summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorTreehugger Robot <android-test-infra-autosubmit@system.gserviceaccount.com>2024-05-01 06:04:42 +0000
committerGerrit Code Review <noreply-gerritcodereview@google.com>2024-05-01 06:04:42 +0000
commitb09905e19f4db654e24122b4f00af6513bf6dbe4 (patch)
tree3770a91a9dc60e5195b50942fcfc41ed0b754716
parente8da73e76a3f81eeac47d2102f8c70a2ea7e8455 (diff)
parent3c4ca3d3d407fc34b25dbcfabbcb9113e3b773d4 (diff)
downloadapf-main.tar.gz
Merge changes I7bbb2559,I8aec5ebd into mainHEADmastermain
* changes: v6: copy in from v5 v6: empty out directory in prep for copy
-rw-r--r--v6/apf_interpreter.c1147
-rw-r--r--v6/apf_interpreter.h177
2 files changed, 1320 insertions, 4 deletions
diff --git a/v6/apf_interpreter.c b/v6/apf_interpreter.c
index ef7a6b8..001aad9 100644
--- a/v6/apf_interpreter.c
+++ b/v6/apf_interpreter.c
@@ -1,2 +1,1145 @@
-APFv6 is not yet finalized.
-There is a beta version available at v5/
+/*
+ * Copyright 2024, The Android Open Source Project
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#include "apf_interpreter.h"
+
+#include <string.h> /* For memcmp, memcpy, memset */
+
+#if __GNUC__ >= 7 || __clang__
+#define FALLTHROUGH __attribute__((fallthrough))
+#else
+#define FALLTHROUGH
+#endif
+
+typedef enum { False, True } Boolean;
+
+/* Begin include of apf_defs.h */
+typedef int8_t s8;
+typedef int16_t s16;
+typedef int32_t s32;
+
+typedef uint8_t u8;
+typedef uint16_t u16;
+typedef uint32_t u32;
+
+typedef enum {
+ error_program = -2,
+ error_packet = -1,
+ nomatch = False,
+ match = True
+} match_result_type;
+
+#define ETH_P_IP 0x0800
+#define ETH_P_IPV6 0x86DD
+
+#define ETH_HLEN 14
+#define IPV4_HLEN 20
+#define IPV6_HLEN 40
+#define TCP_HLEN 20
+#define UDP_HLEN 8
+
+#define FUNC(x) x; x
+/* End include of apf_defs.h */
+/* Begin include of apf.h */
+/*
+ * Copyright 2024, The Android Open Source Project
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#ifndef ANDROID_APF_APF_H
+#define ANDROID_APF_APF_H
+
+/* A brief overview of APF:
+ *
+ * APF machine is composed of:
+ * 1. A read-only program consisting of bytecodes as described below.
+ * 2. Two 32-bit registers, called R0 and R1.
+ * 3. Sixteen 32-bit temporary memory slots (cleared between packets).
+ * 4. A read-only packet.
+ * 5. An optional read-write transmit buffer.
+ * The program is executed by the interpreter below and parses the packet
+ * to determine if the application processor (AP) should be woken up to
+ * handle the packet or if it can be dropped. The program may also choose
+ * to allocate/transmit/deallocate the transmit buffer.
+ *
+ * APF bytecode description:
+ *
+ * The APF interpreter uses big-endian byte order for loads from the packet
+ * and for storing immediates in instructions.
+ *
+ * Each instruction starts with a byte composed of:
+ * Top 5 bits form "opcode" field, see *_OPCODE defines below.
+ * Next 2 bits form "size field", which indicates the length of an immediate
+ * value which follows the first byte. Values in this field:
+ * 0 => immediate value is 0 and no bytes follow.
+ * 1 => immediate value is 1 byte big.
+ * 2 => immediate value is 2 bytes big.
+ * 3 => immediate value is 4 bytes big.
+ * Bottom bit forms "register" field, which (usually) indicates which register
+ * this instruction operates on.
+ *
+ * There are four main categories of instructions:
+ * Load instructions
+ * These instructions load byte(s) of the packet into a register.
+ * They load either 1, 2 or 4 bytes, as determined by the "opcode" field.
+ * They load into the register specified by the "register" field.
+ * The immediate value that follows the first byte of the instruction is
+ * the byte offset from the beginning of the packet to load from.
+ * There are "indexing" loads which add the value in R1 to the byte offset
+ * to load from. The "opcode" field determines which loads are "indexing".
+ * Arithmetic instructions
+ * These instructions perform simple operations, like addition, on register
+ * values. The result of these instructions is always written into R0. One
+ * argument of the arithmetic operation is R0's value. The other argument
+ * of the arithmetic operation is determined by the "register" field:
+ * If the "register" field is 0 then the immediate value following
+ * the first byte of the instruction is used as the other argument
+ * to the arithmetic operation.
+ * If the "register" field is 1 then R1's value is used as the other
+ * argument to the arithmetic operation.
+ * Conditional jump instructions
+ * These instructions compare register R0's value with another value, and if
+ * the comparison succeeds, jump (i.e. adjust the program counter). The
+ * immediate value that follows the first byte of the instruction
+ * represents the jump target offset, i.e. the value added to the program
+ * counter if the comparison succeeds. The other value compared is
+ * determined by the "register" field:
+ * If the "register" field is 0 then another immediate value
+ * follows the jump target offset. This immediate value is of the
+ * same size as the jump target offset, and represents the value
+ * to compare against.
+ * If the "register" field is 1 then register R1's value is
+ * compared against.
+ * The type of comparison (e.g. equal to, greater than etc) is determined
+ * by the "opcode" field. The comparison interprets both values being
+ * compared as unsigned values.
+ * Miscellaneous instructions
+ * Instructions for:
+ * - allocating/transmitting/deallocating transmit buffer
+ * - building the transmit packet (copying bytes into it)
+ * - read/writing data section
+ *
+ * Miscellaneous details:
+ *
+ * Pre-filled temporary memory slot values
+ * When the APF program begins execution, six of the sixteen memory slots
+ * are pre-filled by the interpreter with values that may be useful for
+ * programs:
+ * #0 to #7 are zero initialized.
+ * Slot #8 is initialized with apf version (on APF >4).
+ * Slot #9 this is slot #15 with greater resolution (1/16384ths of a second)
+ * Slot #10 starts at zero, implicitly used as tx buffer output pointer.
+ * Slot #11 contains the size (in bytes) of the APF program.
+ * Slot #12 contains the total size of the APF program + data.
+ * Slot #13 is filled with the IPv4 header length. This value is calculated
+ * by loading the first byte of the IPv4 header and taking the
+ * bottom 4 bits and multiplying their value by 4. This value is
+ * set to zero if the first 4 bits after the link layer header are
+ * not 4, indicating not IPv4.
+ * Slot #14 is filled with size of the packet in bytes, including the
+ * ethernet link-layer header.
+ * Slot #15 is filled with the filter age in seconds. This is the number of
+ * seconds since the host installed the program. This may
+ * be used by filters that should have a particular lifetime. For
+ * example, it can be used to rate-limit particular packets to one
+ * every N seconds.
+ * Special jump targets:
+ * When an APF program executes a jump to the byte immediately after the last
+ * byte of the progam (i.e., one byte past the end of the program), this
+ * signals the program has completed and determined the packet should be
+ * passed to the AP.
+ * When an APF program executes a jump two bytes past the end of the program,
+ * this signals the program has completed and determined the packet should
+ * be dropped.
+ * Jump if byte sequence doesn't match:
+ * This is a special instruction to facilitate matching long sequences of
+ * bytes in the packet. Initially it is encoded like a conditional jump
+ * instruction with two exceptions:
+ * The first byte of the instruction is always followed by two immediate
+ * fields: The first immediate field is the jump target offset like other
+ * conditional jump instructions. The second immediate field specifies the
+ * number of bytes to compare.
+ * These two immediate fields are followed by a sequence of bytes. These
+ * bytes are compared with the bytes in the packet starting from the
+ * position specified by the value of the register specified by the
+ * "register" field of the instruction.
+ */
+
+/* Number of temporary memory slots, see ldm/stm instructions. */
+#define MEMORY_ITEMS 16
+/* Upon program execution, some temporary memory slots are prefilled: */
+
+typedef union {
+ struct {
+ u32 pad[8]; /* 0..7 */
+ u32 apf_version; /* 8: Initialized with apf_version() */
+ u32 filter_age_16384ths; /* 9: Age since filter installed in 1/16384 seconds. */
+ u32 tx_buf_offset; /* 10: Offset in tx_buf where next byte will be written */
+ u32 program_size; /* 11: Size of program (in bytes) */
+ u32 ram_len; /* 12: Total size of program + data, ie. ram_len */
+ u32 ipv4_header_size; /* 13: 4*([APF_FRAME_HEADER_SIZE]&15) */
+ u32 packet_size; /* 14: Size of packet in bytes. */
+ u32 filter_age; /* 15: Age since filter installed in seconds. */
+ } named;
+ u32 slot[MEMORY_ITEMS];
+} memory_type;
+
+/* ---------------------------------------------------------------------------------------------- */
+
+/* Standard opcodes. */
+
+/* Unconditionally pass (if R=0) or drop (if R=1) packet and optionally increment counter.
+ * An optional non-zero unsigned immediate value can be provided to encode the counter number.
+ * The counter is located (-4 * counter number) bytes from the end of the data region.
+ * It is a U32 big-endian value and is always incremented by 1.
+ * This is more or less equivalent to: lddw R0, -4*N; add R0, 1; stdw R0, -4*N; {pass,drop}
+ * e.g. "pass", "pass 1", "drop", "drop 1"
+ */
+#define PASSDROP_OPCODE 0
+
+#define LDB_OPCODE 1 /* Load 1 byte from immediate offset, e.g. "ldb R0, [5]" */
+#define LDH_OPCODE 2 /* Load 2 bytes from immediate offset, e.g. "ldh R0, [5]" */
+#define LDW_OPCODE 3 /* Load 4 bytes from immediate offset, e.g. "ldw R0, [5]" */
+#define LDBX_OPCODE 4 /* Load 1 byte from immediate offset plus register, e.g. "ldbx R0, [5+R0]" */
+#define LDHX_OPCODE 5 /* Load 2 bytes from immediate offset plus register, e.g. "ldhx R0, [5+R0]" */
+#define LDWX_OPCODE 6 /* Load 4 bytes from immediate offset plus register, e.g. "ldwx R0, [5+R0]" */
+#define ADD_OPCODE 7 /* Add, e.g. "add R0,5" */
+#define MUL_OPCODE 8 /* Multiply, e.g. "mul R0,5" */
+#define DIV_OPCODE 9 /* Divide, e.g. "div R0,5" */
+#define AND_OPCODE 10 /* And, e.g. "and R0,5" */
+#define OR_OPCODE 11 /* Or, e.g. "or R0,5" */
+#define SH_OPCODE 12 /* Left shift, e.g. "sh R0, 5" or "sh R0, -5" (shifts right) */
+#define LI_OPCODE 13 /* Load signed immediate, e.g. "li R0,5" */
+#define JMP_OPCODE 14 /* Unconditional jump, e.g. "jmp label" */
+#define JEQ_OPCODE 15 /* Compare equal and branch, e.g. "jeq R0,5,label" */
+#define JNE_OPCODE 16 /* Compare not equal and branch, e.g. "jne R0,5,label" */
+#define JGT_OPCODE 17 /* Compare greater than and branch, e.g. "jgt R0,5,label" */
+#define JLT_OPCODE 18 /* Compare less than and branch, e.g. "jlt R0,5,label" */
+#define JSET_OPCODE 19 /* Compare any bits set and branch, e.g. "jset R0,5,label" */
+#define JBSMATCH_OPCODE 20 /* Compare byte sequence [R=0 not] equal, e.g. "jbsne R0,2,label,0x1122" */
+ /* NOTE: Only APFv6+ implements R=1 'jbseq' version and multi match */
+ /* imm1 is jmp target, imm2 is (cnt - 1) * 2048 + compare_len, */
+ /* which is followed by cnt * compare_len bytes to compare against. */
+ /* Warning: do not specify the same byte sequence multiple times. */
+#define EXT_OPCODE 21 /* Immediate value is one of *_EXT_OPCODE */
+#define LDDW_OPCODE 22 /* Load 4 bytes from data address (register + signed imm): "lddw R0, [5+R1]" */
+ /* LDDW/STDW in APFv6+ *mode* load/store from counter specified in imm. */
+#define STDW_OPCODE 23 /* Store 4 bytes to data address (register + signed imm): "stdw R0, [5+R1]" */
+
+/* Write 1, 2 or 4 byte immediate to the output buffer and auto-increment the output buffer pointer.
+ * Immediate length field specifies size of write. R must be 0. imm_len != 0.
+ * e.g. "write 5"
+ */
+#define WRITE_OPCODE 24
+
+/* Copy bytes from input packet/APF program/data region to output buffer and
+ * auto-increment the output buffer pointer.
+ * Register bit is used to specify the source of data copy.
+ * R=0 means copy from packet.
+ * R=1 means copy from APF program/data region.
+ * The source offset is stored in imm1, copy length is stored in u8 imm2.
+ * e.g. "pktcopy 0, 16" or "datacopy 0, 16"
+ */
+#define PKTDATACOPY_OPCODE 25
+
+/* ---------------------------------------------------------------------------------------------- */
+
+/* Extended opcodes. */
+/* These all have an opcode of EXT_OPCODE and specify the actual opcode in the immediate field. */
+
+#define LDM_EXT_OPCODE 0 /* Load from temporary memory, e.g. "ldm R0,5" */
+ /* Values 0-15 represent loading the different temporary memory slots. */
+#define STM_EXT_OPCODE 16 /* Store to temporary memory, e.g. "stm R0,5" */
+ /* Values 16-31 represent storing to the different temporary memory slots. */
+#define NOT_EXT_OPCODE 32 /* Not, e.g. "not R0" */
+#define NEG_EXT_OPCODE 33 /* Negate, e.g. "neg R0" */
+#define SWAP_EXT_OPCODE 34 /* Swap, e.g. "swap R0,R1" */
+#define MOV_EXT_OPCODE 35 /* Move, e.g. "move R0,R1" */
+
+/* Allocate writable output buffer.
+ * R=0: register R0 specifies the length
+ * R=1: length provided in u16 imm2
+ * e.g. "allocate R0" or "allocate 123"
+ * On failure automatically executes 'pass 3'
+ */
+#define ALLOCATE_EXT_OPCODE 36
+/* Transmit and deallocate the buffer (transmission can be delayed until the program
+ * terminates). Length of buffer is the output buffer pointer (0 means discard).
+ * R=1 iff udp style L4 checksum
+ * u8 imm2 - ip header offset from start of buffer (255 for non-ip packets)
+ * u8 imm3 - offset from start of buffer to store L4 checksum (255 for no L4 checksum)
+ * u8 imm4 - offset from start of buffer to begin L4 checksum calculation (present iff imm3 != 255)
+ * u16 imm5 - partial checksum value to include in L4 checksum (present iff imm3 != 255)
+ * "e.g. transmit"
+ */
+#define TRANSMIT_EXT_OPCODE 37
+/* Write 1, 2 or 4 byte value from register to the output buffer and auto-increment the
+ * output buffer pointer.
+ * e.g. "ewrite1 r0" or "ewrite2 r1"
+ */
+#define EWRITE1_EXT_OPCODE 38
+#define EWRITE2_EXT_OPCODE 39
+#define EWRITE4_EXT_OPCODE 40
+
+/* Copy bytes from input packet/APF program/data region to output buffer and
+ * auto-increment the output buffer pointer.
+ * Register bit is used to specify the source of data copy.
+ * R=0 means copy from packet.
+ * R=1 means copy from APF program/data region.
+ * The source offset is stored in R0, copy length is stored in u8 imm2 or R1.
+ * e.g. "epktcopy r0, 16", "edatacopy r0, 16", "epktcopy r0, r1", "edatacopy r0, r1"
+ */
+#define EPKTDATACOPYIMM_EXT_OPCODE 41
+#define EPKTDATACOPYR1_EXT_OPCODE 42
+/* Jumps if the UDP payload content (starting at R0) does [not] match one
+ * of the specified QNAMEs in question records, applying case insensitivity.
+ * SAFE version PASSES corrupt packets, while the other one DROPS.
+ * R=0/1 meaning 'does not match'/'matches'
+ * R0: Offset to UDP payload content
+ * imm1: Extended opcode
+ * imm2: Jump label offset
+ * imm3(u8): Question type (PTR/SRV/TXT/A/AAAA)
+ * imm4(bytes): null terminated list of null terminated LV-encoded QNAMEs
+ * e.g.: "jdnsqeq R0,label,0xc,\002aa\005local\0\0", "jdnsqne R0,label,0xc,\002aa\005local\0\0"
+ */
+#define JDNSQMATCH_EXT_OPCODE 43
+#define JDNSQMATCHSAFE_EXT_OPCODE 45
+/* Jumps if the UDP payload content (starting at R0) does [not] match one
+ * of the specified NAMEs in answers/authority/additional records, applying
+ * case insensitivity.
+ * SAFE version PASSES corrupt packets, while the other one DROPS.
+ * R=0/1 meaning 'does not match'/'matches'
+ * R0: Offset to UDP payload content
+ * imm1: Extended opcode
+ * imm2: Jump label offset
+ * imm3(bytes): null terminated list of null terminated LV-encoded NAMEs
+ * e.g.: "jdnsaeq R0,label,0xc,\002aa\005local\0\0", "jdnsane R0,label,0xc,\002aa\005local\0\0"
+ */
+#define JDNSAMATCH_EXT_OPCODE 44
+#define JDNSAMATCHSAFE_EXT_OPCODE 46
+
+/* Jump if register is [not] one of the list of values
+ * R bit - specifies the register (R0/R1) to test
+ * imm1: Extended opcode
+ * imm2: Jump label offset
+ * imm3(u8): top 5 bits - number 'n' of following u8/be16/be32 values - 2
+ * middle 2 bits - 1..4 length of immediates - 1
+ * bottom 1 bit - =0 jmp if in set, =1 if not in set
+ * imm4(n * 1/2/3/4 bytes): the *UNIQUE* values to compare against
+ */
+#define JONEOF_EXT_OPCODE 47
+
+/* Specify length of exception buffer, which is populated on abnormal program termination.
+ * imm1: Extended opcode
+ * imm2(u16): Length of exception buffer (located *immediately* after the program itself)
+ */
+#define EXCEPTIONBUFFER_EXT_OPCODE 48
+
+/* This extended opcode is used to implement PKTDATACOPY_OPCODE */
+#define PKTDATACOPYIMM_EXT_OPCODE 65536
+
+#define EXTRACT_OPCODE(i) (((i) >> 3) & 31)
+#define EXTRACT_REGISTER(i) ((i) & 1)
+#define EXTRACT_IMM_LENGTH(i) (((i) >> 1) & 3)
+
+#endif /* ANDROID_APF_APF_H */
+/* End include of apf.h */
+/* Begin include of apf_utils.h */
+static u32 read_be16(const u8* buf) {
+ return buf[0] * 256u + buf[1];
+}
+
+static void store_be16(u8* const buf, const u16 v) {
+ buf[0] = (u8)(v >> 8);
+ buf[1] = (u8)v;
+}
+
+static u8 uppercase(u8 c) {
+ return (c >= 'a') && (c <= 'z') ? c - ('a' - 'A') : c;
+}
+/* End include of apf_utils.h */
+/* Begin include of apf_dns.h */
+/**
+ * Compares a (Q)NAME starting at udp[*ofs] with the target name.
+ *
+ * @param needle - non-NULL - pointer to DNS encoded target name to match against.
+ * example: [11]_googlecast[4]_tcp[5]local[0] (where [11] is a byte with value 11)
+ * @param needle_bound - non-NULL - points at first invalid byte past needle.
+ * @param udp - non-NULL - pointer to the start of the UDP payload (DNS header).
+ * @param udp_len - length of the UDP payload.
+ * @param ofs - non-NULL - pointer to the offset of the beginning of the (Q)NAME.
+ * On non-error return will be updated to point to the first unread offset,
+ * ie. the next position after the (Q)NAME.
+ *
+ * @return 1 if matched, 0 if not matched, -1 if error in packet, -2 if error in program.
+ */
+FUNC(match_result_type apf_internal_match_single_name(const u8* needle,
+ const u8* const needle_bound,
+ const u8* const udp,
+ const u32 udp_len,
+ u32* const ofs)) {
+ u32 first_unread_offset = *ofs;
+ Boolean is_qname_match = True;
+ int lvl;
+
+ /* DNS names are <= 255 characters including terminating 0, since >= 1 char + '.' per level => max. 127 levels */
+ for (lvl = 1; lvl <= 127; ++lvl) {
+ u8 v;
+ if (*ofs >= udp_len) return error_packet;
+ v = udp[(*ofs)++];
+ if (v >= 0xC0) { /* RFC 1035 4.1.4 - handle message compression */
+ u8 w;
+ u32 new_ofs;
+ if (*ofs >= udp_len) return error_packet;
+ w = udp[(*ofs)++];
+ if (*ofs > first_unread_offset) first_unread_offset = *ofs;
+ new_ofs = (v - 0xC0) * 256u + w;
+ if (new_ofs >= *ofs) return error_packet; /* RFC 1035 4.1.4 allows only backward pointers */
+ *ofs = new_ofs;
+ } else if (v > 63) {
+ return error_packet; /* RFC 1035 2.3.4 - label size is 1..63. */
+ } else if (v) {
+ u8 label_size = v;
+ if (*ofs + label_size > udp_len) return error_packet;
+ if (needle >= needle_bound) return error_program;
+ if (is_qname_match) {
+ u8 len = *needle++;
+ if (len == label_size) {
+ if (needle + label_size > needle_bound) return error_program;
+ while (label_size--) {
+ u8 w = udp[(*ofs)++];
+ is_qname_match &= (uppercase(w) == *needle++);
+ }
+ } else {
+ if (len != 0xFF) is_qname_match = False;
+ *ofs += label_size;
+ }
+ } else {
+ is_qname_match = False;
+ *ofs += label_size;
+ }
+ } else { /* reached the end of the name */
+ if (first_unread_offset > *ofs) *ofs = first_unread_offset;
+ return (is_qname_match && *needle == 0) ? match : nomatch;
+ }
+ }
+ return error_packet; /* too many dns domain name levels */
+}
+
+/**
+ * Check if DNS packet contains any of the target names with the provided
+ * question_type.
+ *
+ * @param needles - non-NULL - pointer to DNS encoded target nameS to match against.
+ * example: [3]foo[3]com[0][3]bar[3]net[0][0] -- note ends with an extra NULL byte.
+ * @param needle_bound - non-NULL - points at first invalid byte past needles.
+ * @param udp - non-NULL - pointer to the start of the UDP payload (DNS header).
+ * @param udp_len - length of the UDP payload.
+ * @param question_type - question type to match against or -1 to match answers.
+ *
+ * @return 1 if matched, 0 if not matched, -1 if error in packet, -2 if error in program.
+ */
+FUNC(match_result_type apf_internal_match_names(const u8* needles,
+ const u8* const needle_bound,
+ const u8* const udp,
+ const u32 udp_len,
+ const int question_type)) {
+ u32 num_questions, num_answers;
+ if (udp_len < 12) return error_packet; /* lack of dns header */
+
+ /* dns header: be16 tid, flags, num_{questions,answers,authority,additional} */
+ num_questions = read_be16(udp + 4);
+ num_answers = read_be16(udp + 6) + read_be16(udp + 8) + read_be16(udp + 10);
+
+ /* loop until we hit final needle, which is a null byte */
+ while (True) {
+ u32 i, ofs = 12; /* dns header is 12 bytes */
+ if (needles >= needle_bound) return error_program;
+ if (!*needles) return nomatch; /* we've run out of needles without finding a match */
+ /* match questions */
+ for (i = 0; i < num_questions; ++i) {
+ match_result_type m = apf_internal_match_single_name(needles, needle_bound, udp, udp_len, &ofs);
+ int qtype;
+ if (m < nomatch) return m;
+ if (ofs + 2 > udp_len) return error_packet;
+ qtype = (int)read_be16(udp + ofs);
+ ofs += 4; /* skip be16 qtype & qclass */
+ if (question_type == -1) continue;
+ if (m == nomatch) continue;
+ if (qtype == 0xFF /* QTYPE_ANY */ || qtype == question_type) return match;
+ }
+ /* match answers */
+ if (question_type == -1) for (i = 0; i < num_answers; ++i) {
+ match_result_type m = apf_internal_match_single_name(needles, needle_bound, udp, udp_len, &ofs);
+ if (m < nomatch) return m;
+ ofs += 8; /* skip be16 type, class & be32 ttl */
+ if (ofs + 2 > udp_len) return error_packet;
+ ofs += 2 + read_be16(udp + ofs); /* skip be16 rdata length field, plus length bytes */
+ if (m == match) return match;
+ }
+ /* move needles pointer to the next needle. */
+ do {
+ u8 len = *needles++;
+ if (len == 0xFF) continue;
+ if (len > 63) return error_program;
+ needles += len;
+ if (needles >= needle_bound) return error_program;
+ } while (*needles);
+ needles++; /* skip the NULL byte at the end of *a* DNS name */
+ }
+}
+/* End include of apf_dns.h */
+/* Begin include of apf_checksum.h */
+/**
+ * Calculate big endian 16-bit sum of a buffer (max 128kB),
+ * then fold and negate it, producing a 16-bit result in [0..FFFE].
+ */
+FUNC(u16 apf_internal_calc_csum(u32 sum, const u8* const buf, const s32 len)) {
+ u16 csum;
+ s32 i;
+ for (i = 0; i < len; ++i) sum += buf[i] * ((i & 1) ? 1u : 256u);
+
+ sum = (sum & 0xFFFF) + (sum >> 16); /* max after this is 1FFFE */
+ csum = sum + (sum >> 16);
+ return ~csum; /* assuming sum > 0 on input, this is in [0..FFFE] */
+}
+
+static u16 fix_udp_csum(u16 csum) {
+ return csum ? csum : 0xFFFF;
+}
+
+/**
+ * Calculate and store packet checksums and return dscp.
+ *
+ * @param pkt - pointer to the very start of the to-be-transmitted packet,
+ * ie. the start of the ethernet header (if one is present)
+ * WARNING: at minimum 266 bytes of buffer pointed to by 'pkt' pointer
+ * *MUST* be writable.
+ * (IPv4 header checksum is a 2 byte value, 10 bytes after ip_ofs,
+ * which has a maximum value of 254. Thus 254[ip_ofs] + 10 + 2[u16] = 266)
+ *
+ * @param len - length of the packet (this may be < 266).
+ * @param ip_ofs - offset from beginning of pkt to IPv4 or IPv6 header:
+ * IP version detected based on top nibble of this byte,
+ * for IPv4 we will calculate and store IP header checksum,
+ * but only for the first 20 bytes of the header,
+ * prior to calling this the IPv4 header checksum field
+ * must be initialized to the partial checksum of the IPv4
+ * options (0 if none)
+ * 255 means there is no IP header (for example ARP)
+ * DSCP will be retrieved from this IP header (0 if none).
+ * @param partial_csum - additional value to include in L4 checksum
+ * @param csum_start - offset from beginning of pkt to begin L4 checksum
+ * calculation (until end of pkt specified by len)
+ * @param csum_ofs - offset from beginning of pkt to store L4 checksum
+ * 255 means do not calculate/store L4 checksum
+ * @param udp - True iff we should generate a UDP style L4 checksum (0 -> 0xFFFF)
+ *
+ * @return 6-bit DSCP value [0..63], garbage on parse error.
+ */
+FUNC(int apf_internal_csum_and_return_dscp(u8* const pkt, const s32 len, const u8 ip_ofs,
+ const u16 partial_csum, const u8 csum_start, const u8 csum_ofs, const Boolean udp)) {
+ if (csum_ofs < 255) {
+ /* note that apf_internal_calc_csum() treats negative lengths as zero */
+ u32 csum = apf_internal_calc_csum(partial_csum, pkt + csum_start, len - csum_start);
+ if (udp) csum = fix_udp_csum(csum);
+ store_be16(pkt + csum_ofs, csum);
+ }
+ if (ip_ofs < 255) {
+ u8 ip = pkt[ip_ofs] >> 4;
+ if (ip == 4) {
+ store_be16(pkt + ip_ofs + 10, apf_internal_calc_csum(0, pkt + ip_ofs, IPV4_HLEN));
+ return pkt[ip_ofs + 1] >> 2; /* DSCP */
+ } else if (ip == 6) {
+ return (read_be16(pkt + ip_ofs) >> 6) & 0x3F; /* DSCP */
+ }
+ }
+ return 0;
+}
+/* End include of apf_checksum.h */
+
+/* User hook for interpreter debug tracing. */
+#ifdef APF_TRACE_HOOK
+extern void APF_TRACE_HOOK(u32 pc, const u32* regs, const u8* program,
+ u32 program_len, const u8 *packet, u32 packet_len,
+ const u32* memory, u32 ram_len);
+#else
+#define APF_TRACE_HOOK(pc, regs, program, program_len, packet, packet_len, memory, memory_len) \
+ do { /* nop*/ \
+ } while (0)
+#endif
+
+/* Return code indicating "packet" should accepted. */
+#define PASS 1
+/* Return code indicating "packet" should be accepted (and something unexpected happened). */
+#define EXCEPTION 2
+/* Return code indicating "packet" should be dropped. */
+#define DROP 0
+/* Verify an internal condition and accept packet if it fails. */
+#define ASSERT_RETURN(c) if (!(c)) return EXCEPTION
+/* If "c" is of an unsigned type, generate a compile warning that gets promoted to an error. */
+/* This makes bounds checking simpler because ">= 0" can be avoided. Otherwise adding */
+/* superfluous ">= 0" with unsigned expressions generates compile warnings. */
+#define ENFORCE_UNSIGNED(c) ((c)==(u32)(c))
+
+u32 apf_version(void) {
+ return 20240401;
+}
+
+typedef struct {
+ /* Note: the following 4 fields take up exactly 8 bytes. */
+ u16 except_buf_sz; /* Length of the exception buffer (at program_len offset) */
+ u8 ptr_size; /* sizeof(void*) */
+ u8 v6; /* Set to 1 by first jmpdata (APFv6+) instruction */
+ u32 pc; /* Program counter. */
+ /* All the pointers should be next to each other for better struct packing. */
+ /* We are at offset 8, so even 64-bit pointers will not need extra padding. */
+ void *caller_ctx; /* Passed in to interpreter, passed through to alloc/transmit. */
+ u8* tx_buf; /* The output buffer pointer */
+ u8* program; /* Pointer to program/data buffer */
+ const u8* packet; /* Pointer to input packet buffer */
+ /* Order fields in order of decreasing size */
+ u32 tx_buf_len; /* The length of the output buffer */
+ u32 program_len; /* Length of the program */
+ u32 ram_len; /* Length of the entire apf program/data region */
+ u32 packet_len; /* Length of the input packet buffer */
+ u32 R[2]; /* Register values. */
+ memory_type mem; /* Memory slot values. (array of u32s) */
+ /* Note: any extra u16s go here, then u8s */
+} apf_context;
+
+FUNC(int apf_internal_do_transmit_buffer(apf_context* ctx, u32 pkt_len, u8 dscp)) {
+ int ret = apf_transmit_buffer(ctx->caller_ctx, ctx->tx_buf, pkt_len, dscp);
+ ctx->tx_buf = NULL;
+ ctx->tx_buf_len = 0;
+ return ret;
+}
+
+static int do_discard_buffer(apf_context* ctx) {
+ return apf_internal_do_transmit_buffer(ctx, 0 /* pkt_len */, 0 /* dscp */);
+}
+
+/* Decode an immediate, lengths [0..4] all work, does not do range checking. */
+/* But note that program is at least 20 bytes shorter than ram, so first few */
+/* immediates can always be safely decoded without exceeding ram buffer. */
+static u32 decode_imm(apf_context* ctx, u32 length) {
+ u32 i, v = 0;
+ for (i = 0; i < length; ++i) v = (v << 8) | ctx->program[ctx->pc++];
+ return v;
+}
+
+#define DECODE_U8() (ctx->program[ctx->pc++])
+
+static u16 decode_be16(apf_context* ctx) {
+ u16 v = ctx->program[ctx->pc++];
+ v <<= 8;
+ v |= ctx->program[ctx->pc++];
+ return v;
+}
+
+static int do_apf_run(apf_context* ctx) {
+/* Is offset within ram bounds? */
+#define IN_RAM_BOUNDS(p) (ENFORCE_UNSIGNED(p) && (p) < ctx->ram_len)
+/* Is offset within packet bounds? */
+#define IN_PACKET_BOUNDS(p) (ENFORCE_UNSIGNED(p) && (p) < ctx->packet_len)
+/* Is access to offset |p| length |size| within data bounds? */
+#define IN_DATA_BOUNDS(p, size) (ENFORCE_UNSIGNED(p) && \
+ ENFORCE_UNSIGNED(size) && \
+ (p) + (size) <= ctx->ram_len && \
+ (p) + (size) >= (p)) /* catch wraparounds */
+/* Accept packet if not within ram bounds */
+#define ASSERT_IN_RAM_BOUNDS(p) ASSERT_RETURN(IN_RAM_BOUNDS(p))
+/* Accept packet if not within packet bounds */
+#define ASSERT_IN_PACKET_BOUNDS(p) ASSERT_RETURN(IN_PACKET_BOUNDS(p))
+/* Accept packet if not within data bounds */
+#define ASSERT_IN_DATA_BOUNDS(p, size) ASSERT_RETURN(IN_DATA_BOUNDS(p, size))
+
+ /* Counters start at end of RAM and count *backwards* so this array takes negative integers. */
+ u32 *counter = (u32*)(ctx->program + ctx->ram_len);
+
+ /* Count of instructions remaining to execute. This is done to ensure an */
+ /* upper bound on execution time. It should never be hit and is only for */
+ /* safety. Initialize to the number of bytes in the program which is an */
+ /* upper bound on the number of instructions in the program. */
+ u32 instructions_remaining = ctx->program_len;
+
+ /* APFv6 requires at least 5 u32 counters at the end of ram, this makes counter[-5]++ valid */
+ /* This cannot wrap due to previous check, that enforced program_len & ram_len < 2GiB. */
+ if (ctx->program_len + 20 > ctx->ram_len) return EXCEPTION;
+
+ /* Only populate if packet long enough, and IP version is IPv4. */
+ /* Note: this doesn't actually check the ethertype... */
+ if ((ctx->packet_len >= ETH_HLEN + IPV4_HLEN) && ((ctx->packet[ETH_HLEN] & 0xf0) == 0x40)) {
+ ctx->mem.named.ipv4_header_size = (ctx->packet[ETH_HLEN] & 15) * 4;
+ }
+
+/* Is access to offset |p| length |size| within output buffer bounds? */
+#define IN_OUTPUT_BOUNDS(p, size) (ENFORCE_UNSIGNED(p) && \
+ ENFORCE_UNSIGNED(size) && \
+ (p) + (size) <= ctx->tx_buf_len && \
+ (p) + (size) >= (p))
+/* Accept packet if not write within allocated output buffer */
+#define ASSERT_IN_OUTPUT_BOUNDS(p, size) ASSERT_RETURN(IN_OUTPUT_BOUNDS(p, size))
+
+ do {
+ APF_TRACE_HOOK(ctx->pc, ctx->R, ctx->program, ctx->program_len,
+ ctx->packet, ctx->packet_len, ctx->mem.slot, ctx->ram_len);
+ if (ctx->pc == ctx->program_len + 1) return DROP;
+ if (ctx->pc == ctx->program_len) return PASS;
+ if (ctx->pc > ctx->program_len) return EXCEPTION;
+
+ { /* half indent to avoid needless line length... */
+
+ const u8 bytecode = ctx->program[ctx->pc++];
+ const u8 opcode = EXTRACT_OPCODE(bytecode);
+ const u8 reg_num = EXTRACT_REGISTER(bytecode);
+#define REG (ctx->R[reg_num])
+#define OTHER_REG (ctx->R[reg_num ^ 1])
+ /* All instructions have immediate fields, so load them now. */
+ const u8 len_field = EXTRACT_IMM_LENGTH(bytecode);
+ const u8 imm_len = ((len_field + 1u) >> 2) + len_field; /* 0,1,2,3 -> 0,1,2,4 */
+ u32 pktcopy_src_offset = 0; /* used for various pktdatacopy opcodes */
+ u32 imm = 0;
+ s32 signed_imm = 0;
+ u32 arith_imm;
+ s32 arith_signed_imm;
+ if (len_field != 0) {
+ imm = decode_imm(ctx, imm_len); /* 1st imm, at worst bytes 1-4 past opcode/program_len */
+ /* Sign extend imm into signed_imm. */
+ signed_imm = (s32)(imm << ((4 - imm_len) * 8));
+ signed_imm >>= (4 - imm_len) * 8;
+ }
+
+ /* See comment at ADD_OPCODE for the reason for ARITH_REG/arith_imm/arith_signed_imm. */
+#define ARITH_REG (ctx->R[reg_num & ctx->v6])
+ arith_imm = (ctx->v6) ? (len_field ? imm : OTHER_REG) : (reg_num ? ctx->R[1] : imm);
+ arith_signed_imm = (ctx->v6) ? (len_field ? signed_imm : (s32)OTHER_REG) : (reg_num ? (s32)ctx->R[1] : signed_imm);
+
+ switch (opcode) {
+ case PASSDROP_OPCODE: { /* APFv6+ */
+ if (len_field > 2) return EXCEPTION; /* max 64K counters (ie. imm < 64K) */
+ if (imm) {
+ if (4 * imm > ctx->ram_len) return EXCEPTION;
+ counter[-(s32)imm]++;
+ }
+ return reg_num ? DROP : PASS;
+ }
+ case LDB_OPCODE:
+ case LDH_OPCODE:
+ case LDW_OPCODE:
+ case LDBX_OPCODE:
+ case LDHX_OPCODE:
+ case LDWX_OPCODE: {
+ u32 load_size = 0;
+ u32 offs = imm;
+ /* Note: this can overflow and actually decrease offs. */
+ if (opcode >= LDBX_OPCODE) offs += ctx->R[1];
+ ASSERT_IN_PACKET_BOUNDS(offs);
+ switch (opcode) {
+ case LDB_OPCODE:
+ case LDBX_OPCODE:
+ load_size = 1;
+ break;
+ case LDH_OPCODE:
+ case LDHX_OPCODE:
+ load_size = 2;
+ break;
+ case LDW_OPCODE:
+ case LDWX_OPCODE:
+ load_size = 4;
+ break;
+ /* Immediately enclosing switch statement guarantees */
+ /* opcode cannot be any other value. */
+ }
+ {
+ const u32 end_offs = offs + (load_size - 1);
+ u32 val = 0;
+ /* Catch overflow/wrap-around. */
+ ASSERT_RETURN(end_offs >= offs);
+ ASSERT_IN_PACKET_BOUNDS(end_offs);
+ while (load_size--) val = (val << 8) | ctx->packet[offs++];
+ REG = val;
+ }
+ break;
+ }
+ case JMP_OPCODE:
+ if (reg_num && !ctx->v6) { /* APFv6+ */
+ /* First invocation of APFv6 jmpdata instruction */
+ counter[-1] = 0x12345678; /* endianness marker */
+ counter[-2]++; /* total packets ++ */
+ ctx->v6 = (u8)True;
+ }
+ /* This can jump backwards. Infinite looping prevented by instructions_remaining. */
+ ctx->pc += imm;
+ break;
+ case JEQ_OPCODE:
+ case JNE_OPCODE:
+ case JGT_OPCODE:
+ case JLT_OPCODE:
+ case JSET_OPCODE: {
+ u32 cmp_imm = 0;
+ /* Load second immediate field. */
+ if (reg_num == 1) {
+ cmp_imm = ctx->R[1];
+ } else {
+ cmp_imm = decode_imm(ctx, imm_len); /* 2nd imm, at worst 8 bytes past prog_len */
+ }
+ switch (opcode) {
+ case JEQ_OPCODE: if (ctx->R[0] == cmp_imm) ctx->pc += imm; break;
+ case JNE_OPCODE: if (ctx->R[0] != cmp_imm) ctx->pc += imm; break;
+ case JGT_OPCODE: if (ctx->R[0] > cmp_imm) ctx->pc += imm; break;
+ case JLT_OPCODE: if (ctx->R[0] < cmp_imm) ctx->pc += imm; break;
+ case JSET_OPCODE: if (ctx->R[0] & cmp_imm) ctx->pc += imm; break;
+ }
+ break;
+ }
+ case JBSMATCH_OPCODE: {
+ /* Load second immediate field. */
+ u32 cmp_imm = decode_imm(ctx, imm_len); /* 2nd imm, at worst 8 bytes past prog_len */
+ u32 cnt = (cmp_imm >> 11) + 1; /* 1+, up to 32 fits in u16 */
+ u32 len = cmp_imm & 2047; /* 0..2047 */
+ u32 bytes = cnt * len;
+ const u32 last_packet_offs = ctx->R[0] + len - 1;
+ Boolean matched = False;
+ /* bytes = cnt * len is size in bytes of data to compare. */
+ /* pc is offset of program bytes to compare. */
+ /* imm is jump target offset. */
+ /* R0 is offset of packet bytes to compare. */
+ if (bytes > 0xFFFF) return EXCEPTION;
+ /* pc < program_len < ram_len < 2GiB, thus pc + bytes cannot wrap */
+ if (!IN_RAM_BOUNDS(ctx->pc + bytes - 1)) return EXCEPTION;
+ ASSERT_IN_PACKET_BOUNDS(ctx->R[0]);
+ /* Note: this will return EXCEPTION (due to wrap) if imm_len (ie. len) is 0 */
+ ASSERT_RETURN(last_packet_offs >= ctx->R[0]);
+ ASSERT_IN_PACKET_BOUNDS(last_packet_offs);
+ while (cnt--) {
+ matched |= !memcmp(ctx->program + ctx->pc, ctx->packet + ctx->R[0], len);
+ /* skip past comparison bytes */
+ ctx->pc += len;
+ }
+ if (matched ^ !reg_num) ctx->pc += imm;
+ break;
+ }
+ /* There is a difference in APFv4 and APFv6 arithmetic behaviour! */
+ /* APFv4: R[0] op= Rbit ? R[1] : imm; (and it thus doesn't make sense to have R=1 && len_field>0) */
+ /* APFv6+: REG op= len_field ? imm : OTHER_REG; (note: this is *DIFFERENT* with R=1 len_field==0) */
+ /* Furthermore APFv4 uses unsigned imm (except SH), while APFv6 uses signed_imm for ADD/AND/SH. */
+ case ADD_OPCODE: ARITH_REG += (ctx->v6) ? (u32)arith_signed_imm : arith_imm; break;
+ case MUL_OPCODE: ARITH_REG *= arith_imm; break;
+ case AND_OPCODE: ARITH_REG &= (ctx->v6) ? (u32)arith_signed_imm : arith_imm; break;
+ case OR_OPCODE: ARITH_REG |= arith_imm; break;
+ case DIV_OPCODE: { /* see above comment! */
+ const u32 div_operand = arith_imm;
+ ASSERT_RETURN(div_operand);
+ ARITH_REG /= div_operand;
+ break;
+ }
+ case SH_OPCODE: { /* see above comment! */
+ if (arith_signed_imm >= 0)
+ ARITH_REG <<= arith_signed_imm;
+ else
+ ARITH_REG >>= -arith_signed_imm;
+ break;
+ }
+ case LI_OPCODE:
+ REG = (u32)signed_imm;
+ break;
+ case PKTDATACOPY_OPCODE:
+ pktcopy_src_offset = imm;
+ imm = PKTDATACOPYIMM_EXT_OPCODE;
+ FALLTHROUGH;
+ case EXT_OPCODE:
+ if (/* imm >= LDM_EXT_OPCODE && -- but note imm is u32 and LDM_EXT_OPCODE is 0 */
+ imm < (LDM_EXT_OPCODE + MEMORY_ITEMS)) {
+ REG = ctx->mem.slot[imm - LDM_EXT_OPCODE];
+ } else if (imm >= STM_EXT_OPCODE && imm < (STM_EXT_OPCODE + MEMORY_ITEMS)) {
+ ctx->mem.slot[imm - STM_EXT_OPCODE] = REG;
+ } else switch (imm) {
+ case NOT_EXT_OPCODE: REG = ~REG; break;
+ case NEG_EXT_OPCODE: REG = -REG; break;
+ case MOV_EXT_OPCODE: REG = OTHER_REG; break;
+ case SWAP_EXT_OPCODE: {
+ u32 tmp = REG;
+ REG = OTHER_REG;
+ OTHER_REG = tmp;
+ break;
+ }
+ case ALLOCATE_EXT_OPCODE:
+ ASSERT_RETURN(ctx->tx_buf == NULL);
+ if (reg_num == 0) {
+ ctx->tx_buf_len = REG;
+ } else {
+ ctx->tx_buf_len = decode_be16(ctx); /* 2nd imm, at worst 6 B past prog_len */
+ }
+ /* checksumming functions requires minimum 266 byte buffer for correctness */
+ if (ctx->tx_buf_len < 266) ctx->tx_buf_len = 266;
+ ctx->tx_buf = apf_allocate_buffer(ctx->caller_ctx, ctx->tx_buf_len);
+ if (!ctx->tx_buf) { /* allocate failure */
+ ctx->tx_buf_len = 0;
+ counter[-3]++;
+ return EXCEPTION;
+ }
+ memset(ctx->tx_buf, 0, ctx->tx_buf_len);
+ ctx->mem.named.tx_buf_offset = 0;
+ break;
+ case TRANSMIT_EXT_OPCODE: {
+ /* tx_buf_len cannot be large because we'd run out of RAM, */
+ /* so the above unsigned comparison effectively guarantees casting pkt_len */
+ /* to a signed value does not result in it going negative. */
+ u8 ip_ofs = DECODE_U8(); /* 2nd imm, at worst 5 B past prog_len */
+ u8 csum_ofs = DECODE_U8(); /* 3rd imm, at worst 6 B past prog_len */
+ u8 csum_start = 0;
+ u16 partial_csum = 0;
+ u32 pkt_len = ctx->mem.named.tx_buf_offset;
+ ASSERT_RETURN(ctx->tx_buf);
+ /* If pkt_len > allocate_buffer_len, it means sth. wrong */
+ /* happened and the tx_buf should be deallocated. */
+ if (pkt_len > ctx->tx_buf_len) {
+ do_discard_buffer(ctx);
+ return EXCEPTION;
+ }
+ if (csum_ofs < 255) {
+ csum_start = DECODE_U8(); /* 4th imm, at worst 7 B past prog_len */
+ partial_csum = decode_be16(ctx); /* 5th imm, at worst 9 B past prog_len */
+ }
+ {
+ int dscp = apf_internal_csum_and_return_dscp(ctx->tx_buf, (s32)pkt_len, ip_ofs,
+ partial_csum, csum_start, csum_ofs,
+ (Boolean)reg_num);
+ int ret = apf_internal_do_transmit_buffer(ctx, pkt_len, dscp);
+ if (ret) { counter[-4]++; return EXCEPTION; } /* transmit failure */
+ }
+ break;
+ }
+ case EPKTDATACOPYIMM_EXT_OPCODE: /* 41 */
+ case EPKTDATACOPYR1_EXT_OPCODE: /* 42 */
+ pktcopy_src_offset = ctx->R[0];
+ FALLTHROUGH;
+ case PKTDATACOPYIMM_EXT_OPCODE: { /* 65536 */
+ u32 dst_offs = ctx->mem.named.tx_buf_offset;
+ u32 copy_len = ctx->R[1];
+ if (imm != EPKTDATACOPYR1_EXT_OPCODE) {
+ copy_len = DECODE_U8(); /* 2nd imm, at worst 8 bytes past prog_len */
+ }
+ ASSERT_RETURN(ctx->tx_buf);
+ ASSERT_IN_OUTPUT_BOUNDS(dst_offs, copy_len);
+ if (reg_num == 0) { /* copy from packet */
+ const u32 last_packet_offs = pktcopy_src_offset + copy_len - 1;
+ ASSERT_IN_PACKET_BOUNDS(pktcopy_src_offset);
+ ASSERT_RETURN(last_packet_offs >= pktcopy_src_offset);
+ ASSERT_IN_PACKET_BOUNDS(last_packet_offs);
+ memcpy(ctx->tx_buf + dst_offs, ctx->packet + pktcopy_src_offset, copy_len);
+ } else { /* copy from data */
+ ASSERT_IN_RAM_BOUNDS(pktcopy_src_offset + copy_len - 1);
+ memcpy(ctx->tx_buf + dst_offs, ctx->program + pktcopy_src_offset, copy_len);
+ }
+ dst_offs += copy_len;
+ ctx->mem.named.tx_buf_offset = dst_offs;
+ break;
+ }
+ case JDNSQMATCH_EXT_OPCODE: /* 43 */
+ case JDNSAMATCH_EXT_OPCODE: /* 44 */
+ case JDNSQMATCHSAFE_EXT_OPCODE: /* 45 */
+ case JDNSAMATCHSAFE_EXT_OPCODE: { /* 46 */
+ u32 jump_offs = decode_imm(ctx, imm_len); /* 2nd imm, at worst 8 B past prog_len */
+ int qtype = -1;
+ if (imm & 1) { /* JDNSQMATCH & JDNSQMATCHSAFE are *odd* extended opcodes */
+ qtype = DECODE_U8(); /* 3rd imm, at worst 9 bytes past prog_len */
+ }
+ {
+ u32 udp_payload_offset = ctx->R[0];
+ match_result_type match_rst = apf_internal_match_names(ctx->program + ctx->pc,
+ ctx->program + ctx->program_len,
+ ctx->packet + udp_payload_offset,
+ ctx->packet_len - udp_payload_offset,
+ qtype);
+ if (match_rst == error_program) return EXCEPTION;
+ if (match_rst == error_packet) {
+ counter[-5]++; /* increment error dns packet counter */
+ return (imm >= JDNSQMATCHSAFE_EXT_OPCODE) ? PASS : DROP;
+ }
+ while (ctx->pc + 1 < ctx->program_len &&
+ (ctx->program[ctx->pc] || ctx->program[ctx->pc + 1])) {
+ ctx->pc++;
+ }
+ ctx->pc += 2; /* skip the final double 0 needle end */
+ /* relies on reg_num in {0,1} and match_rst being {False=0, True=1} */
+ if (!(reg_num ^ (u32)match_rst)) ctx->pc += jump_offs;
+ }
+ break;
+ }
+ case EWRITE1_EXT_OPCODE:
+ case EWRITE2_EXT_OPCODE:
+ case EWRITE4_EXT_OPCODE: {
+ const u32 write_len = 1 << (imm - EWRITE1_EXT_OPCODE);
+ u32 i;
+ ASSERT_RETURN(ctx->tx_buf);
+ ASSERT_IN_OUTPUT_BOUNDS(ctx->mem.named.tx_buf_offset, write_len);
+ for (i = 0; i < write_len; ++i) {
+ ctx->tx_buf[ctx->mem.named.tx_buf_offset++] =
+ (u8)(REG >> (write_len - 1 - i) * 8);
+ }
+ break;
+ }
+ case JONEOF_EXT_OPCODE: {
+ u32 jump_offs = decode_imm(ctx, imm_len); /* 2nd imm, at worst 8 B past prog_len */
+ u8 imm3 = DECODE_U8(); /* 3rd imm, at worst 9 bytes past prog_len */
+ Boolean jmp = imm3 & 1; /* =0 jmp on match, =1 jmp on no match */
+ u8 len = ((imm3 >> 1) & 3) + 1; /* size [1..4] in bytes of an element */
+ u8 cnt = (imm3 >> 3) + 2; /* number [2..33] of elements in set */
+ if (ctx->pc + cnt * len > ctx->program_len) return EXCEPTION;
+ while (cnt--) {
+ u32 v = 0;
+ int i;
+ for (i = 0; i < len; ++i) v = (v << 8) | DECODE_U8();
+ if (REG == v) jmp ^= True;
+ }
+ if (jmp) ctx->pc += jump_offs;
+ break;
+ }
+ case EXCEPTIONBUFFER_EXT_OPCODE: {
+ ctx->except_buf_sz = decode_be16(ctx);
+ break;
+ }
+ default: /* Unknown extended opcode */
+ return EXCEPTION; /* Bail out */
+ }
+ break;
+ case LDDW_OPCODE:
+ case STDW_OPCODE:
+ if (ctx->v6) {
+ if (!imm) return EXCEPTION;
+ if (imm > 0xFFFF) return EXCEPTION;
+ if (imm * 4 > ctx->ram_len) return EXCEPTION;
+ if (opcode == LDDW_OPCODE) {
+ REG = counter[-(s32)imm];
+ } else {
+ counter[-(s32)imm] = REG;
+ }
+ } else {
+ u32 size = 4;
+ u32 offs = OTHER_REG + (u32)signed_imm;
+ /* Negative offsets wrap around the end of the address space. */
+ /* This allows us to efficiently access the end of the */
+ /* address space with one-byte immediates without using %=. */
+ if (offs & 0x80000000) offs += ctx->ram_len; /* unsigned overflow intended */
+ ASSERT_IN_DATA_BOUNDS(offs, size);
+ if (opcode == LDDW_OPCODE) {
+ u32 val = 0;
+ while (size--) val = (val << 8) | ctx->program[offs++];
+ REG = val;
+ } else {
+ u32 val = REG;
+ while (size--) {
+ ctx->program[offs++] = (val >> 24);
+ val <<= 8;
+ }
+ }
+ }
+ break;
+ case WRITE_OPCODE: {
+ ASSERT_RETURN(ctx->tx_buf);
+ ASSERT_RETURN(len_field);
+ {
+ const u32 write_len = 1 << (len_field - 1);
+ u32 i;
+ ASSERT_IN_OUTPUT_BOUNDS(ctx->mem.named.tx_buf_offset, write_len);
+ for (i = 0; i < write_len; ++i) {
+ ctx->tx_buf[ctx->mem.named.tx_buf_offset++] =
+ (u8)(imm >> (write_len - 1 - i) * 8);
+ }
+ }
+ break;
+ }
+ default: /* Unknown opcode */
+ return EXCEPTION; /* Bail out */
+ }
+ }
+ } while (instructions_remaining--);
+ return EXCEPTION;
+}
+
+static int apf_runner(void* ctx, u32* const program, const u32 program_len,
+ const u32 ram_len, const u8* const packet,
+ const u32 packet_len, const u32 filter_age_16384ths) {
+ /* Due to direct 32-bit read/write access to counters at end of ram */
+ /* APFv6 interpreter requires program & ram_len to be 4 byte aligned. */
+ if (3 & (uintptr_t)program) return EXCEPTION;
+ if (3 & ram_len) return EXCEPTION;
+
+ /* We rely on ram_len + 65536 not overflowing, so require ram_len < 2GiB */
+ /* Similarly LDDW/STDW have special meaning for negative ram offsets. */
+ /* We also don't want garbage like program_len == 0xFFFFFFFF */
+ if ((program_len | ram_len) >> 31) return EXCEPTION;
+
+ {
+ apf_context apf_ctx = { 0 };
+ int ret;
+
+ apf_ctx.ptr_size = sizeof(void*);
+ apf_ctx.caller_ctx = ctx;
+ apf_ctx.program = (u8*)program;
+ apf_ctx.program_len = program_len;
+ apf_ctx.ram_len = ram_len;
+ apf_ctx.packet = packet;
+ apf_ctx.packet_len = packet_len;
+ /* Fill in pre-filled memory slot values. */
+ apf_ctx.mem.named.program_size = program_len;
+ apf_ctx.mem.named.ram_len = ram_len;
+ apf_ctx.mem.named.packet_size = packet_len;
+ apf_ctx.mem.named.apf_version = apf_version();
+ apf_ctx.mem.named.filter_age = filter_age_16384ths >> 14;
+ apf_ctx.mem.named.filter_age_16384ths = filter_age_16384ths;
+
+ ret = do_apf_run(&apf_ctx);
+ if (apf_ctx.tx_buf) do_discard_buffer(&apf_ctx);
+ /* Convert any exceptions internal to the program to just normal 'PASS' */
+ if (ret >= EXCEPTION) {
+ u16 buf_size = apf_ctx.except_buf_sz;
+ if (buf_size >= sizeof(apf_ctx) && apf_ctx.program_len + buf_size <= apf_ctx.ram_len) {
+ u8* buf = apf_ctx.program + apf_ctx.program_len;
+ memcpy(buf, &apf_ctx, sizeof(apf_ctx));
+ buf_size -= sizeof(apf_ctx);
+ buf += sizeof(apf_ctx);
+ if (buf_size > apf_ctx.packet_len) buf_size = apf_ctx.packet_len;
+ memcpy(buf, apf_ctx.packet, buf_size);
+ }
+ ret = PASS;
+ }
+ return ret;
+ }
+}
+
+int apf_run(void* ctx, u32* const program, const u32 program_len,
+ const u32 ram_len, const u8* const packet,
+ const u32 packet_len, const u32 filter_age_16384ths) {
+ /* Any valid ethernet packet should be at least ETH_HLEN long... */
+ if (!packet) return EXCEPTION;
+ if (packet_len < ETH_HLEN) return EXCEPTION;
+
+ return apf_runner(ctx, program, program_len, ram_len, packet, packet_len, filter_age_16384ths);
+}
diff --git a/v6/apf_interpreter.h b/v6/apf_interpreter.h
index ef7a6b8..10821bf 100644
--- a/v6/apf_interpreter.h
+++ b/v6/apf_interpreter.h
@@ -1,2 +1,175 @@
-APFv6 is not yet finalized.
-There is a beta version available at v5/
+/*
+ * Copyright 2024, The Android Open Source Project
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#ifndef APF_INTERPRETER_V5_H_
+#define APF_INTERPRETER_V5_H_
+
+#include <stdint.h>
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+/**
+ * Returns the max version of the APF instruction set supported by apf_run().
+ * APFv6 is a superset of APFv4. APFv6 interpreters are able to run APFv4 code.
+ */
+uint32_t apf_version(void);
+
+/**
+ * Allocates a buffer for the APF program to build a reply packet.
+ *
+ * Unless in a critical low memory state, the firmware must allow allocating at
+ * least one 1514 byte buffer for every call to apf_run(). The interpreter will
+ * have at most one active allocation at any given time, and will always either
+ * transmit or deallocate the buffer before apf_run() returns.
+ *
+ * It is OK if the firmware decides to limit allocations to at most one per
+ * apf_run() invocation. This allows the firmware to delay transmitting
+ * the buffer until after apf_run() has returned (by keeping track of whether
+ * a buffer was allocated/deallocated/scheduled for transmit) and may
+ * allow the use of a single statically allocated 1514+ byte buffer.
+ *
+ * The firmware MAY choose to allocate a larger buffer than requested, and
+ * give the apf_interpreter a pointer to the middle of the buffer. This will
+ * allow firmware to later (during or after apf_transmit_buffer call) populate
+ * any required headers, trailers, etc.
+ *
+ * @param ctx - unmodified ctx pointer passed into apf_run().
+ * @param size - the minimum size of buffer to allocate
+ * @return the pointer to the allocated region. The function can return NULL to
+ * indicate allocation failure, for example if too many buffers are
+ * pending transmit. Returning NULL will most likely result in
+ * apf_run() returning PASS.
+ */
+uint8_t* apf_allocate_buffer(void* ctx, uint32_t size);
+
+/**
+ * Transmits the allocated buffer and deallocates it.
+ *
+ * The apf_interpreter will not read/write from/to the buffer once it calls
+ * this function.
+ *
+ * The content of the buffer between [ptr, ptr + len) are the bytes to be
+ * transmitted, starting from the ethernet header and not including any
+ * ethernet CRC bytes at the end.
+ *
+ * The firmware is expected to make its best effort to transmit. If it
+ * exhausts retries, or if there is no channel for too long and the transmit
+ * queue is full, then it is OK for the packet to be dropped. The firmware should
+ * prefer to fail allocation if it can predict transmit will fail.
+ *
+ * apf_transmit_buffer() may be asynchronous, which means the actual packet
+ * transmission can happen sometime after the function returns.
+ *
+ * @param ctx - unmodified ctx pointer passed into apf_run().
+ * @param ptr - pointer to the transmit buffer, must have been previously
+ * returned by apf_allocate_buffer() and not deallocated.
+ * @param len - the number of bytes to be transmitted (possibly less than
+ * the allocated buffer), 0 means don't transmit the buffer
+ * but only deallocate it.
+ * @param dscp - value in [0..63] - the upper 6 bits of the TOS field in
+ * the IPv4 header or traffic class field in the IPv6 header.
+ * @return non-zero if the firmware *knows* the transmit will fail, zero if
+ * the transmit succeeded or the firmware thinks it will succeed.
+ * Returning an error will likely result in apf_run() returning PASS.
+ */
+int apf_transmit_buffer(void* ctx, uint8_t* ptr, uint32_t len, uint8_t dscp);
+
+/**
+ * Runs an APF program over a packet.
+ *
+ * The return value of apf_run indicates whether the packet should
+ * be passed or dropped. As a part of apf_run() execution, the APF
+ * program can call apf_allocate_buffer()/apf_transmit_buffer() to construct
+ * a reply packet and transmit it.
+ *
+ * The text section containing the program instructions starts at address
+ * program and stops at + program_len - 1, and the writable data section
+ * begins at program + program_len and ends at program + ram_len - 1,
+ * as described in the following diagram:
+ *
+ * program program + program_len program + ram_len
+ * | text section | data section |
+ * +--------------------+------------------------+
+ *
+ * @param ctx - pointer to any additional context required for allocation and transmit.
+ * May be NULL if no such context is required. This is opaque to
+ * the interpreter and will be passed through unmodified
+ * to apf_allocate_buffer() and apf_transmit_buffer() calls.
+ * @param program - the program bytecode, followed by the writable data region.
+ * Note: this *MUST* be a 4 byte aligned region.
+ * @param program_len - the length in bytes of the read-only portion of the APF
+ * buffer pointed to by {@code program}.
+ * This is determined by the size of the loaded APF program.
+ * @param ram_len - total length of the APF buffer pointed to by
+ * {@code program}, including the read-only bytecode
+ * portion and the read-write data portion.
+ * This is expected to be a constant which doesn't change
+ * value even when a new APF program is loaded.
+ * Note: this *MUST* be a multiple of 4.
+ * @param packet - the packet bytes, starting from the ethernet header.
+ * @param packet_len - the length of {@code packet} in bytes, not
+ * including trailers/CRC.
+ * @param filter_age_16384ths - the number of 1/16384 seconds since the filter
+ * was programmed.
+ *
+ * @return zero if packet should be dropped,
+ * non-zero if packet should be passed, specifically:
+ * - 1 on normal apf program execution,
+ * - 2 on exceptional circumstances (caused by bad firmware integration),
+ * these include:
+ * - program pointer which is not aligned to 4 bytes
+ * - ram_len which is not a multiple of 4 bytes
+ * - excessively large (>= 2GiB) program_len or ram_len
+ * - packet pointer which is a null pointer
+ * - packet_len shorter than ETH_HLEN (14)
+ * As such, you may want to log a firmware exception if 2 is ever returned...
+ *
+ *
+ * NOTE: How to calculate filter_age_16384ths:
+ *
+ * - if you have a u64 clock source counting nanoseconds:
+ * u64 nanoseconds = current_nanosecond_time_u64() - filter_installation_nanosecond_time_u64;
+ * u32 filter_age_16384ths = (u32)((nanoseconds << 5) / 1953125);
+ *
+ * - if you have a u64 clock source counting microseconds:
+ * u64 microseconds = current_microsecond_time_u64() - filter_installation_microsecond_time_u64;
+ * u32 filter_age_16384ths = (u32)((microseconds << 8) / 15625);
+ *
+ * - if you have a u64 clock source counting milliseconds:
+ * u64 milliseconds = current_millisecond_time_u64() - filter_installation_millisecond_time_u64;
+ * u32 filter_age_16384ths = (u32)((milliseconds << 11) / 125);
+ *
+ * - if you have a u32 clock source counting milliseconds and cannot use 64-bit arithmetic:
+ * u32 milliseconds = current_millisecond_time_u32() - filter_installation_millisecond_time_u32;
+ * u32 filter_age_16384ths = ((((((milliseconds << 4) / 5) << 2) / 5) << 2) / 5) << 3;
+ * or the less precise:
+ * u32 filter_age_16384ths = ((milliseconds << 4) / 125) << 7;
+ *
+ * - if you have a u32 clock source counting seconds:
+ * u32 seconds = current_second_time_u32() - filter_installation_second_time_u32;
+ * u32 filter_age_16384ths = seconds << 14;
+ */
+int apf_run(void* ctx, uint32_t* const program, const uint32_t program_len,
+ const uint32_t ram_len, const uint8_t* const packet,
+ const uint32_t packet_len, const uint32_t filter_age_16384ths);
+
+#ifdef __cplusplus
+}
+#endif
+
+#endif /* APF_INTERPRETER_V5_H_ */