+ ALOGE("Exponent Length is too large");
+ return NULL;
+ }
+
+ rsp_result_and_data_length = rsa_public_key->modulus_length +
+ rsa_public_key->public_exponent_length +
+ offsetof(intel_keymaster_rsa_public_key_t, bytes) +
+ offsetof(intel_keymaster_public_key_t, public_key_data) +
+ sizeof(intel_keymaster_result_t);
+ if (rsp_result_and_data_length != rsp_buf->rsp_result_and_data_length) {
+ ALOGE("calculated rsp_result_and_data_length %u does not match rsp_result_and_data_length "
+ "%u in structure",
+ rsp_result_and_data_length, rsp_buf->rsp_result_and_data_length);
+ return NULL;
+ }
+
+ if (rsp_buf->rsp_result_and_data_length + offsetof(intel_keymaster_firmware_rsp_t, result) !=
+ rsp_len) {
+ ALOGE("rsp_result_and_data_length %u is inconsistent with rsp_len %u",
+ rsp_buf->rsp_result_and_data_length, rsp_len);
+ return NULL;
+ }
+
+ // convert to DER encoded format
+ Unique_RSA rsa(RSA_new());
+ if (rsa.get() == NULL) {
+ ALOGE("Memory allocation for rsa failed");
+ return NULL;
+ }
+
+ rsa->n = BN_bin2bn(rsa_public_key->bytes, rsa_public_key->modulus_length, NULL);
+ if (rsa->n == NULL) {
+ ALOGE("Couldn't create modulus from public key byte array");
+ return NULL;
+ }
+
+ rsa->e = BN_bin2bn(rsa_public_key->bytes + rsa_public_key->modulus_length,
+ rsa_public_key->public_exponent_length, NULL);
+ if (rsa->e == NULL) {
+ ALOGE("Couldn't create public exponent from public key byte array");
+ return NULL;
+ }
+
+ Unique_EVP_PKEY pkey(EVP_PKEY_new());
+ if (pkey.get() == NULL) {
+ ALOGE("Memory allocation for pkey failed");
+ return NULL;
+ }
+
+ if (!EVP_PKEY_assign_RSA(pkey.get(), rsa.get())) {
+ ALOGE("Couldn't assign rsa to pkey\n");
+ return NULL;
+ }
+
+ OWNERSHIP_TRANSFERRED(rsa);
+
+ return pkey.release();
+}
+
+/*
+ * @brief Returns the size of a key blob RSA public key modulus.
+ *
+ * @param[in] pKeyBlob Key blob that contains the RSA public key.
+ *
+ * @param[in] keyBlobLengthInBytes Length of the key blob in bytes.
+ *
+ * @return The size of the RSA public key modulus in bytes.
+ *
+ * @retval NULL_RSA_MODULUS_SIZE_IN_BYTES Failed to get the size of the RSA public key modulus.
+ */
+static uint32_t get_rsa_public_key_modulus_size_in_bytes(const uint8_t * const pKeyBlob, const size_t keyBlobLengthInBytes)
+{
+ UniquePtr<intel_keymaster_firmware_cmd_t, Malloc_Free> cmd_buf(
+ static_cast<intel_keymaster_firmware_cmd_t *>(malloc(INTEL_KEYMASTER_MAX_MESSAGE_SIZE)));
+ UniquePtr<intel_keymaster_firmware_rsp_t, Malloc_Free> rsp_buf(
+ static_cast<intel_keymaster_firmware_rsp_t *>(malloc(INTEL_KEYMASTER_MAX_MESSAGE_SIZE)));
+ intel_keymaster_key_blob_t *p_key_blob = NULL;
+ uint32_t cmd_len = 0;
+ uint32_t rsp_len = 0;
+ sep_keymaster_return_t sep_ret = SEP_KEYMASTER_FAILURE;
+ intel_keymaster_public_key_t *p_public_key = NULL;
+ intel_keymaster_rsa_public_key_t *p_rsa_public_key = NULL;
+ uint32_t rsp_result_and_data_length = 0;
+
+
+ /* Check parameters for illegal values. */
+ if (NULL == pKeyBlob)
+ {
+ return NULL_RSA_MODULUS_SIZE_IN_BYTES;
+ }
+
+ if ((0 == keyBlobLengthInBytes) || (keyBlobLengthInBytes > MAX_KEY_BLOB_SIZE))
+ {
+ return NULL_RSA_MODULUS_SIZE_IN_BYTES;
+ }
+
+ // Check command buffer.
+ if (NULL == cmd_buf.get())
+ {
+ return NULL_RSA_MODULUS_SIZE_IN_BYTES;
+ }
+
+ if (NULL == rsp_buf.get())
+ {
+ return NULL_RSA_MODULUS_SIZE_IN_BYTES;
+ }
+
+
+ // Create a firmware command to unwrap key blob.
+ cmd_buf->cmd_id = KEYMASTER_CMD_GET_KEYPAIR_PUBLIC;
+
+ cmd_buf->cmd_data_length = keyBlobLengthInBytes + offsetof(intel_keymaster_key_blob_t, key_blob);
+
+ cmd_len = cmd_buf->cmd_data_length + offsetof(intel_keymaster_firmware_cmd_t, cmd_data);
+
+ if (cmd_len > INTEL_KEYMASTER_MAX_MESSAGE_SIZE)
+ {
+ ALOGE("%s:%d: Key blob size of %u bytes is too large.\n", __func__, __LINE__, keyBlobLengthInBytes);
+
+ return NULL_RSA_MODULUS_SIZE_IN_BYTES;
+ }
+
+ p_key_blob = (intel_keymaster_key_blob_t *)cmd_buf->cmd_data;
+
+ p_key_blob->key_blob_length = keyBlobLengthInBytes;
+
+ (void)memcpy(p_key_blob->key_blob, pKeyBlob, keyBlobLengthInBytes);
+
+ rsp_len = INTEL_KEYMASTER_MAX_MESSAGE_SIZE;
+
+
+ // Unwrap the key blob in the firmware to get the RSA public key.
+ sep_ret = sep_keymaster_send_cmd((uint8_t *)cmd_buf.get(), cmd_len, (uint8_t *)rsp_buf.get(), &rsp_len);
+
+ if (SEP_KEYMASTER_SUCCESS != sep_ret)
+ {
+ // Sending the firmware command failed.
+ ALOGE("%s:%d: Failed to send command to firmware; sep_keymaster_send_cmd() "
+ "returned error 0x%X.\n", __func__, __LINE__, sep_ret);
+
+ return NULL_RSA_MODULUS_SIZE_IN_BYTES;
+ }
+
+ if (rsp_buf->rsp_result_and_data_length < sizeof(intel_keymaster_result_t))
+ {
+ // Incorrect size of response from the firmware.
+ ALOGE("%s:%d: Firmware response of %u bytes is too small.\n", __func__,
+ __LINE__, rsp_buf->rsp_result_and_data_length);
+
+ return NULL_RSA_MODULUS_SIZE_IN_BYTES;
+ }
+
+ if (KEYMASTER_RESULT_SUCCESS != rsp_buf->result)
+ {
+ // Firmware had an error.
+ ALOGE("%s: %d: Failed to unwrap RSA public key; firmware returned error 0x%X",
+ __func__, __LINE__, (unsigned int)rsp_buf->result);
+
+ return NULL_RSA_MODULUS_SIZE_IN_BYTES;
+ }
+
+
+ // Get the RSA public key from the firmware response.
+ p_public_key = (intel_keymaster_public_key_t *)rsp_buf->rsp_data;
+
+ if (KEY_TYPE_RSA != p_public_key->key_type)
+ {
+ ALOGE("%s:%d: Not a RSA public key.\n", __func__, __LINE__);
+
+ return NULL_RSA_MODULUS_SIZE_IN_BYTES;
+ }
+
+ p_rsa_public_key = (intel_keymaster_rsa_public_key_t *)p_public_key->public_key_data;
+
+ if ((p_rsa_public_key->modulus_length > MAX_MODULUS_LENGTH)
+ || (p_rsa_public_key->public_exponent_length > MAX_EXPONENT_LENGTH))
+ {
+ ALOGE("Modulus or Exponent are too large");
+ return NULL_RSA_MODULUS_SIZE_IN_BYTES;
+ }
+
+ // Verify that the correct amount of RSA public key data was returned from
+ // the firmware.
+ rsp_result_and_data_length = p_rsa_public_key->modulus_length +
+ p_rsa_public_key->public_exponent_length +
+ offsetof(intel_keymaster_rsa_public_key_t, bytes) +
+ offsetof(intel_keymaster_public_key_t, public_key_data) +
+ sizeof(intel_keymaster_result_t);
+
+ if (rsp_result_and_data_length != rsp_buf->rsp_result_and_data_length)
+ {
+ ALOGE("%s:%d: Computed firmware response data size of %u bytes does not "
+ "equal returned firmware data size of %u bytes.\n", __func__, __LINE__,
+ rsp_result_and_data_length, rsp_buf->rsp_result_and_data_length);
+
+ return NULL_RSA_MODULUS_SIZE_IN_BYTES;
+ }
+
+ if ((rsp_buf->rsp_result_and_data_length + offsetof (intel_keymaster_firmware_rsp_t, result)) != rsp_len)
+ {
+ ALOGE("%s:%d: Firmware response and data length of %u bytes does not "
+ "equal firmware response length of %u bytes.\n", __func__, __LINE__,
+ rsp_buf->rsp_result_and_data_length, rsp_len);
+
+ return NULL_RSA_MODULUS_SIZE_IN_BYTES;
+ }
+
+
+ // Return the RSA public key modulus length.
+ return p_rsa_public_key->modulus_length;
+}
+
+static bool is_zero_buf(const uint8_t* const buf, const size_t buf_len)
+{
+ // Iterate through array
+ for (size_t i = 0; i < buf_len; i++)
+ {
+ // If value is anything else than 0 then array cannot be zero
+ if (buf[i] != 0)
+ {
+ return false;
+ }
+ }
+ return true;
+}
+
+int intel_keymaster_sign_rsa(const uint8_t* keyBlob, const size_t keyBlobLength,
+ const uint8_t* data, const size_t dataLength,
+ uint8_t** signedData, size_t* signedDataLength)
+{
+ UniquePtr<intel_keymaster_firmware_cmd_t, Malloc_Free> cmd_buf(
+ static_cast<intel_keymaster_firmware_cmd_t *>(malloc(INTEL_KEYMASTER_MAX_MESSAGE_SIZE)));
+ UniquePtr<intel_keymaster_firmware_rsp_t, Malloc_Free> rsp_buf(
+ static_cast<intel_keymaster_firmware_rsp_t *>(malloc(INTEL_KEYMASTER_MAX_MESSAGE_SIZE)));
+ intel_keymaster_signing_cmd_data_t *signing_data;
+ intel_keymaster_signature_t *signature;
+ uint32_t cmd_len, rsp_len;
+ sep_keymaster_return_t sep_ret;
+ uint32_t rsp_result_and_data_length;
+
+ if ((keyBlob == NULL) || (data == NULL) || (signedData == NULL) || (signedDataLength == NULL))
+ {
+ return -1;
+ }
+
+ if ((keyBlobLength == 0) || (dataLength == 0)
+ || (keyBlobLength > MAX_KEY_BLOB_SIZE)
+ || (dataLength > INTEL_KEYMASTER_MAX_MESSAGE_SIZE)) {
+ return -2;
+ }
+
+ if (cmd_buf.get() == NULL || rsp_buf.get() == NULL) {
+ return -3;
+ }
+
+ // Check if incoming data buffer (message to sign) is all zeroes.
+ if (is_zero_buf(data, dataLength) == true)
+ {
+ *signedDataLength = get_rsa_public_key_modulus_size_in_bytes(keyBlob, keyBlobLength);
+ if (NULL_RSA_MODULUS_SIZE_IN_BYTES == *signedDataLength)
+ {
+ ALOGE("%s:%d: Failed to get the RSA public key modulus size.\n", __func__, __LINE__);
+ return -4;
+ }
+
+ *signedData = (uint8_t *)calloc(*signedDataLength, sizeof(uint8_t));
+ if (NULL == *signedData)
+ {
+ // Could not allocate memory for the RSA signature.
+ ALOGE("%s:%d: Failed to allocate memory for RSA signature.\n", __func__, __LINE__);
+ return -5;
+ }
+
+ // When everything is done, exit
+ return 0;
+ }
+
+ cmd_buf->cmd_id = KEYMASTER_CMD_SIGN_DATA;
+ cmd_buf->cmd_data_length = keyBlobLength + dataLength +
+ offsetof(intel_keymaster_signing_cmd_data_t, buffer);
+ cmd_len = cmd_buf->cmd_data_length + offsetof(intel_keymaster_firmware_cmd_t, cmd_data);
+
+ if (cmd_len > INTEL_KEYMASTER_MAX_MESSAGE_SIZE) {
+ ALOGE("combination of keyblob and data length is too big, keyBlobLength = %u, "
+ "dataLength = %u",
+ keyBlobLength, dataLength);
+ return -1;
+ }
+
+ signing_data = (intel_keymaster_signing_cmd_data_t *)cmd_buf->cmd_data;
+ signing_data->key_blob_length = keyBlobLength;
+ signing_data->data_length = dataLength;
+ memcpy(signing_data->buffer, keyBlob, keyBlobLength);
+ memcpy(signing_data->buffer + keyBlobLength, data, dataLength);
+
+ rsp_len = INTEL_KEYMASTER_MAX_MESSAGE_SIZE;
+ sep_ret = sep_keymaster_send_cmd((uint8_t *)cmd_buf.get(), cmd_len, (uint8_t *)rsp_buf.get(),
+ &rsp_len);
+
+ if (sep_ret != SEP_KEYMASTER_SUCCESS) {
+ ALOGE("sep_keymaster_send_cmd() returned error %d", sep_ret);
+ return -1;
+ }
+
+ // response should contain at least rsp_id, rsp_result_and_data_length and result
+ if (rsp_len < offsetof(intel_keymaster_firmware_rsp_t, rsp_data)) {
+ ALOGE("response is too short, rsp_len = %u", rsp_len);
+ return -1;
+ }
+
+ // rsp_result_and_data_length should include at least the result field
+ if (rsp_buf->rsp_result_and_data_length < sizeof(intel_keymaster_result_t)) {
+ ALOGE("rsp_result_and_data_length too small, rsp_result_and_data_length = %u",
+ rsp_buf->rsp_result_and_data_length);
+ return -1;
+ }
+
+ // the result must indicate success
+ if (rsp_buf->result != KEYMASTER_RESULT_SUCCESS) {
+ ALOGE("firmware returned result is not successful, result = 0x%x", rsp_buf->result);
+ return -1;
+ }
+
+ signature = (intel_keymaster_signature_t *)rsp_buf->rsp_data;
+
+ if (signature->signature_length == 0) {
+ ALOGE("signature_length is 0");
+ return -1;
+ }
+
+ if (signature->signature_length > INTEL_KEYMASTER_MAX_MESSAGE_SIZE) {
+ ALOGE("signature length is too large");
+ return -1;
+ }
+
+ rsp_result_and_data_length = signature->signature_length +
+ offsetof(intel_keymaster_signature_t, signature) + sizeof(intel_keymaster_result_t);
+ if (rsp_result_and_data_length != rsp_buf->rsp_result_and_data_length) {
+ ALOGE("calculated rsp_result_and_data_length %u does not match rsp_result_and_data_length "
+ "%u in structure",
+ rsp_result_and_data_length, rsp_buf->rsp_result_and_data_length);
+ return -1;
+ }
+
+ if (rsp_buf->rsp_result_and_data_length + offsetof(intel_keymaster_firmware_rsp_t, result) !=
+ rsp_len) {
+ ALOGE("rsp_result_and_data_length %u is inconsistent with rsp_len %u",
+ rsp_buf->rsp_result_and_data_length, rsp_len);
+ return -1;
+ }
+
+ *signedDataLength = signature->signature_length;
+ /* freeing memory allocated here is the responsibility of the caller several layers above */
+ *signedData = (uint8_t *)malloc(signature->signature_length);
+ if (*signedData == NULL) {
+ ALOGE("memory allocation for signedData failed");
+ return -1;
+ }
+
+ memcpy(*signedData, signature->signature, signature->signature_length);
+
+ return 0;
+}
+
+int intel_keymaster_verify_rsa(const uint8_t* keyBlob, const size_t keyBlobLength,
+ const uint8_t* signedData, const size_t signedDataLength,
+ const uint8_t* signature, const size_t signatureLength)
+{
+ UniquePtr<intel_keymaster_firmware_cmd_t, Malloc_Free> cmd_buf(
+ static_cast<intel_keymaster_firmware_cmd_t *>(malloc(INTEL_KEYMASTER_MAX_MESSAGE_SIZE)));
+ UniquePtr<intel_keymaster_firmware_rsp_t, Malloc_Free> rsp_buf(
+ static_cast<intel_keymaster_firmware_rsp_t *>(malloc(INTEL_KEYMASTER_MAX_MESSAGE_SIZE)));
+ intel_keymaster_verification_data_t *verification_data;
+ uint32_t cmd_len, rsp_len;
+ sep_keymaster_return_t sep_ret;
+
+ if ((keyBlob == NULL) || (signedData == NULL) || (signature == NULL)) {
+ return -1;
+ }
+
+ if ((keyBlobLength == 0) || (signedDataLength == 0) || (signatureLength == 0)) {
+ return -1;
+ }
+
+ if ((keyBlobLength > MAX_KEY_BLOB_SIZE) || (signedDataLength > INTEL_KEYMASTER_MAX_MESSAGE_SIZE)
+ || (signatureLength > INTEL_KEYMASTER_MAX_MESSAGE_SIZE)) {
+ return -1;
+ }
+
+ if (cmd_buf.get() == NULL) {
+ return -1;
+ }
+
+ if (rsp_buf.get() == NULL) {
+ return -1;
+ }
+
+ cmd_buf->cmd_id = KEYMASTER_CMD_VERIFY_DATA;
+ cmd_buf->cmd_data_length = keyBlobLength + signedDataLength + signatureLength +
+ offsetof(intel_keymaster_verification_data_t, buffer);
+ cmd_len = cmd_buf->cmd_data_length + offsetof(intel_keymaster_firmware_cmd_t, cmd_data);
+
+ if (cmd_len > INTEL_KEYMASTER_MAX_MESSAGE_SIZE) {
+ ALOGE("combination of keyBlobLength, signedDataLength and signatureLength is too big, "
+ "keyBlobLength = %u, signedDataLength = %u, signatureLength = %u",
+ keyBlobLength, signedDataLength, signatureLength);
+ return -1;
+ }
+
+ verification_data = (intel_keymaster_verification_data_t *)cmd_buf->cmd_data;
+ verification_data->key_blob_length = keyBlobLength;
+ verification_data->data_length = signedDataLength;
+ verification_data->signature_length = signatureLength;
+ memcpy(verification_data->buffer, keyBlob, keyBlobLength);
+ memcpy(verification_data->buffer + keyBlobLength, signedData, signedDataLength);
+ memcpy(verification_data->buffer + keyBlobLength + signedDataLength, signature,
+ signatureLength);
+
+ rsp_len = INTEL_KEYMASTER_MAX_MESSAGE_SIZE;
+ sep_ret = sep_keymaster_send_cmd((uint8_t *)cmd_buf.get(), cmd_len, (uint8_t *)rsp_buf.get(),
+ &rsp_len);
+
+ if (sep_ret != SEP_KEYMASTER_SUCCESS) {
+ ALOGE("sep_keymaster_send_cmd() returned error %d", sep_ret);
+ return -1;
+ }
+
+ // response should contain at least rsp_id, rsp_result_and_data_length and result
+ if (rsp_len < offsetof(intel_keymaster_firmware_rsp_t, rsp_data)) {
+ ALOGE("response is too short, rsp_len = %u", rsp_len);
+ return -1;
+ }
+
+ // rsp_result_and_data_length should include the result field only
+ if (rsp_buf->rsp_result_and_data_length != sizeof(intel_keymaster_result_t)) {
+ ALOGE("rsp_result_and_data_length unexpected, rsp_result_and_data_length = %u",
+ rsp_buf->rsp_result_and_data_length);
+ return -1;
+ }
+
+ // the result must indicate success
+ if (rsp_buf->result != KEYMASTER_RESULT_SUCCESS) {
+ ALOGE("firmware returned result is not successful, result = 0x%x", rsp_buf->result);
+ return -1;
+ }
+
+ return 0;
+}
+
+int intel_keymaster_delete_keypair(const struct keymaster0_device*,
+ const uint8_t* keyBlob, const size_t keyBlobLength)
+{
+ UniquePtr<intel_keymaster_firmware_cmd_t, Malloc_Free> cmd_buf(
+ static_cast<intel_keymaster_firmware_cmd_t *>(malloc(INTEL_KEYMASTER_MAX_MESSAGE_SIZE)));
+ UniquePtr<intel_keymaster_firmware_rsp_t, Malloc_Free> rsp_buf(
+ static_cast<intel_keymaster_firmware_rsp_t *>(malloc(INTEL_KEYMASTER_MAX_MESSAGE_SIZE)));
+ intel_keymaster_key_blob_t *key_blob;
+ uint32_t cmd_len, rsp_len;
+ sep_keymaster_return_t sep_ret;
+
+ if ((keyBlob == NULL) || (keyBlobLength == 0) || (keyBlobLength > MAX_KEY_BLOB_SIZE)) {
+ return -1;
+ }
+
+ if (cmd_buf.get() == NULL) {
+ return -1;
+ }
+
+ if (rsp_buf.get() == NULL) {
+ return -1;
+ }
+
+ cmd_buf->cmd_id = KEYMASTER_CMD_DELETE_KEYPAIR;
+ cmd_buf->cmd_data_length = keyBlobLength + offsetof(intel_keymaster_key_blob_t, key_blob);
+ cmd_len = cmd_buf->cmd_data_length + offsetof(intel_keymaster_firmware_cmd_t, cmd_data);
+
+ if (cmd_len > INTEL_KEYMASTER_MAX_MESSAGE_SIZE) {
+ ALOGE("keyBlob is too big, keyBlobLength = %u", keyBlobLength);
+ return -1;
+ }
+
+ key_blob = (intel_keymaster_key_blob_t *)cmd_buf->cmd_data;
+ key_blob->key_blob_length = keyBlobLength;
+ memcpy(key_blob->key_blob, keyBlob, keyBlobLength);
+
+ rsp_len = INTEL_KEYMASTER_MAX_MESSAGE_SIZE;
+ sep_ret = sep_keymaster_send_cmd((uint8_t *)cmd_buf.get(), cmd_len, (uint8_t *)rsp_buf.get(),
+ &rsp_len);
+
+ if (sep_ret != SEP_KEYMASTER_SUCCESS) {
+ ALOGE("sep_keymaster_send_cmd() returned error %d", sep_ret);
+ return -1;
+ }
+
+ // response should contain at least rsp_id, rsp_result_and_data_length and result
+ if (rsp_len < offsetof(intel_keymaster_firmware_rsp_t, rsp_data)) {
+ ALOGE("response is too short, rsp_len = %u", rsp_len);
+ return -1;
+ }
+
+ // rsp_result_and_data_length should include at least the result field
+ if (rsp_buf->rsp_result_and_data_length < sizeof(intel_keymaster_result_t)) {
+ ALOGE("rsp_result_and_data_length too small, rsp_result_and_data_length = %u",
+ rsp_buf->rsp_result_and_data_length);
+ return -1;
+ }
+
+ // the result must indicate success
+ if (rsp_buf->result != KEYMASTER_RESULT_SUCCESS) {
+ ALOGE("firmware returned result is not successful, result = 0x%x", rsp_buf->result);
+ return -1;
+ }
+
+ return 0;
+}
+
+int intel_keymaster_delete_all(const struct keymaster0_device*)
+{
+ UniquePtr<intel_keymaster_firmware_cmd_t, Malloc_Free> cmd_buf(
+ static_cast<intel_keymaster_firmware_cmd_t *>(malloc(INTEL_KEYMASTER_MAX_MESSAGE_SIZE)));
+ UniquePtr<intel_keymaster_firmware_rsp_t, Malloc_Free> rsp_buf(
+ static_cast<intel_keymaster_firmware_rsp_t *>(malloc(INTEL_KEYMASTER_MAX_MESSAGE_SIZE)));
+ uint32_t cmd_len, rsp_len;
+ sep_keymaster_return_t sep_ret;
+
+ if (cmd_buf.get() == NULL) {
+ return -1;
+ }
+
+ if (rsp_buf.get() == NULL) {
+ return -1;
+ }
+
+ cmd_buf->cmd_id = KEYMASTER_CMD_DELETE_ALL;
+ cmd_buf->cmd_data_length = 0;
+ cmd_len = cmd_buf->cmd_data_length + offsetof(intel_keymaster_firmware_cmd_t, cmd_data);
+
+ rsp_len = INTEL_KEYMASTER_MAX_MESSAGE_SIZE;
+ sep_ret = sep_keymaster_send_cmd((uint8_t *)cmd_buf.get(), cmd_len, (uint8_t *)rsp_buf.get(),
+ &rsp_len);
+
+ if (sep_ret != SEP_KEYMASTER_SUCCESS) {
+ ALOGE("sep_keymaster_send_cmd() returned error %d", sep_ret);
+ return -1;
+ }
+
+ // response should contain at least rsp_id, rsp_result_and_data_length and result
+ if (rsp_len < offsetof(intel_keymaster_firmware_rsp_t, rsp_data)) {
+ ALOGE("response is too short, rsp_len = %u", rsp_len);
+ return -1;
+ }
+
+ // rsp_result_and_data_length should include at least the result field
+ if (rsp_buf->rsp_result_and_data_length < sizeof(intel_keymaster_result_t)) {
+ ALOGE("rsp_result_and_data_length too small, rsp_result_and_data_length = %u",
+ rsp_buf->rsp_result_and_data_length);
+ return -1;
+ }
+
+ // the result must indicate success
+ if (rsp_buf->result != KEYMASTER_RESULT_SUCCESS) {
+ ALOGE("firmware returned result is not successful, result = 0x%x", rsp_buf->result);
+ return -1;
+ }
+
+ return 0;
+}
+
+/* keymaster module */
+
+typedef UniquePtr<keymaster0_device_t> Unique_keymaster_device_t;
+
+/* Close an opened intel keymaster instance */
+static int intel_keymaster_close(hw_device_t *dev) {
+ delete dev;
+ return 0;
+}
+
+/*
+ * Generic device handling
+ */
+static int intel_keymaster_open(const hw_module_t* module, const char* name,
+ hw_device_t** device) {
+ if (strcmp(name, KEYSTORE_KEYMASTER) != 0)
+ return -EINVAL;
+
+ Unique_keymaster_device_t dev(new keymaster0_device_t);
+ if (dev.get() == NULL)
+ return -ENOMEM;
+
+ char platform[PATH_MAX] = {0};
+ property_get("ro.board.platform", platform, NULL);
+
+ dev->common.tag = HARDWARE_DEVICE_TAG;
+ dev->common.version = 1;
+ dev->common.module = (struct hw_module_t*) module;
+ dev->common.close = intel_keymaster_close;
+
+ dev->flags = KEYMASTER_BLOBS_ARE_STANDALONE;
+
+ dev->generate_keypair = intel_keymaster_generate_keypair;
+ dev->import_keypair = intel_keymaster_import_keypair;
+ dev->get_keypair_public = intel_keymaster_get_keypair_public;
+ if (strcmp(platform, "merrifield") == 0 ||
+ strcmp(platform, "moorefield") == 0) {
+ dev->delete_keypair = intel_keymaster_delete_keypair;
+ dev->delete_all = intel_keymaster_delete_all;
+ }
+ else {
+ dev->delete_keypair = NULL;
+ dev->delete_all = NULL;
+ }
+ dev->sign_data = intel_keymaster_sign_data;
+ dev->verify_data = intel_keymaster_verify_data;
+
+ ERR_load_crypto_strings();
+ ERR_load_BIO_strings();
+
+ *device = reinterpret_cast<hw_device_t*>(dev.release());
+
+ return 0;
+}
+
+static struct hw_module_methods_t keystore_module_methods = {
+ .open = intel_keymaster_open,
+};
+
+struct keystore_module HAL_MODULE_INFO_SYM
+__attribute__ ((visibility ("default"))) = {
+ .common = {
+ .tag = HARDWARE_MODULE_TAG,
+ .module_api_version = KEYMASTER_MODULE_API_VERSION_0_3,
+ .hal_api_version = HARDWARE_HAL_API_VERSION,
+ .id = KEYSTORE_HARDWARE_MODULE_ID,
+ .name = "Keymaster Intel HAL",
+ .author = "The Android Open Source Project",
+ .methods = &keystore_module_methods,
+ .dso = 0,
+ .reserved = {},
+ },
+};