summaryrefslogtreecommitdiff
path: root/sl4n/rapidjson/doc/sax.md
diff options
context:
space:
mode:
Diffstat (limited to 'sl4n/rapidjson/doc/sax.md')
-rw-r--r--sl4n/rapidjson/doc/sax.md475
1 files changed, 0 insertions, 475 deletions
diff --git a/sl4n/rapidjson/doc/sax.md b/sl4n/rapidjson/doc/sax.md
deleted file mode 100644
index 9a6d814..0000000
--- a/sl4n/rapidjson/doc/sax.md
+++ /dev/null
@@ -1,475 +0,0 @@
-# SAX
-
-The term "SAX" originated from [Simple API for XML](http://en.wikipedia.org/wiki/Simple_API_for_XML). We borrowed this term for JSON parsing and generation.
-
-In RapidJSON, `Reader` (typedef of `GenericReader<...>`) is the SAX-style parser for JSON, and `Writer` (typedef of `GenericWriter<...>`) is the SAX-style generator for JSON.
-
-[TOC]
-
-# Reader {#Reader}
-
-`Reader` parses a JSON from a stream. While it reads characters from the stream, it analyze the characters according to the syntax of JSON, and publish events to a handler.
-
-For example, here is a JSON.
-
-~~~~~~~~~~js
-{
- "hello": "world",
- "t": true ,
- "f": false,
- "n": null,
- "i": 123,
- "pi": 3.1416,
- "a": [1, 2, 3, 4]
-}
-~~~~~~~~~~
-
-While a `Reader` parses this JSON, it publishes the following events to the handler sequentially:
-
-~~~~~~~~~~
-StartObject()
-Key("hello", 5, true)
-String("world", 5, true)
-Key("t", 1, true)
-Bool(true)
-Key("f", 1, true)
-Bool(false)
-Key("n", 1, true)
-Null()
-Key("i")
-UInt(123)
-Key("pi")
-Double(3.1416)
-Key("a")
-StartArray()
-Uint(1)
-Uint(2)
-Uint(3)
-Uint(4)
-EndArray(4)
-EndObject(7)
-~~~~~~~~~~
-
-These events can be easily matched with the JSON, except some event parameters need further explanation. Let's see the `simplereader` example which produces exactly the same output as above:
-
-~~~~~~~~~~cpp
-#include "rapidjson/reader.h"
-#include <iostream>
-
-using namespace rapidjson;
-using namespace std;
-
-struct MyHandler {
- bool Null() { cout << "Null()" << endl; return true; }
- bool Bool(bool b) { cout << "Bool(" << boolalpha << b << ")" << endl; return true; }
- bool Int(int i) { cout << "Int(" << i << ")" << endl; return true; }
- bool Uint(unsigned u) { cout << "Uint(" << u << ")" << endl; return true; }
- bool Int64(int64_t i) { cout << "Int64(" << i << ")" << endl; return true; }
- bool Uint64(uint64_t u) { cout << "Uint64(" << u << ")" << endl; return true; }
- bool Double(double d) { cout << "Double(" << d << ")" << endl; return true; }
- bool String(const char* str, SizeType length, bool copy) {
- cout << "String(" << str << ", " << length << ", " << boolalpha << copy << ")" << endl;
- return true;
- }
- bool StartObject() { cout << "StartObject()" << endl; return true; }
- bool Key(const char* str, SizeType length, bool copy) {
- cout << "Key(" << str << ", " << length << ", " << boolalpha << copy << ")" << endl;
- return true;
- }
- bool EndObject(SizeType memberCount) { cout << "EndObject(" << memberCount << ")" << endl; return true; }
- bool StartArray() { cout << "StartArray()" << endl; return true; }
- bool EndArray(SizeType elementCount) { cout << "EndArray(" << elementCount << ")" << endl; return true; }
-};
-
-void main() {
- const char json[] = " { \"hello\" : \"world\", \"t\" : true , \"f\" : false, \"n\": null, \"i\":123, \"pi\": 3.1416, \"a\":[1, 2, 3, 4] } ";
-
- MyHandler handler;
- Reader reader;
- StringStream ss(json);
- reader.Parse(ss, handler);
-}
-~~~~~~~~~~
-
-Note that, RapidJSON uses template to statically bind the `Reader` type and the handler type, instead of using class with virtual functions. This paradigm can improve the performance by inlining functions.
-
-## Handler {#Handler}
-
-As the previous example showed, user needs to implement a handler, which consumes the events (function calls) from `Reader`. The handler must contain the following member functions.
-
-~~~~~~~~~~cpp
-class Handler {
- bool Null();
- bool Bool(bool b);
- bool Int(int i);
- bool Uint(unsigned i);
- bool Int64(int64_t i);
- bool Uint64(uint64_t i);
- bool Double(double d);
- bool String(const Ch* str, SizeType length, bool copy);
- bool StartObject();
- bool Key(const Ch* str, SizeType length, bool copy);
- bool EndObject(SizeType memberCount);
- bool StartArray();
- bool EndArray(SizeType elementCount);
-};
-~~~~~~~~~~
-
-`Null()` is called when the `Reader` encounters a JSON null value.
-
-`Bool(bool)` is called when the `Reader` encounters a JSON true or false value.
-
-When the `Reader` encounters a JSON number, it chooses a suitable C++ type mapping. And then it calls *one* function out of `Int(int)`, `Uint(unsigned)`, `Int64(int64_t)`, `Uint64(uint64_t)` and `Double(double)`.
-
-`String(const char* str, SizeType length, bool copy)` is called when the `Reader` encounters a string. The first parameter is pointer to the string. The second parameter is the length of the string (excluding the null terminator). Note that RapidJSON supports null character `'\0'` inside a string. If such situation happens, `strlen(str) < length`. The last `copy` indicates whether the handler needs to make a copy of the string. For normal parsing, `copy = true`. Only when *insitu* parsing is used, `copy = false`. And beware that, the character type depends on the target encoding, which will be explained later.
-
-When the `Reader` encounters the beginning of an object, it calls `StartObject()`. An object in JSON is a set of name-value pairs. If the object contains members it first calls `Key()` for the name of member, and then calls functions depending on the type of the value. These calls of name-value pairs repeats until calling `EndObject(SizeType memberCount)`. Note that the `memberCount` parameter is just an aid for the handler, user may not need this parameter.
-
-Array is similar to object but simpler. At the beginning of an array, the `Reader` calls `BeginArary()`. If there is elements, it calls functions according to the types of element. Similarly, in the last call `EndArray(SizeType elementCount)`, the parameter `elementCount` is just an aid for the handler.
-
-Every handler functions returns a `bool`. Normally it should returns `true`. If the handler encounters an error, it can return `false` to notify event publisher to stop further processing.
-
-For example, when we parse a JSON with `Reader` and the handler detected that the JSON does not conform to the required schema, then the handler can return `false` and let the `Reader` stop further parsing. And the `Reader` will be in error state with error code `kParseErrorTermination`.
-
-## GenericReader {#GenericReader}
-
-As mentioned before, `Reader` is a typedef of a template class `GenericReader`:
-
-~~~~~~~~~~cpp
-namespace rapidjson {
-
-template <typename SourceEncoding, typename TargetEncoding, typename Allocator = MemoryPoolAllocator<> >
-class GenericReader {
- // ...
-};
-
-typedef GenericReader<UTF8<>, UTF8<> > Reader;
-
-} // namespace rapidjson
-~~~~~~~~~~
-
-The `Reader` uses UTF-8 as both source and target encoding. The source encoding means the encoding in the JSON stream. The target encoding means the encoding of the `str` parameter in `String()` calls. For example, to parse a UTF-8 stream and outputs UTF-16 string events, you can define a reader by:
-
-~~~~~~~~~~cpp
-GenericReader<UTF8<>, UTF16<> > reader;
-~~~~~~~~~~
-
-Note that, the default character type of `UTF16` is `wchar_t`. So this `reader`needs to call `String(const wchar_t*, SizeType, bool)` of the handler.
-
-The third template parameter `Allocator` is the allocator type for internal data structure (actually a stack).
-
-## Parsing {#Parsing}
-
-The one and only one function of `Reader` is to parse JSON.
-
-~~~~~~~~~~cpp
-template <unsigned parseFlags, typename InputStream, typename Handler>
-bool Parse(InputStream& is, Handler& handler);
-
-// with parseFlags = kDefaultParseFlags
-template <typename InputStream, typename Handler>
-bool Parse(InputStream& is, Handler& handler);
-~~~~~~~~~~
-
-If an error occurs during parsing, it will return `false`. User can also calls `bool HasParseEror()`, `ParseErrorCode GetParseErrorCode()` and `size_t GetErrorOffset()` to obtain the error states. Actually `Document` uses these `Reader` functions to obtain parse errors. Please refer to [DOM](doc/dom.md) for details about parse error.
-
-# Writer {#Writer}
-
-`Reader` converts (parses) JSON into events. `Writer` does exactly the opposite. It converts events into JSON.
-
-`Writer` is very easy to use. If your application only need to converts some data into JSON, it may be a good choice to use `Writer` directly, instead of building a `Document` and then stringifying it with a `Writer`.
-
-In `simplewriter` example, we do exactly the reverse of `simplereader`.
-
-~~~~~~~~~~cpp
-#include "rapidjson/writer.h"
-#include "rapidjson/stringbuffer.h"
-#include <iostream>
-
-using namespace rapidjson;
-using namespace std;
-
-void main() {
- StringBuffer s;
- Writer<StringBuffer> writer(s);
-
- writer.StartObject();
- writer.Key("hello");
- writer.String("world");
- writer.Key("t");
- writer.Bool(true);
- writer.Key("f");
- writer.Bool(false);
- writer.Key("n");
- writer.Null();
- writer.Key("i");
- writer.Uint(123);
- writer.Key("pi");
- writer.Double(3.1416);
- writer.Key("a");
- writer.StartArray();
- for (unsigned i = 0; i < 4; i++)
- writer.Uint(i);
- writer.EndArray();
- writer.EndObject();
-
- cout << s.GetString() << endl;
-}
-~~~~~~~~~~
-
-~~~~~~~~~~
-{"hello":"world","t":true,"f":false,"n":null,"i":123,"pi":3.1416,"a":[0,1,2,3]}
-~~~~~~~~~~
-
-There are two `String()` and `Key()` overloads. One is the same as defined in handler concept with 3 parameters. It can handle string with null characters. Another one is the simpler version used in the above example.
-
-Note that, the example code does not pass any parameters in `EndArray()` and `EndObject()`. An `SizeType` can be passed but it will be simply ignored by `Writer`.
-
-You may doubt that, why not just using `sprintf()` or `std::stringstream` to build a JSON?
-
-There are various reasons:
-1. `Writer` must output a well-formed JSON. If there is incorrect event sequence (e.g. `Int()` just after `StartObject()`), it generates assertion fail in debug mode.
-2. `Writer::String()` can handle string escaping (e.g. converting code point `U+000A` to `\n`) and Unicode transcoding.
-3. `Writer` handles number output consistently.
-4. `Writer` implements the event handler concept. It can be used to handle events from `Reader`, `Document` or other event publisher.
-5. `Writer` can be optimized for different platforms.
-
-Anyway, using `Writer` API is even simpler than generating a JSON by ad hoc methods.
-
-## Template {#WriterTemplate}
-
-`Writer` has a minor design difference to `Reader`. `Writer` is a template class, not a typedef. There is no `GenericWriter`. The following is the declaration.
-
-~~~~~~~~~~cpp
-namespace rapidjson {
-
-template<typename OutputStream, typename SourceEncoding = UTF8<>, typename TargetEncoding = UTF8<>, typename Allocator = CrtAllocator<> >
-class Writer {
-public:
- Writer(OutputStream& os, Allocator* allocator = 0, size_t levelDepth = kDefaultLevelDepth)
-// ...
-};
-
-} // namespace rapidjson
-~~~~~~~~~~
-
-The `OutputStream` template parameter is the type of output stream. It cannot be deduced and must be specified by user.
-
-The `SourceEncoding` template parameter specifies the encoding to be used in `String(const Ch*, ...)`.
-
-The `TargetEncoding` template parameter specifies the encoding in the output stream.
-
-The last one, `Allocator` is the type of allocator, which is used for allocating internal data structure (a stack).
-
-Besides, the constructor of `Writer` has a `levelDepth` parameter. This parameter affects the initial memory allocated for storing information per hierarchy level.
-
-## PrettyWriter {#PrettyWriter}
-
-While the output of `Writer` is the most condensed JSON without white-spaces, suitable for network transfer or storage, it is not easily readable by human.
-
-Therefore, RapidJSON provides a `PrettyWriter`, which adds indentation and line feeds in the output.
-
-The usage of `PrettyWriter` is exactly the same as `Writer`, expect that `PrettyWriter` provides a `SetIndent(Ch indentChar, unsigned indentCharCount)` function. The default is 4 spaces.
-
-## Completeness and Reset {#CompletenessReset}
-
-A `Writer` can only output a single JSON, which can be any JSON type at the root. Once the singular event for root (e.g. `String()`), or the last matching `EndObject()` or `EndArray()` event, is handled, the output JSON is well-formed and complete. User can detect this state by calling `Writer::IsComplete()`.
-
-When a JSON is complete, the `Writer` cannot accept any new events. Otherwise the output will be invalid (i.e. having more than one root). To reuse the `Writer` object, user can call `Writer::Reset(OutputStream& os)` to reset all internal states of the `Writer` with a new output stream.
-
-# Techniques {#Techniques}
-
-## Parsing JSON to Custom Data Structure {#CustomDataStructure}
-
-`Document`'s parsing capability is completely based on `Reader`. Actually `Document` is a handler which receives events from a reader to build a DOM during parsing.
-
-User may uses `Reader` to build other data structures directly. This eliminates building of DOM, thus reducing memory and improving performance.
-
-In the following `messagereader` example, `ParseMessages()` parses a JSON which should be an object with key-string pairs.
-
-~~~~~~~~~~cpp
-#include "rapidjson/reader.h"
-#include "rapidjson/error/en.h"
-#include <iostream>
-#include <string>
-#include <map>
-
-using namespace std;
-using namespace rapidjson;
-
-typedef map<string, string> MessageMap;
-
-struct MessageHandler
- : public BaseReaderHandler<UTF8<>, MessageHandler> {
- MessageHandler() : state_(kExpectObjectStart) {
- }
-
- bool StartObject() {
- switch (state_) {
- case kExpectObjectStart:
- state_ = kExpectNameOrObjectEnd;
- return true;
- default:
- return false;
- }
- }
-
- bool String(const char* str, SizeType length, bool) {
- switch (state_) {
- case kExpectNameOrObjectEnd:
- name_ = string(str, length);
- state_ = kExpectValue;
- return true;
- case kExpectValue:
- messages_.insert(MessageMap::value_type(name_, string(str, length)));
- state_ = kExpectNameOrObjectEnd;
- return true;
- default:
- return false;
- }
- }
-
- bool EndObject(SizeType) { return state_ == kExpectNameOrObjectEnd; }
-
- bool Default() { return false; } // All other events are invalid.
-
- MessageMap messages_;
- enum State {
- kExpectObjectStart,
- kExpectNameOrObjectEnd,
- kExpectValue,
- }state_;
- std::string name_;
-};
-
-void ParseMessages(const char* json, MessageMap& messages) {
- Reader reader;
- MessageHandler handler;
- StringStream ss(json);
- if (reader.Parse(ss, handler))
- messages.swap(handler.messages_); // Only change it if success.
- else {
- ParseErrorCode e = reader.GetParseErrorCode();
- size_t o = reader.GetErrorOffset();
- cout << "Error: " << GetParseError_En(e) << endl;;
- cout << " at offset " << o << " near '" << string(json).substr(o, 10) << "...'" << endl;
- }
-}
-
-int main() {
- MessageMap messages;
-
- const char* json1 = "{ \"greeting\" : \"Hello!\", \"farewell\" : \"bye-bye!\" }";
- cout << json1 << endl;
- ParseMessages(json1, messages);
-
- for (MessageMap::const_iterator itr = messages.begin(); itr != messages.end(); ++itr)
- cout << itr->first << ": " << itr->second << endl;
-
- cout << endl << "Parse a JSON with invalid schema." << endl;
- const char* json2 = "{ \"greeting\" : \"Hello!\", \"farewell\" : \"bye-bye!\", \"foo\" : {} }";
- cout << json2 << endl;
- ParseMessages(json2, messages);
-
- return 0;
-}
-~~~~~~~~~~
-
-~~~~~~~~~~
-{ "greeting" : "Hello!", "farewell" : "bye-bye!" }
-farewell: bye-bye!
-greeting: Hello!
-
-Parse a JSON with invalid schema.
-{ "greeting" : "Hello!", "farewell" : "bye-bye!", "foo" : {} }
-Error: Terminate parsing due to Handler error.
- at offset 59 near '} }...'
-~~~~~~~~~~
-
-The first JSON (`json1`) was successfully parsed into `MessageMap`. Since `MessageMap` is a `std::map`, the printing order are sorted by the key. This order is different from the JSON's order.
-
-In the second JSON (`json2`), `foo`'s value is an empty object. As it is an object, `MessageHandler::StartObject()` will be called. However, at that moment `state_ = kExpectValue`, so that function returns `false` and cause the parsing process be terminated. The error code is `kParseErrorTermination`.
-
-## Filtering of JSON {#Filtering}
-
-As mentioned earlier, `Writer` can handle the events published by `Reader`. `condense` example simply set a `Writer` as handler of a `Reader`, so it can remove all white-spaces in JSON. `pretty` example uses the same relationship, but replacing `Writer` by `PrettyWriter`. So `pretty` can be used to reformat a JSON with indentation and line feed.
-
-Actually, we can add intermediate layer(s) to filter the contents of JSON via these SAX-style API. For example, `capitalize` example capitalize all strings in a JSON.
-
-~~~~~~~~~~cpp
-#include "rapidjson/reader.h"
-#include "rapidjson/writer.h"
-#include "rapidjson/filereadstream.h"
-#include "rapidjson/filewritestream.h"
-#include "rapidjson/error/en.h"
-#include <vector>
-#include <cctype>
-
-using namespace rapidjson;
-
-template<typename OutputHandler>
-struct CapitalizeFilter {
- CapitalizeFilter(OutputHandler& out) : out_(out), buffer_() {
- }
-
- bool Null() { return out_.Null(); }
- bool Bool(bool b) { return out_.Bool(b); }
- bool Int(int i) { return out_.Int(i); }
- bool Uint(unsigned u) { return out_.Uint(u); }
- bool Int64(int64_t i) { return out_.Int64(i); }
- bool Uint64(uint64_t u) { return out_.Uint64(u); }
- bool Double(double d) { return out_.Double(d); }
- bool String(const char* str, SizeType length, bool) {
- buffer_.clear();
- for (SizeType i = 0; i < length; i++)
- buffer_.push_back(std::toupper(str[i]));
- return out_.String(&buffer_.front(), length, true); // true = output handler need to copy the string
- }
- bool StartObject() { return out_.StartObject(); }
- bool Key(const char* str, SizeType length, bool copy) { return String(str, length, copy); }
- bool EndObject(SizeType memberCount) { return out_.EndObject(memberCount); }
- bool StartArray() { return out_.StartArray(); }
- bool EndArray(SizeType elementCount) { return out_.EndArray(elementCount); }
-
- OutputHandler& out_;
- std::vector<char> buffer_;
-};
-
-int main(int, char*[]) {
- // Prepare JSON reader and input stream.
- Reader reader;
- char readBuffer[65536];
- FileReadStream is(stdin, readBuffer, sizeof(readBuffer));
-
- // Prepare JSON writer and output stream.
- char writeBuffer[65536];
- FileWriteStream os(stdout, writeBuffer, sizeof(writeBuffer));
- Writer<FileWriteStream> writer(os);
-
- // JSON reader parse from the input stream and let writer generate the output.
- CapitalizeFilter<Writer<FileWriteStream> > filter(writer);
- if (!reader.Parse(is, filter)) {
- fprintf(stderr, "\nError(%u): %s\n", (unsigned)reader.GetErrorOffset(), GetParseError_En(reader.GetParseErrorCode()));
- return 1;
- }
-
- return 0;
-}
-~~~~~~~~~~
-
-Note that, it is incorrect to simply capitalize the JSON as a string. For example:
-~~~~~~~~~~
-["Hello\nWorld"]
-~~~~~~~~~~
-
-Simply capitalizing the whole JSON would contain incorrect escape character:
-~~~~~~~~~~
-["HELLO\NWORLD"]
-~~~~~~~~~~
-
-The correct result by `capitalize`:
-~~~~~~~~~~
-["HELLO\nWORLD"]
-~~~~~~~~~~
-
-More complicated filters can be developed. However, since SAX-style API can only provide information about a single event at a time, user may need to book-keeping the contextual information (e.g. the path from root value, storage of other related values). Some processing may be easier to be implemented in DOM than SAX.