summaryrefslogtreecommitdiff
path: root/v5/apf_interpreter_source.c
blob: f48a15b4b897e538c6df02a028a2bd8add31d9c8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
/*
 * Copyright 2024, The Android Open Source Project
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#include "apf_interpreter.h"

#include <string.h>  // For memcmp, memcpy, memset

#if __GNUC__ >= 7 || __clang__
#define FALLTHROUGH __attribute__((fallthrough))
#else
#define FALLTHROUGH
#endif

#undef bool
#undef true
#undef false
typedef enum { False, True } Boolean;
#define bool Boolean
#define true True
#define false False

#include "apf_defs.h"
#include "apf.h"
#include "apf_utils.h"
#include "apf_dns.h"
#include "apf_checksum.h"

// User hook for interpreter debug tracing.
#ifdef APF_TRACE_HOOK
extern void APF_TRACE_HOOK(u32 pc, const u32* regs, const u8* program,
                           u32 program_len, const u8 *packet, u32 packet_len,
                           const u32* memory, u32 ram_len);
#else
#define APF_TRACE_HOOK(pc, regs, program, program_len, packet, packet_len, memory, memory_len) \
    do { /* nop*/                                                                              \
    } while (0)
#endif

// Return code indicating "packet" should accepted.
#define PASS_PACKET 1
// Return code indicating "packet" should be dropped.
#define DROP_PACKET 0
// Verify an internal condition and accept packet if it fails.
#define ASSERT_RETURN(c) if (!(c)) return PASS_PACKET
// If "c" is of an unsigned type, generate a compile warning that gets promoted to an error.
// This makes bounds checking simpler because ">= 0" can be avoided. Otherwise adding
// superfluous ">= 0" with unsigned expressions generates compile warnings.
#define ENFORCE_UNSIGNED(c) ((c)==(u32)(c))

u32 apf_version(void) {
    return 20240312;
}

typedef struct {
    void *caller_ctx;  // Passed in to interpreter, passed through to alloc/transmit.
    u8* tx_buf;        // The output buffer pointer
    u32 tx_buf_len;    // The length of the output buffer
    u8* program;       // Pointer to program/data buffer
    u32 program_len;   // Length of the program
    u32 ram_len;       // Length of the entire apf program/data region
    const u8* packet;  // Pointer to input packet buffer
    u32 packet_len;    // Length of the input packet buffer
//  u8 err_code;       //
    u8 v6;             // Set to 1 by first jmpdata (APFv6+) instruction
    u32 pc;            // Program counter.
    u32 R[2];          // Register values.
    memory_type mem;   // Memory slot values.
} apf_context;

FUNC(int do_transmit_buffer(apf_context* ctx, u32 pkt_len, u8 dscp)) {
    int ret = apf_transmit_buffer(ctx->caller_ctx, ctx->tx_buf, pkt_len, dscp);
    ctx->tx_buf = NULL;
    ctx->tx_buf_len = 0;
    return ret;
}

static int do_discard_buffer(apf_context* ctx) {
    return do_transmit_buffer(ctx, 0 /* pkt_len */, 0 /* dscp */);
}

// Decode the imm length, does not do range checking.
// But note that program is at least 20 bytes shorter than ram, so first few
// immediates can always be safely decoded without exceeding ram buffer.
static u32 decode_imm(apf_context* ctx, u32 length) {
    u32 i, v = 0;
    for (i = 0; i < length; ++i) v = (v << 8) | ctx->program[ctx->pc++];
    return v;
}

#define DECODE_U8() (ctx->program[ctx->pc++])

static u16 decode_be16(apf_context* ctx) {
    u16 v = ctx->program[ctx->pc++];
    v <<= 8;
    v |= ctx->program[ctx->pc++];
    return v;
}

static int do_apf_run(apf_context* ctx) {
// Is offset within ram bounds?
#define IN_RAM_BOUNDS(p) (ENFORCE_UNSIGNED(p) && (p) < ctx->ram_len)
// Is offset within packet bounds?
#define IN_PACKET_BOUNDS(p) (ENFORCE_UNSIGNED(p) && (p) < ctx->packet_len)
// Is access to offset |p| length |size| within data bounds?
#define IN_DATA_BOUNDS(p, size) (ENFORCE_UNSIGNED(p) && \
                                 ENFORCE_UNSIGNED(size) && \
                                 (p) + (size) <= ctx->ram_len && \
                                 (p) + (size) >= (p))  // catch wraparounds
// Accept packet if not within ram bounds
#define ASSERT_IN_RAM_BOUNDS(p) ASSERT_RETURN(IN_RAM_BOUNDS(p))
// Accept packet if not within packet bounds
#define ASSERT_IN_PACKET_BOUNDS(p) ASSERT_RETURN(IN_PACKET_BOUNDS(p))
// Accept packet if not within data bounds
#define ASSERT_IN_DATA_BOUNDS(p, size) ASSERT_RETURN(IN_DATA_BOUNDS(p, size))

  // Counters start at end of RAM and count *backwards* so this array takes negative integers.
  u32 *counter = (u32*)(ctx->program + ctx->ram_len);

  ASSERT_IN_PACKET_BOUNDS(ETH_HLEN);
  // Only populate if IP version is IPv4.
  if ((ctx->packet[ETH_HLEN] & 0xf0) == 0x40) {
      ctx->mem.named.ipv4_header_size = (ctx->packet[ETH_HLEN] & 15) * 4;
  }
  // Count of instructions remaining to execute. This is done to ensure an
  // upper bound on execution time. It should never be hit and is only for
  // safety. Initialize to the number of bytes in the program which is an
  // upper bound on the number of instructions in the program.
  u32 instructions_remaining = ctx->program_len;

// Is access to offset |p| length |size| within output buffer bounds?
#define IN_OUTPUT_BOUNDS(p, size) (ENFORCE_UNSIGNED(p) && \
                                 ENFORCE_UNSIGNED(size) && \
                                 (p) + (size) <= ctx->tx_buf_len && \
                                 (p) + (size) >= (p))
// Accept packet if not write within allocated output buffer
#define ASSERT_IN_OUTPUT_BOUNDS(p, size) ASSERT_RETURN(IN_OUTPUT_BOUNDS(p, size))

  do {
      APF_TRACE_HOOK(ctx->pc, ctx->R, ctx->program, ctx->program_len,
                     ctx->packet, ctx->packet_len, ctx->mem.slot, ctx->ram_len);
      if (ctx->pc == ctx->program_len + 1) return DROP_PACKET;
      if (ctx->pc >= ctx->program_len) return PASS_PACKET;

      const u8 bytecode = ctx->program[ctx->pc++];
      const u32 opcode = EXTRACT_OPCODE(bytecode);
      const u32 reg_num = EXTRACT_REGISTER(bytecode);
#define REG (ctx->R[reg_num])
#define OTHER_REG (ctx->R[reg_num ^ 1])
      // All instructions have immediate fields, so load them now.
      const u32 len_field = EXTRACT_IMM_LENGTH(bytecode);
      u32 imm = 0;
      s32 signed_imm = 0;
      if (len_field != 0) {
          const u32 imm_len = 1 << (len_field - 1);
          imm = decode_imm(ctx, imm_len); // 1st imm, at worst bytes 1-4 past opcode/program_len
          // Sign extend imm into signed_imm.
          signed_imm = (s32)(imm << ((4 - imm_len) * 8));
          signed_imm >>= (4 - imm_len) * 8;
      }

      u32 pktcopy_src_offset = 0;  // used for various pktdatacopy opcodes
      switch (opcode) {
          case PASSDROP_OPCODE: {  // APFv6+
              if (len_field > 2) return PASS_PACKET;  // max 64K counters (ie. imm < 64K)
              if (imm) {
                  if (4 * imm > ctx->ram_len) return PASS_PACKET;
                  counter[-(s32)imm]++;
              }
              return reg_num ? DROP_PACKET : PASS_PACKET;
          }
          case LDB_OPCODE:
          case LDH_OPCODE:
          case LDW_OPCODE:
          case LDBX_OPCODE:
          case LDHX_OPCODE:
          case LDWX_OPCODE: {
              u32 offs = imm;
              // Note: this can overflow and actually decrease offs.
              if (opcode >= LDBX_OPCODE) offs += ctx->R[1];
              ASSERT_IN_PACKET_BOUNDS(offs);
              u32 load_size = 0;
              switch (opcode) {
                  case LDB_OPCODE:
                  case LDBX_OPCODE:
                    load_size = 1;
                    break;
                  case LDH_OPCODE:
                  case LDHX_OPCODE:
                    load_size = 2;
                    break;
                  case LDW_OPCODE:
                  case LDWX_OPCODE:
                    load_size = 4;
                    break;
                  // Immediately enclosing switch statement guarantees
                  // opcode cannot be any other value.
              }
              const u32 end_offs = offs + (load_size - 1);
              // Catch overflow/wrap-around.
              ASSERT_RETURN(end_offs >= offs);
              ASSERT_IN_PACKET_BOUNDS(end_offs);
              u32 val = 0;
              while (load_size--) val = (val << 8) | ctx->packet[offs++];
              REG = val;
              break;
          }
          case JMP_OPCODE:
              if (reg_num && !ctx->v6) {  // APFv6+
                // First invocation of APFv6 jmpdata instruction
                counter[-1] = 0x12345678;  // endianness marker
                counter[-2]++;  // total packets ++
                ctx->v6 = (u8)true;
              }
              // This can jump backwards. Infinite looping prevented by instructions_remaining.
              ctx->pc += imm;
              break;
          case JEQ_OPCODE:
          case JNE_OPCODE:
          case JGT_OPCODE:
          case JLT_OPCODE:
          case JSET_OPCODE:
          case JBSMATCH_OPCODE: {
              // Load second immediate field.
              u32 cmp_imm = 0;
              if (reg_num == 1) {
                  cmp_imm = ctx->R[1];
              } else if (len_field != 0) {
                  u32 cmp_imm_len = 1 << (len_field - 1);
                  cmp_imm = decode_imm(ctx, cmp_imm_len); // 2nd imm, at worst 8 bytes past prog_len
              }
              switch (opcode) {
                  case JEQ_OPCODE:  if (ctx->R[0] == cmp_imm) ctx->pc += imm; break;
                  case JNE_OPCODE:  if (ctx->R[0] != cmp_imm) ctx->pc += imm; break;
                  case JGT_OPCODE:  if (ctx->R[0] >  cmp_imm) ctx->pc += imm; break;
                  case JLT_OPCODE:  if (ctx->R[0] <  cmp_imm) ctx->pc += imm; break;
                  case JSET_OPCODE: if (ctx->R[0] &  cmp_imm) ctx->pc += imm; break;
                  case JBSMATCH_OPCODE: {
                      // cmp_imm is size in bytes of data to compare.
                      // pc is offset of program bytes to compare.
                      // imm is jump target offset.
                      // REG is offset of packet bytes to compare.
                      if (len_field > 2) return PASS_PACKET; // guarantees cmp_imm <= 0xFFFF
                      // pc < program_len < ram_len < 2GiB, thus pc + cmp_imm cannot wrap
                      if (!IN_RAM_BOUNDS(ctx->pc + cmp_imm - 1)) return PASS_PACKET;
                      ASSERT_IN_PACKET_BOUNDS(REG);
                      const u32 last_packet_offs = REG + cmp_imm - 1;
                      ASSERT_RETURN(last_packet_offs >= REG);
                      ASSERT_IN_PACKET_BOUNDS(last_packet_offs);
                      if (memcmp(ctx->program + ctx->pc, ctx->packet + REG, cmp_imm))
                          ctx->pc += imm;
                      // skip past comparison bytes
                      ctx->pc += cmp_imm;
                      break;
                  }
              }
              break;
          }
          case ADD_OPCODE: ctx->R[0] += reg_num ? ctx->R[1] : imm; break;
          case MUL_OPCODE: ctx->R[0] *= reg_num ? ctx->R[1] : imm; break;
          case AND_OPCODE: ctx->R[0] &= reg_num ? ctx->R[1] : imm; break;
          case OR_OPCODE:  ctx->R[0] |= reg_num ? ctx->R[1] : imm; break;
          case DIV_OPCODE: {
              const u32 div_operand = reg_num ? ctx->R[1] : imm;
              ASSERT_RETURN(div_operand);
              ctx->R[0] /= div_operand;
              break;
          }
          case SH_OPCODE: {
              const s32 shift_val = reg_num ? (s32)ctx->R[1] : signed_imm;
              if (shift_val > 0)
                  ctx->R[0] <<= shift_val;
              else
                  ctx->R[0] >>= -shift_val;
              break;
          }
          case LI_OPCODE:
              REG = (u32)signed_imm;
              break;
          case PKTDATACOPY_OPCODE:
              pktcopy_src_offset = imm;
              imm = PKTDATACOPYIMM_EXT_OPCODE;
              FALLTHROUGH;
          case EXT_OPCODE:
              if (// imm >= LDM_EXT_OPCODE &&  -- but note imm is u32 and LDM_EXT_OPCODE is 0
                  imm < (LDM_EXT_OPCODE + MEMORY_ITEMS)) {
                REG = ctx->mem.slot[imm - LDM_EXT_OPCODE];
              } else if (imm >= STM_EXT_OPCODE && imm < (STM_EXT_OPCODE + MEMORY_ITEMS)) {
                ctx->mem.slot[imm - STM_EXT_OPCODE] = REG;
              } else switch (imm) {
                  case NOT_EXT_OPCODE: REG = ~REG;      break;
                  case NEG_EXT_OPCODE: REG = -REG;      break;
                  case MOV_EXT_OPCODE: REG = OTHER_REG; break;
                  case SWAP_EXT_OPCODE: {
                    u32 tmp = REG;
                    REG = OTHER_REG;
                    OTHER_REG = tmp;
                    break;
                  }
                  case ALLOCATE_EXT_OPCODE:
                    ASSERT_RETURN(ctx->tx_buf == NULL);
                    if (reg_num == 0) {
                        ctx->tx_buf_len = REG;
                    } else {
                        ctx->tx_buf_len = decode_be16(ctx); // 2nd imm, at worst 6 B past prog_len
                    }
                    // checksumming functions requires minimum 266 byte buffer for correctness
                    if (ctx->tx_buf_len < 266) ctx->tx_buf_len = 266;
                    ctx->tx_buf = apf_allocate_buffer(ctx->caller_ctx, ctx->tx_buf_len);
                    if (!ctx->tx_buf) {  // allocate failure
                        ctx->tx_buf_len = 0;
                        counter[-3]++;
                        return PASS_PACKET;
                    }
                    memset(ctx->tx_buf, 0, ctx->tx_buf_len);
                    ctx->mem.named.tx_buf_offset = 0;
                    break;
                  case TRANSMIT_EXT_OPCODE:
                    ASSERT_RETURN(ctx->tx_buf);
                    u32 pkt_len = ctx->mem.named.tx_buf_offset;
                    // If pkt_len > allocate_buffer_len, it means sth. wrong
                    // happened and the tx_buf should be deallocated.
                    if (pkt_len > ctx->tx_buf_len) {
                        do_discard_buffer(ctx);
                        return PASS_PACKET;
                    }
                    // tx_buf_len cannot be large because we'd run out of RAM,
                    // so the above unsigned comparison effectively guarantees casting pkt_len
                    // to a signed value does not result in it going negative.
                    u8 ip_ofs = DECODE_U8();              // 2nd imm, at worst 5 B past prog_len
                    u8 csum_ofs = DECODE_U8();            // 3rd imm, at worst 6 B past prog_len
                    u8 csum_start = 0;
                    u16 partial_csum = 0;
                    if (csum_ofs < 255) {
                        csum_start = DECODE_U8();         // 4th imm, at worst 7 B past prog_len
                        partial_csum = decode_be16(ctx);  // 5th imm, at worst 9 B past prog_len
                    }
                    int dscp = csum_and_return_dscp(ctx->tx_buf, (s32)pkt_len, ip_ofs,
                                                    partial_csum, csum_start, csum_ofs,
                                                    (bool)reg_num);
                    int ret = do_transmit_buffer(ctx, pkt_len, dscp);
                    if (ret) { counter[-4]++; return PASS_PACKET; } // transmit failure
                    break;
                  case EPKTDATACOPYIMM_EXT_OPCODE:  // 41
                  case EPKTDATACOPYR1_EXT_OPCODE:   // 42
                    pktcopy_src_offset = ctx->R[0];
                    FALLTHROUGH;
                  case PKTDATACOPYIMM_EXT_OPCODE: { // 65536
                    u32 copy_len = ctx->R[1];
                    if (imm != EPKTDATACOPYR1_EXT_OPCODE) {
                        copy_len = DECODE_U8();  // 2nd imm, at worst 8 bytes past prog_len
                    }
                    ASSERT_RETURN(ctx->tx_buf);
                    u32 dst_offs = ctx->mem.named.tx_buf_offset;
                    ASSERT_IN_OUTPUT_BOUNDS(dst_offs, copy_len);
                    if (reg_num == 0) {  // copy from packet
                        ASSERT_IN_PACKET_BOUNDS(pktcopy_src_offset);
                        const u32 last_packet_offs = pktcopy_src_offset + copy_len - 1;
                        ASSERT_RETURN(last_packet_offs >= pktcopy_src_offset);
                        ASSERT_IN_PACKET_BOUNDS(last_packet_offs);
                        memcpy(ctx->tx_buf + dst_offs, ctx->packet + pktcopy_src_offset, copy_len);
                    } else {  // copy from data
                        ASSERT_IN_RAM_BOUNDS(pktcopy_src_offset + copy_len - 1);
                        memcpy(ctx->tx_buf + dst_offs, ctx->program + pktcopy_src_offset, copy_len);
                    }
                    dst_offs += copy_len;
                    ctx->mem.named.tx_buf_offset = dst_offs;
                    break;
                  }
                  case JDNSQMATCH_EXT_OPCODE:       // 43
                  case JDNSAMATCH_EXT_OPCODE:       // 44
                  case JDNSQMATCHSAFE_EXT_OPCODE:   // 45
                  case JDNSAMATCHSAFE_EXT_OPCODE: { // 46
                    const u32 imm_len = 1 << (len_field - 1); // EXT_OPCODE, thus len_field > 0
                    u32 jump_offs = decode_imm(ctx, imm_len); // 2nd imm, at worst 8 B past prog_len
                    int qtype = -1;
                    if (imm & 1) { // JDNSQMATCH & JDNSQMATCHSAFE are *odd* extended opcodes
                        qtype = DECODE_U8();  // 3rd imm, at worst 9 bytes past prog_len
                    }
                    u32 udp_payload_offset = ctx->R[0];
                    match_result_type match_rst = match_names(ctx->program + ctx->pc,
                                                              ctx->program + ctx->program_len,
                                                              ctx->packet + udp_payload_offset,
                                                              ctx->packet_len - udp_payload_offset,
                                                              qtype);
                    if (match_rst == error_program) return PASS_PACKET;
                    if (match_rst == error_packet) {
                        counter[-5]++; // increment error dns packet counter
                        return (imm >= JDNSQMATCHSAFE_EXT_OPCODE) ? PASS_PACKET : DROP_PACKET;
                    }
                    while (ctx->pc + 1 < ctx->program_len &&
                           (ctx->program[ctx->pc] || ctx->program[ctx->pc + 1])) {
                        ctx->pc++;
                    }
                    ctx->pc += 2;  // skip the final double 0 needle end
                    // relies on reg_num in {0,1} and match_rst being {false=0, true=1}
                    if (!(reg_num ^ (u32)match_rst)) ctx->pc += jump_offs;
                    break;
                  }
                  case EWRITE1_EXT_OPCODE:
                  case EWRITE2_EXT_OPCODE:
                  case EWRITE4_EXT_OPCODE: {
                    ASSERT_RETURN(ctx->tx_buf);
                    const u32 write_len = 1 << (imm - EWRITE1_EXT_OPCODE);
                    ASSERT_IN_OUTPUT_BOUNDS(ctx->mem.named.tx_buf_offset, write_len);
                    u32 i;
                    for (i = 0; i < write_len; ++i) {
                        ctx->tx_buf[ctx->mem.named.tx_buf_offset++] =
                            (u8)(REG >> (write_len - 1 - i) * 8);
                    }
                    break;
                  }
                  default:  // Unknown extended opcode
                    return PASS_PACKET;  // Bail out
              }
              break;
          case LDDW_OPCODE: {
              u32 offs = OTHER_REG + (u32)signed_imm;
              u32 size = 4;
              u32 val = 0;
              // Negative offsets wrap around the end of the address space.
              // This allows us to efficiently access the end of the
              // address space with one-byte immediates without using %=.
              if (offs & 0x80000000) offs += ctx->ram_len;  // unsigned overflow intended
              ASSERT_IN_DATA_BOUNDS(offs, size);
              while (size--) val = (val << 8) | ctx->program[offs++];
              REG = val;
              break;
          }
          case STDW_OPCODE: {
              u32 offs = OTHER_REG + (u32)signed_imm;
              u32 size = 4;
              u32 val = REG;
              // Negative offsets wrap around the end of the address space.
              // This allows us to efficiently access the end of the
              // address space with one-byte immediates without using %=.
              if (offs & 0x80000000) offs += ctx->ram_len;  // unsigned overflow intended
              ASSERT_IN_DATA_BOUNDS(offs, size);
              while (size--) {
                  ctx->program[offs++] = (val >> 24);
                  val <<= 8;
              }
              break;
          }
          case WRITE_OPCODE: {
              ASSERT_RETURN(ctx->tx_buf);
              ASSERT_RETURN(len_field);
              const u32 write_len = 1 << (len_field - 1);
              ASSERT_IN_OUTPUT_BOUNDS(ctx->mem.named.tx_buf_offset, write_len);
              u32 i;
              for (i = 0; i < write_len; ++i) {
                  ctx->tx_buf[ctx->mem.named.tx_buf_offset++] =
                      (u8)(imm >> (write_len - 1 - i) * 8);
              }
              break;
          }
          default:  // Unknown opcode
              return PASS_PACKET;  // Bail out
      }
  } while (instructions_remaining--);
  return PASS_PACKET;
}

int apf_run(void* ctx, u32* const program, const u32 program_len,
            const u32 ram_len, const u8* const packet,
            const u32 packet_len, const u32 filter_age_16384ths) {
  // Due to direct 32-bit read/write access to counters at end of ram
  // APFv6 interpreter requires program & ram_len to be 4 byte aligned.
  if (3 & (uintptr_t)program) return PASS_PACKET;
  if (3 & ram_len) return PASS_PACKET;

  // We rely on ram_len + 65536 not overflowing, so require ram_len < 2GiB
  // Similarly LDDW/STDW have special meaning for negative ram offsets.
  // We also don't want garbage like program_len == 0xFFFFFFFF
  if ((program_len | ram_len) >> 31) return PASS_PACKET;

  // APFv6 requires at least 5 u32 counters at the end of ram, this makes counter[-5]++ valid
  // This cannot wrap due to previous check.
  if (program_len + 20 > ram_len) return PASS_PACKET;

  apf_context apf_ctx = {};
  apf_ctx.caller_ctx = ctx;
  apf_ctx.program = (u8*)program;
  apf_ctx.program_len = program_len;
  apf_ctx.ram_len = ram_len;
  apf_ctx.packet = packet;
  apf_ctx.packet_len = packet_len;
  // Fill in pre-filled memory slot values.
  apf_ctx.mem.named.program_size = program_len;
  apf_ctx.mem.named.ram_len = ram_len;
  apf_ctx.mem.named.packet_size = packet_len;
  apf_ctx.mem.named.apf_version = apf_version();
  apf_ctx.mem.named.filter_age = filter_age_16384ths >> 14;
  apf_ctx.mem.named.filter_age_16384ths = filter_age_16384ths;

  int ret = do_apf_run(&apf_ctx);
  if (apf_ctx.tx_buf) do_discard_buffer(&apf_ctx);
  return ret;
}