summaryrefslogtreecommitdiff
path: root/apf_interpreter.c
blob: c04a6e56351c32c72c19beb9198df4cefd74244d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
/*
 * Copyright 2018, The Android Open Source Project
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#include "apf_interpreter.h"

#include <string.h> // For memcmp

#include "apf.h"

// User hook for interpreter debug tracing.
#ifdef APF_TRACE_HOOK
extern void APF_TRACE_HOOK(uint32_t pc, const uint32_t* regs, const uint8_t* program,
                           uint32_t program_len, const uint8_t *packet, uint32_t packet_len,
                           const uint32_t* memory, uint32_t ram_len);
#else
#define APF_TRACE_HOOK(pc, regs, program, program_len, packet, packet_len, memory, memory_len) \
    do { /* nop*/                                                                              \
    } while (0)
#endif

// Return code indicating "packet" should accepted.
#define PASS_PACKET 1
// Return code indicating "packet" should be dropped.
#define DROP_PACKET 0
// Verify an internal condition and accept packet if it fails.
#define ASSERT_RETURN(c) if (!(c)) return PASS_PACKET
// If "c" is of an unsigned type, generate a compile warning that gets promoted to an error.
// This makes bounds checking simpler because ">= 0" can be avoided. Otherwise adding
// superfluous ">= 0" with unsigned expressions generates compile warnings.
#define ENFORCE_UNSIGNED(c) ((c)==(uint32_t)(c))

int accept_packet(uint8_t* program, uint32_t program_len, uint32_t ram_len,
                  const uint8_t* packet, uint32_t packet_len,
                  uint32_t filter_age) {
// Is offset within program bounds?
#define IN_PROGRAM_BOUNDS(p) (ENFORCE_UNSIGNED(p) && (p) < program_len)
// Is offset within packet bounds?
#define IN_PACKET_BOUNDS(p) (ENFORCE_UNSIGNED(p) && (p) < packet_len)
// Is access to offset |p| length |size| within data bounds?
#define IN_DATA_BOUNDS(p, size) (ENFORCE_UNSIGNED(p) && \
                                 ENFORCE_UNSIGNED(size) && \
                                 (p) + (size) <= ram_len && \
                                 (p) >= program_len && \
                                 (p) + (size) >= (p))  // catch wraparounds
// Accept packet if not within program bounds
#define ASSERT_IN_PROGRAM_BOUNDS(p) ASSERT_RETURN(IN_PROGRAM_BOUNDS(p))
// Accept packet if not within packet bounds
#define ASSERT_IN_PACKET_BOUNDS(p) ASSERT_RETURN(IN_PACKET_BOUNDS(p))
// Accept packet if not within data bounds
#define ASSERT_IN_DATA_BOUNDS(p, size) ASSERT_RETURN(IN_DATA_BOUNDS(p, size))

  // Program counter.
  uint32_t pc = 0;
// Accept packet if not within program or not ahead of program counter
#define ASSERT_FORWARD_IN_PROGRAM(p) ASSERT_RETURN(IN_PROGRAM_BOUNDS(p) && (p) >= pc)
  // Memory slot values.
  uint32_t memory[MEMORY_ITEMS] = {};
  // Fill in pre-filled memory slot values.
  memory[MEMORY_OFFSET_PROGRAM_SIZE] = program_len;
  memory[MEMORY_OFFSET_DATA_SIZE] = ram_len;
  memory[MEMORY_OFFSET_PACKET_SIZE] = packet_len;
  memory[MEMORY_OFFSET_FILTER_AGE] = filter_age;
  ASSERT_IN_PACKET_BOUNDS(APF_FRAME_HEADER_SIZE);
  // Only populate if IP version is IPv4.
  if ((packet[APF_FRAME_HEADER_SIZE] & 0xf0) == 0x40) {
      memory[MEMORY_OFFSET_IPV4_HEADER_SIZE] = (packet[APF_FRAME_HEADER_SIZE] & 15) * 4;
  }
  // Register values.
  uint32_t registers[2] = {};
  // Count of instructions remaining to execute. This is done to ensure an
  // upper bound on execution time. It should never be hit and is only for
  // safety. Initialize to the number of bytes in the program which is an
  // upper bound on the number of instructions in the program.
  uint32_t instructions_remaining = program_len;

  do {
      APF_TRACE_HOOK(pc, registers, program, program_len, packet, packet_len, memory, ram_len);
      if (pc == program_len) {
          return PASS_PACKET;
      } else if (pc == (program_len + 1)) {
          return DROP_PACKET;
      }
      ASSERT_IN_PROGRAM_BOUNDS(pc);
      const uint8_t bytecode = program[pc++];
      const uint32_t opcode = EXTRACT_OPCODE(bytecode);
      const uint32_t reg_num = EXTRACT_REGISTER(bytecode);
#define REG (registers[reg_num])
#define OTHER_REG (registers[reg_num ^ 1])
      // All instructions have immediate fields, so load them now.
      const uint32_t len_field = EXTRACT_IMM_LENGTH(bytecode);
      uint32_t imm = 0;
      int32_t signed_imm = 0;
      if (len_field != 0) {
          const uint32_t imm_len = 1 << (len_field - 1);
          ASSERT_FORWARD_IN_PROGRAM(pc + imm_len - 1);
          uint32_t i;
          for (i = 0; i < imm_len; i++)
              imm = (imm << 8) | program[pc++];
          // Sign extend imm into signed_imm.
          signed_imm = imm << ((4 - imm_len) * 8);
          signed_imm >>= (4 - imm_len) * 8;
      }

      switch (opcode) {
          case LDB_OPCODE:
          case LDH_OPCODE:
          case LDW_OPCODE:
          case LDBX_OPCODE:
          case LDHX_OPCODE:
          case LDWX_OPCODE: {
              uint32_t offs = imm;
              if (opcode >= LDBX_OPCODE) {
                  // Note: this can overflow and actually decrease offs.
                  offs += registers[1];
              }
              ASSERT_IN_PACKET_BOUNDS(offs);
              uint32_t load_size;
              switch (opcode) {
                  case LDB_OPCODE:
                  case LDBX_OPCODE:
                    load_size = 1;
                    break;
                  case LDH_OPCODE:
                  case LDHX_OPCODE:
                    load_size = 2;
                    break;
                  case LDW_OPCODE:
                  case LDWX_OPCODE:
                    load_size = 4;
                    break;
                  // Immediately enclosing switch statement guarantees
                  // opcode cannot be any other value.
              }
              const uint32_t end_offs = offs + (load_size - 1);
              // Catch overflow/wrap-around.
              ASSERT_RETURN(end_offs >= offs);
              ASSERT_IN_PACKET_BOUNDS(end_offs);
              uint32_t val = 0;
              while (load_size--)
                  val = (val << 8) | packet[offs++];
              REG = val;
              break;
          }
          case JMP_OPCODE:
              // This can jump backwards. Infinite looping prevented by instructions_remaining.
              pc += imm;
              break;
          case JEQ_OPCODE:
          case JNE_OPCODE:
          case JGT_OPCODE:
          case JLT_OPCODE:
          case JSET_OPCODE:
          case JNEBS_OPCODE: {
              // Load second immediate field.
              uint32_t cmp_imm = 0;
              if (reg_num == 1) {
                  cmp_imm = registers[1];
              } else if (len_field != 0) {
                  uint32_t cmp_imm_len = 1 << (len_field - 1);
                  ASSERT_FORWARD_IN_PROGRAM(pc + cmp_imm_len - 1);
                  uint32_t i;
                  for (i = 0; i < cmp_imm_len; i++)
                      cmp_imm = (cmp_imm << 8) | program[pc++];
              }
              switch (opcode) {
                  case JEQ_OPCODE:
                      if (registers[0] == cmp_imm)
                          pc += imm;
                      break;
                  case JNE_OPCODE:
                      if (registers[0] != cmp_imm)
                          pc += imm;
                      break;
                  case JGT_OPCODE:
                      if (registers[0] > cmp_imm)
                          pc += imm;
                      break;
                  case JLT_OPCODE:
                      if (registers[0] < cmp_imm)
                          pc += imm;
                      break;
                  case JSET_OPCODE:
                      if (registers[0] & cmp_imm)
                          pc += imm;
                      break;
                  case JNEBS_OPCODE: {
                      // cmp_imm is size in bytes of data to compare.
                      // pc is offset of program bytes to compare.
                      // imm is jump target offset.
                      // REG is offset of packet bytes to compare.
                      ASSERT_FORWARD_IN_PROGRAM(pc + cmp_imm - 1);
                      ASSERT_IN_PACKET_BOUNDS(REG);
                      const uint32_t last_packet_offs = REG + cmp_imm - 1;
                      ASSERT_RETURN(last_packet_offs >= REG);
                      ASSERT_IN_PACKET_BOUNDS(last_packet_offs);
                      if (memcmp(program + pc, packet + REG, cmp_imm))
                          pc += imm;
                      // skip past comparison bytes
                      pc += cmp_imm;
                      break;
                  }
              }
              break;
          }
          case ADD_OPCODE:
              registers[0] += reg_num ? registers[1] : imm;
              break;
          case MUL_OPCODE:
              registers[0] *= reg_num ? registers[1] : imm;
              break;
          case DIV_OPCODE: {
              const uint32_t div_operand = reg_num ? registers[1] : imm;
              ASSERT_RETURN(div_operand);
              registers[0] /= div_operand;
              break;
          }
          case AND_OPCODE:
              registers[0] &= reg_num ? registers[1] : imm;
              break;
          case OR_OPCODE:
              registers[0] |= reg_num ? registers[1] : imm;
              break;
          case SH_OPCODE: {
              const int32_t shift_val = reg_num ? (int32_t)registers[1] : signed_imm;
              if (shift_val > 0)
                  registers[0] <<= shift_val;
              else
                  registers[0] >>= -shift_val;
              break;
          }
          case LI_OPCODE:
              REG = signed_imm;
              break;
          case EXT_OPCODE:
              if (
// If LDM_EXT_OPCODE is 0 and imm is compared with it, a compiler error will result,
// instead just enforce that imm is unsigned (so it's always greater or equal to 0).
#if LDM_EXT_OPCODE == 0
                  ENFORCE_UNSIGNED(imm) &&
#else
                  imm >= LDM_EXT_OPCODE &&
#endif
                  imm < (LDM_EXT_OPCODE + MEMORY_ITEMS)) {
                REG = memory[imm - LDM_EXT_OPCODE];
              } else if (imm >= STM_EXT_OPCODE && imm < (STM_EXT_OPCODE + MEMORY_ITEMS)) {
                memory[imm - STM_EXT_OPCODE] = REG;
              } else switch (imm) {
                  case NOT_EXT_OPCODE:
                    REG = ~REG;
                    break;
                  case NEG_EXT_OPCODE:
                    REG = -REG;
                    break;
                  case SWAP_EXT_OPCODE: {
                    uint32_t tmp = REG;
                    REG = OTHER_REG;
                    OTHER_REG = tmp;
                    break;
                  }
                  case MOV_EXT_OPCODE:
                    REG = OTHER_REG;
                    break;
                  // Unknown extended opcode
                  default:
                    // Bail out
                    return PASS_PACKET;
              }
              break;
          case LDDW_OPCODE: {
              uint32_t offs = OTHER_REG + signed_imm;
              uint32_t size = 4;
              uint32_t val = 0;
              // Negative offsets wrap around the end of the address space.
              // This allows us to efficiently access the end of the
              // address space with one-byte immediates without using %=.
              if (offs & 0x80000000) {
                  offs = ram_len + offs;  // unsigned overflow intended
              }
              ASSERT_IN_DATA_BOUNDS(offs, size);
              while (size--)
                  val = (val << 8) | program[offs++];
              REG = val;
              break;
          }
          case STDW_OPCODE: {
              uint32_t offs = OTHER_REG + signed_imm;
              uint32_t size = 4;
              uint32_t val = REG;
              // Negative offsets wrap around the end of the address space.
              // This allows us to efficiently access the end of the
              // address space with one-byte immediates without using %=.
              if (offs & 0x80000000) {
                  offs = ram_len + offs;  // unsigned overflow intended
              }
              ASSERT_IN_DATA_BOUNDS(offs, size);
              while (size--) {
                  program[offs++] = (val >> 24);
                  val <<= 8;
              }
              break;
          }
          // Unknown opcode
          default:
              // Bail out
              return PASS_PACKET;
      }
  } while (instructions_remaining--);
  return PASS_PACKET;
}