summaryrefslogtreecommitdiff
path: root/windows_msvc-x86_64/include/google/protobuf/map.h
diff options
context:
space:
mode:
Diffstat (limited to 'windows_msvc-x86_64/include/google/protobuf/map.h')
-rw-r--r--windows_msvc-x86_64/include/google/protobuf/map.h1742
1 files changed, 1742 insertions, 0 deletions
diff --git a/windows_msvc-x86_64/include/google/protobuf/map.h b/windows_msvc-x86_64/include/google/protobuf/map.h
new file mode 100644
index 0000000..1b9aa70
--- /dev/null
+++ b/windows_msvc-x86_64/include/google/protobuf/map.h
@@ -0,0 +1,1742 @@
+// Protocol Buffers - Google's data interchange format
+// Copyright 2008 Google Inc. All rights reserved.
+// https://developers.google.com/protocol-buffers/
+//
+// Redistribution and use in source and binary forms, with or without
+// modification, are permitted provided that the following conditions are
+// met:
+//
+// * Redistributions of source code must retain the above copyright
+// notice, this list of conditions and the following disclaimer.
+// * Redistributions in binary form must reproduce the above
+// copyright notice, this list of conditions and the following disclaimer
+// in the documentation and/or other materials provided with the
+// distribution.
+// * Neither the name of Google Inc. nor the names of its
+// contributors may be used to endorse or promote products derived from
+// this software without specific prior written permission.
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+#ifndef GOOGLE_PROTOBUF_MAP_H__
+#define GOOGLE_PROTOBUF_MAP_H__
+
+#include <google/protobuf/stubs/hash.h>
+#include <iterator>
+#include <limits> // To support Visual Studio 2008
+#include <set>
+#include <utility>
+
+#include <google/protobuf/stubs/common.h>
+#include <google/protobuf/arena.h>
+#include <google/protobuf/generated_enum_util.h>
+#include <google/protobuf/map_type_handler.h>
+#include <google/protobuf/message.h>
+#include <google/protobuf/descriptor.h>
+#if __cpp_exceptions && LANG_CXX11
+#include <random>
+#endif
+
+namespace google {
+namespace protobuf {
+
+// The Map and MapIterator types are provided by this header file.
+// Please avoid using other types defined here, unless they are public
+// types within Map or MapIterator, such as Map::value_type.
+template <typename Key, typename T>
+class Map;
+
+class MapIterator;
+
+template <typename Enum> struct is_proto_enum;
+
+namespace internal {
+template <typename Key, typename T,
+ WireFormatLite::FieldType key_wire_type,
+ WireFormatLite::FieldType value_wire_type,
+ int default_enum_value>
+class MapFieldLite;
+
+template <typename Key, typename T,
+ WireFormatLite::FieldType key_wire_type,
+ WireFormatLite::FieldType value_wire_type,
+ int default_enum_value>
+class MapField;
+
+template <typename Key, typename T>
+class TypeDefinedMapFieldBase;
+
+class DynamicMapField;
+
+class GeneratedMessageReflection;
+} // namespace internal
+
+#define TYPE_CHECK(EXPECTEDTYPE, METHOD) \
+ if (type() != EXPECTEDTYPE) { \
+ GOOGLE_LOG(FATAL) \
+ << "Protocol Buffer map usage error:\n" \
+ << METHOD << " type does not match\n" \
+ << " Expected : " \
+ << FieldDescriptor::CppTypeName(EXPECTEDTYPE) << "\n" \
+ << " Actual : " \
+ << FieldDescriptor::CppTypeName(type()); \
+ }
+
+// MapKey is an union type for representing any possible
+// map key.
+class LIBPROTOBUF_EXPORT MapKey {
+ public:
+ MapKey() : type_(0) {
+ }
+ MapKey(const MapKey& other) : type_(0) {
+ CopyFrom(other);
+ }
+
+ ~MapKey() {
+ if (type_ == FieldDescriptor::CPPTYPE_STRING) {
+ delete val_.string_value_;
+ }
+ }
+
+ FieldDescriptor::CppType type() const {
+ if (type_ == 0) {
+ GOOGLE_LOG(FATAL)
+ << "Protocol Buffer map usage error:\n"
+ << "MapKey::type MapKey is not initialized. "
+ << "Call set methods to initialize MapKey.";
+ }
+ return (FieldDescriptor::CppType)type_;
+ }
+
+ void SetInt64Value(int64 value) {
+ SetType(FieldDescriptor::CPPTYPE_INT64);
+ val_.int64_value_ = value;
+ }
+ void SetUInt64Value(uint64 value) {
+ SetType(FieldDescriptor::CPPTYPE_UINT64);
+ val_.uint64_value_ = value;
+ }
+ void SetInt32Value(int32 value) {
+ SetType(FieldDescriptor::CPPTYPE_INT32);
+ val_.int32_value_ = value;
+ }
+ void SetUInt32Value(uint32 value) {
+ SetType(FieldDescriptor::CPPTYPE_UINT32);
+ val_.uint32_value_ = value;
+ }
+ void SetBoolValue(bool value) {
+ SetType(FieldDescriptor::CPPTYPE_BOOL);
+ val_.bool_value_ = value;
+ }
+ void SetStringValue(const string& val) {
+ SetType(FieldDescriptor::CPPTYPE_STRING);
+ *val_.string_value_ = val;
+ }
+
+ int64 GetInt64Value() const {
+ TYPE_CHECK(FieldDescriptor::CPPTYPE_INT64,
+ "MapKey::GetInt64Value");
+ return val_.int64_value_;
+ }
+ uint64 GetUInt64Value() const {
+ TYPE_CHECK(FieldDescriptor::CPPTYPE_UINT64,
+ "MapKey::GetUInt64Value");
+ return val_.uint64_value_;
+ }
+ int32 GetInt32Value() const {
+ TYPE_CHECK(FieldDescriptor::CPPTYPE_INT32,
+ "MapKey::GetInt32Value");
+ return val_.int32_value_;
+ }
+ uint32 GetUInt32Value() const {
+ TYPE_CHECK(FieldDescriptor::CPPTYPE_UINT32,
+ "MapKey::GetUInt32Value");
+ return val_.uint32_value_;
+ }
+ bool GetBoolValue() const {
+ TYPE_CHECK(FieldDescriptor::CPPTYPE_BOOL,
+ "MapKey::GetBoolValue");
+ return val_.bool_value_;
+ }
+ const string& GetStringValue() const {
+ TYPE_CHECK(FieldDescriptor::CPPTYPE_STRING,
+ "MapKey::GetStringValue");
+ return *val_.string_value_;
+ }
+
+ bool operator<(const MapKey& other) const {
+ if (type_ != other.type_) {
+ // We could define a total order that handles this case, but
+ // there currently no need. So, for now, fail.
+ GOOGLE_LOG(FATAL) << "Unsupported: type mismatch";
+ }
+ switch (type()) {
+ case FieldDescriptor::CPPTYPE_DOUBLE:
+ case FieldDescriptor::CPPTYPE_FLOAT:
+ case FieldDescriptor::CPPTYPE_ENUM:
+ case FieldDescriptor::CPPTYPE_MESSAGE:
+ GOOGLE_LOG(FATAL) << "Unsupported";
+ return false;
+ case FieldDescriptor::CPPTYPE_STRING:
+ return *val_.string_value_ < *other.val_.string_value_;
+ case FieldDescriptor::CPPTYPE_INT64:
+ return val_.int64_value_ < other.val_.int64_value_;
+ case FieldDescriptor::CPPTYPE_INT32:
+ return val_.int32_value_ < other.val_.int32_value_;
+ case FieldDescriptor::CPPTYPE_UINT64:
+ return val_.uint64_value_ < other.val_.uint64_value_;
+ case FieldDescriptor::CPPTYPE_UINT32:
+ return val_.uint32_value_ < other.val_.uint32_value_;
+ case FieldDescriptor::CPPTYPE_BOOL:
+ return val_.bool_value_ < other.val_.bool_value_;
+ }
+ return false;
+ }
+
+ bool operator==(const MapKey& other) const {
+ if (type_ != other.type_) {
+ // To be consistent with operator<, we don't allow this either.
+ GOOGLE_LOG(FATAL) << "Unsupported: type mismatch";
+ }
+ switch (type()) {
+ case FieldDescriptor::CPPTYPE_DOUBLE:
+ case FieldDescriptor::CPPTYPE_FLOAT:
+ case FieldDescriptor::CPPTYPE_ENUM:
+ case FieldDescriptor::CPPTYPE_MESSAGE:
+ GOOGLE_LOG(FATAL) << "Unsupported";
+ break;
+ case FieldDescriptor::CPPTYPE_STRING:
+ return *val_.string_value_ == *other.val_.string_value_;
+ case FieldDescriptor::CPPTYPE_INT64:
+ return val_.int64_value_ == other.val_.int64_value_;
+ case FieldDescriptor::CPPTYPE_INT32:
+ return val_.int32_value_ == other.val_.int32_value_;
+ case FieldDescriptor::CPPTYPE_UINT64:
+ return val_.uint64_value_ == other.val_.uint64_value_;
+ case FieldDescriptor::CPPTYPE_UINT32:
+ return val_.uint32_value_ == other.val_.uint32_value_;
+ case FieldDescriptor::CPPTYPE_BOOL:
+ return val_.bool_value_ == other.val_.bool_value_;
+ }
+ GOOGLE_LOG(FATAL) << "Can't get here.";
+ return false;
+ }
+
+ void CopyFrom(const MapKey& other) {
+ SetType(other.type());
+ switch (type_) {
+ case FieldDescriptor::CPPTYPE_DOUBLE:
+ case FieldDescriptor::CPPTYPE_FLOAT:
+ case FieldDescriptor::CPPTYPE_ENUM:
+ case FieldDescriptor::CPPTYPE_MESSAGE:
+ GOOGLE_LOG(FATAL) << "Unsupported";
+ break;
+ case FieldDescriptor::CPPTYPE_STRING:
+ *val_.string_value_ = *other.val_.string_value_;
+ break;
+ case FieldDescriptor::CPPTYPE_INT64:
+ val_.int64_value_ = other.val_.int64_value_;
+ break;
+ case FieldDescriptor::CPPTYPE_INT32:
+ val_.int32_value_ = other.val_.int32_value_;
+ break;
+ case FieldDescriptor::CPPTYPE_UINT64:
+ val_.uint64_value_ = other.val_.uint64_value_;
+ break;
+ case FieldDescriptor::CPPTYPE_UINT32:
+ val_.uint32_value_ = other.val_.uint32_value_;
+ break;
+ case FieldDescriptor::CPPTYPE_BOOL:
+ val_.bool_value_ = other.val_.bool_value_;
+ break;
+ }
+ }
+
+ private:
+ template <typename K, typename V>
+ friend class internal::TypeDefinedMapFieldBase;
+ friend class MapIterator;
+ friend class internal::DynamicMapField;
+
+ union KeyValue {
+ KeyValue() {}
+ string* string_value_;
+ int64 int64_value_;
+ int32 int32_value_;
+ uint64 uint64_value_;
+ uint32 uint32_value_;
+ bool bool_value_;
+ } val_;
+
+ void SetType(FieldDescriptor::CppType type) {
+ if (type_ == type) return;
+ if (type_ == FieldDescriptor::CPPTYPE_STRING) {
+ delete val_.string_value_;
+ }
+ type_ = type;
+ if (type_ == FieldDescriptor::CPPTYPE_STRING) {
+ val_.string_value_ = new string;
+ }
+ }
+
+ // type_ is 0 or a valid FieldDescriptor::CppType.
+ int type_;
+};
+
+// MapValueRef points to a map value.
+class LIBPROTOBUF_EXPORT MapValueRef {
+ public:
+ MapValueRef() : data_(NULL), type_(0) {}
+
+ void SetInt64Value(int64 value) {
+ TYPE_CHECK(FieldDescriptor::CPPTYPE_INT64,
+ "MapValueRef::SetInt64Value");
+ *reinterpret_cast<int64*>(data_) = value;
+ }
+ void SetUInt64Value(uint64 value) {
+ TYPE_CHECK(FieldDescriptor::CPPTYPE_UINT64,
+ "MapValueRef::SetUInt64Value");
+ *reinterpret_cast<uint64*>(data_) = value;
+ }
+ void SetInt32Value(int32 value) {
+ TYPE_CHECK(FieldDescriptor::CPPTYPE_INT32,
+ "MapValueRef::SetInt32Value");
+ *reinterpret_cast<int32*>(data_) = value;
+ }
+ void SetUInt32Value(uint32 value) {
+ TYPE_CHECK(FieldDescriptor::CPPTYPE_UINT32,
+ "MapValueRef::SetUInt32Value");
+ *reinterpret_cast<uint32*>(data_) = value;
+ }
+ void SetBoolValue(bool value) {
+ TYPE_CHECK(FieldDescriptor::CPPTYPE_BOOL,
+ "MapValueRef::SetBoolValue");
+ *reinterpret_cast<bool*>(data_) = value;
+ }
+ // TODO(jieluo) - Checks that enum is member.
+ void SetEnumValue(int value) {
+ TYPE_CHECK(FieldDescriptor::CPPTYPE_ENUM,
+ "MapValueRef::SetEnumValue");
+ *reinterpret_cast<int*>(data_) = value;
+ }
+ void SetStringValue(const string& value) {
+ TYPE_CHECK(FieldDescriptor::CPPTYPE_STRING,
+ "MapValueRef::SetStringValue");
+ *reinterpret_cast<string*>(data_) = value;
+ }
+ void SetFloatValue(float value) {
+ TYPE_CHECK(FieldDescriptor::CPPTYPE_FLOAT,
+ "MapValueRef::SetFloatValue");
+ *reinterpret_cast<float*>(data_) = value;
+ }
+ void SetDoubleValue(double value) {
+ TYPE_CHECK(FieldDescriptor::CPPTYPE_DOUBLE,
+ "MapValueRef::SetDoubleValue");
+ *reinterpret_cast<double*>(data_) = value;
+ }
+
+ int64 GetInt64Value() const {
+ TYPE_CHECK(FieldDescriptor::CPPTYPE_INT64,
+ "MapValueRef::GetInt64Value");
+ return *reinterpret_cast<int64*>(data_);
+ }
+ uint64 GetUInt64Value() const {
+ TYPE_CHECK(FieldDescriptor::CPPTYPE_UINT64,
+ "MapValueRef::GetUInt64Value");
+ return *reinterpret_cast<uint64*>(data_);
+ }
+ int32 GetInt32Value() const {
+ TYPE_CHECK(FieldDescriptor::CPPTYPE_INT32,
+ "MapValueRef::GetInt32Value");
+ return *reinterpret_cast<int32*>(data_);
+ }
+ uint32 GetUInt32Value() const {
+ TYPE_CHECK(FieldDescriptor::CPPTYPE_UINT32,
+ "MapValueRef::GetUInt32Value");
+ return *reinterpret_cast<uint32*>(data_);
+ }
+ bool GetBoolValue() const {
+ TYPE_CHECK(FieldDescriptor::CPPTYPE_BOOL,
+ "MapValueRef::GetBoolValue");
+ return *reinterpret_cast<bool*>(data_);
+ }
+ int GetEnumValue() const {
+ TYPE_CHECK(FieldDescriptor::CPPTYPE_ENUM,
+ "MapValueRef::GetEnumValue");
+ return *reinterpret_cast<int*>(data_);
+ }
+ const string& GetStringValue() const {
+ TYPE_CHECK(FieldDescriptor::CPPTYPE_STRING,
+ "MapValueRef::GetStringValue");
+ return *reinterpret_cast<string*>(data_);
+ }
+ float GetFloatValue() const {
+ TYPE_CHECK(FieldDescriptor::CPPTYPE_FLOAT,
+ "MapValueRef::GetFloatValue");
+ return *reinterpret_cast<float*>(data_);
+ }
+ double GetDoubleValue() const {
+ TYPE_CHECK(FieldDescriptor::CPPTYPE_DOUBLE,
+ "MapValueRef::GetDoubleValue");
+ return *reinterpret_cast<double*>(data_);
+ }
+
+ const Message& GetMessageValue() const {
+ TYPE_CHECK(FieldDescriptor::CPPTYPE_MESSAGE,
+ "MapValueRef::GetMessageValue");
+ return *reinterpret_cast<Message*>(data_);
+ }
+
+ Message* MutableMessageValue() {
+ TYPE_CHECK(FieldDescriptor::CPPTYPE_MESSAGE,
+ "MapValueRef::MutableMessageValue");
+ return reinterpret_cast<Message*>(data_);
+ }
+
+ private:
+ template <typename K, typename V,
+ internal::WireFormatLite::FieldType key_wire_type,
+ internal::WireFormatLite::FieldType value_wire_type,
+ int default_enum_value>
+ friend class internal::MapField;
+ template <typename K, typename V>
+ friend class internal::TypeDefinedMapFieldBase;
+ friend class MapIterator;
+ friend class internal::GeneratedMessageReflection;
+ friend class internal::DynamicMapField;
+
+ void SetType(FieldDescriptor::CppType type) {
+ type_ = type;
+ }
+
+ FieldDescriptor::CppType type() const {
+ if (type_ == 0 || data_ == NULL) {
+ GOOGLE_LOG(FATAL)
+ << "Protocol Buffer map usage error:\n"
+ << "MapValueRef::type MapValueRef is not initialized.";
+ }
+ return (FieldDescriptor::CppType)type_;
+ }
+ void SetValue(const void* val) {
+ data_ = const_cast<void*>(val);
+ }
+ void CopyFrom(const MapValueRef& other) {
+ type_ = other.type_;
+ data_ = other.data_;
+ }
+ // Only used in DynamicMapField
+ void DeleteData() {
+ switch (type_) {
+#define HANDLE_TYPE(CPPTYPE, TYPE) \
+ case google::protobuf::FieldDescriptor::CPPTYPE_##CPPTYPE: { \
+ delete reinterpret_cast<TYPE*>(data_); \
+ break; \
+ }
+ HANDLE_TYPE(INT32, int32);
+ HANDLE_TYPE(INT64, int64);
+ HANDLE_TYPE(UINT32, uint32);
+ HANDLE_TYPE(UINT64, uint64);
+ HANDLE_TYPE(DOUBLE, double);
+ HANDLE_TYPE(FLOAT, float);
+ HANDLE_TYPE(BOOL, bool);
+ HANDLE_TYPE(STRING, string);
+ HANDLE_TYPE(ENUM, int32);
+ HANDLE_TYPE(MESSAGE, Message);
+#undef HANDLE_TYPE
+ }
+ }
+ // data_ point to a map value. MapValueRef does not
+ // own this value.
+ void* data_;
+ // type_ is 0 or a valid FieldDescriptor::CppType.
+ int type_;
+};
+
+#undef TYPE_CHECK
+
+// This is the class for google::protobuf::Map's internal value_type. Instead of using
+// std::pair as value_type, we use this class which provides us more control of
+// its process of construction and destruction.
+template <typename Key, typename T>
+class MapPair {
+ public:
+ typedef const Key first_type;
+ typedef T second_type;
+
+ MapPair(const Key& other_first, const T& other_second)
+ : first(other_first), second(other_second) {}
+ explicit MapPair(const Key& other_first) : first(other_first), second() {}
+ MapPair(const MapPair& other)
+ : first(other.first), second(other.second) {}
+
+ ~MapPair() {}
+
+ // Implicitly convertible to std::pair of compatible types.
+ template <typename T1, typename T2>
+ operator std::pair<T1, T2>() const {
+ return std::pair<T1, T2>(first, second);
+ }
+
+ const Key first;
+ T second;
+
+ private:
+ friend class ::google::protobuf::Arena;
+ friend class Map<Key, T>;
+};
+
+// google::protobuf::Map is an associative container type used to store protobuf map
+// fields. Each Map instance may or may not use a different hash function, a
+// different iteration order, and so on. E.g., please don't examine
+// implementation details to decide if the following would work:
+// Map<int, int> m0, m1;
+// m0[0] = m1[0] = m0[1] = m1[1] = 0;
+// assert(m0.begin()->first == m1.begin()->first); // Bug!
+//
+// Map's interface is similar to std::unordered_map, except that Map is not
+// designed to play well with exceptions.
+template <typename Key, typename T>
+class Map {
+ public:
+ typedef Key key_type;
+ typedef T mapped_type;
+ typedef MapPair<Key, T> value_type;
+
+ typedef value_type* pointer;
+ typedef const value_type* const_pointer;
+ typedef value_type& reference;
+ typedef const value_type& const_reference;
+
+ typedef size_t size_type;
+ typedef hash<Key> hasher;
+
+ explicit Map(bool old_style = true)
+ : arena_(NULL),
+ default_enum_value_(0),
+ old_style_(old_style) {
+ Init();
+ }
+ explicit Map(Arena* arena, bool old_style = true)
+ : arena_(arena),
+ default_enum_value_(0),
+ old_style_(old_style) {
+ Init();
+ }
+ Map(const Map& other)
+ : arena_(NULL),
+ default_enum_value_(other.default_enum_value_),
+ old_style_(other.old_style_) {
+ Init();
+ insert(other.begin(), other.end());
+ }
+ template <class InputIt>
+ Map(const InputIt& first, const InputIt& last, bool old_style = true)
+ : arena_(NULL),
+ default_enum_value_(0),
+ old_style_(old_style) {
+ Init();
+ insert(first, last);
+ }
+
+ ~Map() {
+ clear();
+ if (arena_ == NULL) {
+ if (old_style_)
+ delete deprecated_elements_;
+ else
+ delete elements_;
+ }
+ }
+
+ private:
+ void Init() {
+ if (old_style_)
+ deprecated_elements_ = Arena::Create<DeprecatedInnerMap>(
+ arena_, 0, hasher(), equal_to<Key>(),
+ MapAllocator<std::pair<const Key, MapPair<Key, T>*> >(arena_));
+ else
+ elements_ =
+ Arena::Create<InnerMap>(arena_, 0, hasher(), Allocator(arena_));
+ }
+
+ // re-implement std::allocator to use arena allocator for memory allocation.
+ // Used for google::protobuf::Map implementation. Users should not use this class
+ // directly.
+ template <typename U>
+ class MapAllocator {
+ public:
+ typedef U value_type;
+ typedef value_type* pointer;
+ typedef const value_type* const_pointer;
+ typedef value_type& reference;
+ typedef const value_type& const_reference;
+ typedef size_t size_type;
+ typedef ptrdiff_t difference_type;
+
+ MapAllocator() : arena_(NULL) {}
+ explicit MapAllocator(Arena* arena) : arena_(arena) {}
+ template <typename X>
+ MapAllocator(const MapAllocator<X>& allocator)
+ : arena_(allocator.arena()) {}
+
+ pointer allocate(size_type n, const_pointer hint = 0) {
+ // If arena is not given, malloc needs to be called which doesn't
+ // construct element object.
+ if (arena_ == NULL) {
+ return reinterpret_cast<pointer>(malloc(n * sizeof(value_type)));
+ } else {
+ return reinterpret_cast<pointer>(
+ Arena::CreateArray<uint8>(arena_, n * sizeof(value_type)));
+ }
+ }
+
+ void deallocate(pointer p, size_type n) {
+ if (arena_ == NULL) {
+ free(p);
+ }
+ }
+
+#if __cplusplus >= 201103L && !defined(GOOGLE_PROTOBUF_OS_APPLE) && \
+ !defined(GOOGLE_PROTOBUF_OS_NACL) && \
+ !defined(GOOGLE_PROTOBUF_OS_ANDROID) && \
+ !defined(GOOGLE_PROTOBUF_OS_EMSCRIPTEN)
+ template<class NodeType, class... Args>
+ void construct(NodeType* p, Args&&... args) {
+ // Clang 3.6 doesn't compile static casting to void* directly. (Issue
+ // #1266) According C++ standard 5.2.9/1: "The static_cast operator shall
+ // not cast away constness". So first the maybe const pointer is casted to
+ // const void* and after the const void* is const casted.
+ new (const_cast<void*>(static_cast<const void*>(p)))
+ NodeType(std::forward<Args>(args)...);
+ }
+
+ template<class NodeType>
+ void destroy(NodeType* p) {
+ p->~NodeType();
+ }
+#else
+ void construct(pointer p, const_reference t) { new (p) value_type(t); }
+
+ void destroy(pointer p) { p->~value_type(); }
+#endif
+
+ template <typename X>
+ struct rebind {
+ typedef MapAllocator<X> other;
+ };
+
+ template <typename X>
+ bool operator==(const MapAllocator<X>& other) const {
+ return arena_ == other.arena_;
+ }
+
+ template <typename X>
+ bool operator!=(const MapAllocator<X>& other) const {
+ return arena_ != other.arena_;
+ }
+
+ // To support Visual Studio 2008
+ size_type max_size() const {
+ return std::numeric_limits<size_type>::max();
+ }
+
+ // To support gcc-4.4, which does not properly
+ // support templated friend classes
+ Arena* arena() const {
+ return arena_;
+ }
+
+ private:
+ typedef void DestructorSkippable_;
+ Arena* const arena_;
+ };
+
+ // InnerMap's key type is Key and its value type is value_type*. We use a
+ // custom class here and for Node, below, to ensure that k_ is at offset 0,
+ // allowing safe conversion from pointer to Node to pointer to Key, and vice
+ // versa when appropriate.
+ class KeyValuePair {
+ public:
+ KeyValuePair(const Key& k, value_type* v) : k_(k), v_(v) {}
+
+ const Key& key() const { return k_; }
+ Key& key() { return k_; }
+ value_type* const value() const { return v_; }
+ value_type*& value() { return v_; }
+
+ private:
+ Key k_;
+ value_type* v_;
+ };
+
+ typedef MapAllocator<KeyValuePair> Allocator;
+
+ // InnerMap is a generic hash-based map. It doesn't contain any
+ // protocol-buffer-specific logic. It is a chaining hash map with the
+ // additional feature that some buckets can be converted to use an ordered
+ // container. This ensures O(lg n) bounds on find, insert, and erase, while
+ // avoiding the overheads of ordered containers most of the time.
+ //
+ // The implementation doesn't need the full generality of unordered_map,
+ // and it doesn't have it. More bells and whistles can be added as needed.
+ // Some implementation details:
+ // 1. The hash function has type hasher and the equality function
+ // equal_to<Key>. We inherit from hasher to save space
+ // (empty-base-class optimization).
+ // 2. The number of buckets is a power of two.
+ // 3. Buckets are converted to trees in pairs: if we convert bucket b then
+ // buckets b and b^1 will share a tree. Invariant: buckets b and b^1 have
+ // the same non-NULL value iff they are sharing a tree. (An alternative
+ // implementation strategy would be to have a tag bit per bucket.)
+ // 4. As is typical for hash_map and such, the Keys and Values are always
+ // stored in linked list nodes. Pointers to elements are never invalidated
+ // until the element is deleted.
+ // 5. The trees' payload type is pointer to linked-list node. Tree-converting
+ // a bucket doesn't copy Key-Value pairs.
+ // 6. Once we've tree-converted a bucket, it is never converted back. However,
+ // the items a tree contains may wind up assigned to trees or lists upon a
+ // rehash.
+ // 7. The code requires no C++ features from C++11 or later.
+ // 8. Mutations to a map do not invalidate the map's iterators, pointers to
+ // elements, or references to elements.
+ // 9. Except for erase(iterator), any non-const method can reorder iterators.
+ class InnerMap : private hasher {
+ public:
+ typedef value_type* Value;
+
+ InnerMap(size_type n, hasher h, Allocator alloc)
+ : hasher(h),
+ num_elements_(0),
+ seed_(Seed()),
+ table_(NULL),
+ alloc_(alloc) {
+ n = TableSize(n);
+ table_ = CreateEmptyTable(n);
+ num_buckets_ = index_of_first_non_null_ = n;
+ }
+
+ ~InnerMap() {
+ if (table_ != NULL) {
+ clear();
+ Dealloc<void*>(table_, num_buckets_);
+ }
+ }
+
+ private:
+ enum { kMinTableSize = 8 };
+
+ // Linked-list nodes, as one would expect for a chaining hash table.
+ struct Node {
+ KeyValuePair kv;
+ Node* next;
+ };
+
+ // This is safe only if the given pointer is known to point to a Key that is
+ // part of a Node.
+ static Node* NodePtrFromKeyPtr(Key* k) {
+ return reinterpret_cast<Node*>(k);
+ }
+
+ static Key* KeyPtrFromNodePtr(Node* node) { return &node->kv.key(); }
+
+ // Trees. The payload type is pointer to Key, so that we can query the tree
+ // with Keys that are not in any particular data structure. When we insert,
+ // though, the pointer is always pointing to a Key that is inside a Node.
+ struct KeyCompare {
+ bool operator()(const Key* n0, const Key* n1) const { return *n0 < *n1; }
+ };
+ typedef typename Allocator::template rebind<Key*>::other KeyPtrAllocator;
+ typedef std::set<Key*, KeyCompare, KeyPtrAllocator> Tree;
+
+ // iterator and const_iterator are instantiations of iterator_base.
+ template <typename KeyValueType>
+ class iterator_base {
+ public:
+ typedef KeyValueType& reference;
+ typedef KeyValueType* pointer;
+ typedef typename Tree::iterator TreeIterator;
+
+ // Invariants:
+ // node_ is always correct. This is handy because the most common
+ // operations are operator* and operator-> and they only use node_.
+ // When node_ is set to a non-NULL value, all the other non-const fields
+ // are updated to be correct also, but those fields can become stale
+ // if the underlying map is modified. When those fields are needed they
+ // are rechecked, and updated if necessary.
+ iterator_base() : node_(NULL) {}
+
+ explicit iterator_base(const InnerMap* m) : m_(m) {
+ SearchFrom(m->index_of_first_non_null_);
+ }
+
+ // Any iterator_base can convert to any other. This is overkill, and we
+ // rely on the enclosing class to use it wisely. The standard "iterator
+ // can convert to const_iterator" is OK but the reverse direction is not.
+ template <typename U>
+ explicit iterator_base(const iterator_base<U>& it)
+ : node_(it.node_),
+ m_(it.m_),
+ bucket_index_(it.bucket_index_),
+ tree_it_(it.tree_it_) {}
+
+ iterator_base(Node* n, const InnerMap* m, size_type index)
+ : node_(n),
+ m_(m),
+ bucket_index_(index) {}
+
+ iterator_base(TreeIterator tree_it, const InnerMap* m, size_type index)
+ : node_(NodePtrFromKeyPtr(*tree_it)),
+ m_(m),
+ bucket_index_(index),
+ tree_it_(tree_it) {
+ // Invariant: iterators that use tree_it_ have an even bucket_index_.
+ GOOGLE_DCHECK_EQ(bucket_index_ % 2, 0);
+ }
+
+ // Advance through buckets, looking for the first that isn't empty.
+ // If nothing non-empty is found then leave node_ == NULL.
+ void SearchFrom(size_type start_bucket) {
+ GOOGLE_DCHECK(m_->index_of_first_non_null_ == m_->num_buckets_ ||
+ m_->table_[m_->index_of_first_non_null_] != NULL);
+ node_ = NULL;
+ for (bucket_index_ = start_bucket; bucket_index_ < m_->num_buckets_;
+ bucket_index_++) {
+ if (m_->TableEntryIsNonEmptyList(bucket_index_)) {
+ node_ = static_cast<Node*>(m_->table_[bucket_index_]);
+ break;
+ } else if (m_->TableEntryIsTree(bucket_index_)) {
+ Tree* tree = static_cast<Tree*>(m_->table_[bucket_index_]);
+ GOOGLE_DCHECK(!tree->empty());
+ tree_it_ = tree->begin();
+ node_ = NodePtrFromKeyPtr(*tree_it_);
+ break;
+ }
+ }
+ }
+
+ reference operator*() const { return node_->kv; }
+ pointer operator->() const { return &(operator*()); }
+
+ friend bool operator==(const iterator_base& a, const iterator_base& b) {
+ return a.node_ == b.node_;
+ }
+ friend bool operator!=(const iterator_base& a, const iterator_base& b) {
+ return a.node_ != b.node_;
+ }
+
+ iterator_base& operator++() {
+ if (node_->next == NULL) {
+ const bool is_list = revalidate_if_necessary();
+ if (is_list) {
+ SearchFrom(bucket_index_ + 1);
+ } else {
+ GOOGLE_DCHECK_EQ(bucket_index_ & 1, 0);
+ Tree* tree = static_cast<Tree*>(m_->table_[bucket_index_]);
+ if (++tree_it_ == tree->end()) {
+ SearchFrom(bucket_index_ + 2);
+ } else {
+ node_ = NodePtrFromKeyPtr(*tree_it_);
+ }
+ }
+ } else {
+ node_ = node_->next;
+ }
+ return *this;
+ }
+
+ iterator_base operator++(int /* unused */) {
+ iterator_base tmp = *this;
+ ++*this;
+ return tmp;
+ }
+
+ // Assumes node_ and m_ are correct and non-NULL, but other fields may be
+ // stale. Fix them as needed. Then return true iff node_ points to a
+ // Node in a list.
+ bool revalidate_if_necessary() {
+ GOOGLE_DCHECK(node_ != NULL && m_ != NULL);
+ // Force bucket_index_ to be in range.
+ bucket_index_ &= (m_->num_buckets_ - 1);
+ // Common case: the bucket we think is relevant points to node_.
+ if (m_->table_[bucket_index_] == static_cast<void*>(node_))
+ return true;
+ // Less common: the bucket is a linked list with node_ somewhere in it,
+ // but not at the head.
+ if (m_->TableEntryIsNonEmptyList(bucket_index_)) {
+ Node* l = static_cast<Node*>(m_->table_[bucket_index_]);
+ while ((l = l->next) != NULL) {
+ if (l == node_) {
+ return true;
+ }
+ }
+ }
+ // Well, bucket_index_ still might be correct, but probably
+ // not. Revalidate just to be sure. This case is rare enough that we
+ // don't worry about potential optimizations, such as having a custom
+ // find-like method that compares Node* instead of const Key&.
+ iterator_base i(m_->find(*KeyPtrFromNodePtr(node_)));
+ bucket_index_ = i.bucket_index_;
+ tree_it_ = i.tree_it_;
+ return m_->TableEntryIsList(bucket_index_);
+ }
+
+ Node* node_;
+ const InnerMap* m_;
+ size_type bucket_index_;
+ TreeIterator tree_it_;
+ };
+
+ public:
+ typedef iterator_base<KeyValuePair> iterator;
+ typedef iterator_base<const KeyValuePair> const_iterator;
+
+ iterator begin() { return iterator(this); }
+ iterator end() { return iterator(); }
+ const_iterator begin() const { return const_iterator(this); }
+ const_iterator end() const { return const_iterator(); }
+
+ void clear() {
+ for (size_type b = 0; b < num_buckets_; b++) {
+ if (TableEntryIsNonEmptyList(b)) {
+ Node* node = static_cast<Node*>(table_[b]);
+ table_[b] = NULL;
+ do {
+ Node* next = node->next;
+ DestroyNode(node);
+ node = next;
+ } while (node != NULL);
+ } else if (TableEntryIsTree(b)) {
+ Tree* tree = static_cast<Tree*>(table_[b]);
+ GOOGLE_DCHECK(table_[b] == table_[b + 1] && (b & 1) == 0);
+ table_[b] = table_[b + 1] = NULL;
+ typename Tree::iterator tree_it = tree->begin();
+ do {
+ Node* node = NodePtrFromKeyPtr(*tree_it);
+ typename Tree::iterator next = tree_it;
+ ++next;
+ tree->erase(tree_it);
+ DestroyNode(node);
+ tree_it = next;
+ } while (tree_it != tree->end());
+ DestroyTree(tree);
+ b++;
+ }
+ }
+ num_elements_ = 0;
+ index_of_first_non_null_ = num_buckets_;
+ }
+
+ const hasher& hash_function() const { return *this; }
+
+ static size_type max_size() {
+ return static_cast<size_type>(1) << (sizeof(void**) >= 8 ? 60 : 28);
+ }
+ size_type size() const { return num_elements_; }
+ bool empty() const { return size() == 0; }
+
+ iterator find(const Key& k) { return iterator(FindHelper(k).first); }
+ const_iterator find(const Key& k) const { return FindHelper(k).first; }
+
+ // In traditional C++ style, this performs "insert if not present."
+ std::pair<iterator, bool> insert(const KeyValuePair& kv) {
+ std::pair<const_iterator, size_type> p = FindHelper(kv.key());
+ // Case 1: key was already present.
+ if (p.first.node_ != NULL)
+ return std::make_pair(iterator(p.first), false);
+ // Case 2: insert.
+ if (ResizeIfLoadIsOutOfRange(num_elements_ + 1)) {
+ p = FindHelper(kv.key());
+ }
+ const size_type b = p.second; // bucket number
+ Node* node = Alloc<Node>(1);
+ alloc_.construct(&node->kv, kv);
+ iterator result = InsertUnique(b, node);
+ ++num_elements_;
+ return std::make_pair(result, true);
+ }
+
+ // The same, but if an insertion is necessary then the value portion of the
+ // inserted key-value pair is left uninitialized.
+ std::pair<iterator, bool> insert(const Key& k) {
+ std::pair<const_iterator, size_type> p = FindHelper(k);
+ // Case 1: key was already present.
+ if (p.first.node_ != NULL)
+ return std::make_pair(iterator(p.first), false);
+ // Case 2: insert.
+ if (ResizeIfLoadIsOutOfRange(num_elements_ + 1)) {
+ p = FindHelper(k);
+ }
+ const size_type b = p.second; // bucket number
+ Node* node = Alloc<Node>(1);
+ typedef typename Allocator::template rebind<Key>::other KeyAllocator;
+ KeyAllocator(alloc_).construct(&node->kv.key(), k);
+ iterator result = InsertUnique(b, node);
+ ++num_elements_;
+ return std::make_pair(result, true);
+ }
+
+ Value& operator[](const Key& k) {
+ KeyValuePair kv(k, Value());
+ return insert(kv).first->value();
+ }
+
+ void erase(iterator it) {
+ GOOGLE_DCHECK_EQ(it.m_, this);
+ const bool is_list = it.revalidate_if_necessary();
+ size_type b = it.bucket_index_;
+ Node* const item = it.node_;
+ if (is_list) {
+ GOOGLE_DCHECK(TableEntryIsNonEmptyList(b));
+ Node* head = static_cast<Node*>(table_[b]);
+ head = EraseFromLinkedList(item, head);
+ table_[b] = static_cast<void*>(head);
+ } else {
+ GOOGLE_DCHECK(TableEntryIsTree(b));
+ Tree* tree = static_cast<Tree*>(table_[b]);
+ tree->erase(it.tree_it_);
+ if (tree->empty()) {
+ // Force b to be the minimum of b and b ^ 1. This is important
+ // only because we want index_of_first_non_null_ to be correct.
+ b &= ~static_cast<size_type>(1);
+ DestroyTree(tree);
+ table_[b] = table_[b + 1] = NULL;
+ }
+ }
+ DestroyNode(item);
+ --num_elements_;
+ if (GOOGLE_PREDICT_FALSE(b == index_of_first_non_null_)) {
+ while (index_of_first_non_null_ < num_buckets_ &&
+ table_[index_of_first_non_null_] == NULL) {
+ ++index_of_first_non_null_;
+ }
+ }
+ }
+
+ private:
+ std::pair<const_iterator, size_type> FindHelper(const Key& k) const {
+ size_type b = BucketNumber(k);
+ if (TableEntryIsNonEmptyList(b)) {
+ Node* node = static_cast<Node*>(table_[b]);
+ do {
+ if (IsMatch(*KeyPtrFromNodePtr(node), k)) {
+ return std::make_pair(const_iterator(node, this, b), b);
+ } else {
+ node = node->next;
+ }
+ } while (node != NULL);
+ } else if (TableEntryIsTree(b)) {
+ GOOGLE_DCHECK_EQ(table_[b], table_[b ^ 1]);
+ b &= ~static_cast<size_t>(1);
+ Tree* tree = static_cast<Tree*>(table_[b]);
+ Key* key = const_cast<Key*>(&k);
+ typename Tree::iterator tree_it = tree->find(key);
+ if (tree_it != tree->end()) {
+ return std::make_pair(const_iterator(tree_it, this, b), b);
+ }
+ }
+ return std::make_pair(end(), b);
+ }
+
+ // Insert the given Node in bucket b. If that would make bucket b too big,
+ // and bucket b is not a tree, create a tree for buckets b and b^1 to share.
+ // Requires count(*KeyPtrFromNodePtr(node)) == 0 and that b is the correct
+ // bucket. num_elements_ is not modified.
+ iterator InsertUnique(size_type b, Node* node) {
+ GOOGLE_DCHECK(index_of_first_non_null_ == num_buckets_ ||
+ table_[index_of_first_non_null_] != NULL);
+ // In practice, the code that led to this point may have already
+ // determined whether we are inserting into an empty list, a short list,
+ // or whatever. But it's probably cheap enough to recompute that here;
+ // it's likely that we're inserting into an empty or short list.
+ iterator result;
+ GOOGLE_DCHECK(find(*KeyPtrFromNodePtr(node)) == end());
+ if (TableEntryIsEmpty(b)) {
+ result = InsertUniqueInList(b, node);
+ } else if (TableEntryIsNonEmptyList(b)) {
+ if (GOOGLE_PREDICT_FALSE(TableEntryIsTooLong(b))) {
+ TreeConvert(b);
+ result = InsertUniqueInTree(b, node);
+ GOOGLE_DCHECK_EQ(result.bucket_index_, b & ~static_cast<size_type>(1));
+ } else {
+ // Insert into a pre-existing list. This case cannot modify
+ // index_of_first_non_null_, so we skip the code to update it.
+ return InsertUniqueInList(b, node);
+ }
+ } else {
+ // Insert into a pre-existing tree. This case cannot modify
+ // index_of_first_non_null_, so we skip the code to update it.
+ return InsertUniqueInTree(b, node);
+ }
+ index_of_first_non_null_ =
+ std::min(index_of_first_non_null_, result.bucket_index_);
+ return result;
+ }
+
+ // Helper for InsertUnique. Handles the case where bucket b is a
+ // not-too-long linked list.
+ iterator InsertUniqueInList(size_type b, Node* node) {
+ node->next = static_cast<Node*>(table_[b]);
+ table_[b] = static_cast<void*>(node);
+ return iterator(node, this, b);
+ }
+
+ // Helper for InsertUnique. Handles the case where bucket b points to a
+ // Tree.
+ iterator InsertUniqueInTree(size_type b, Node* node) {
+ GOOGLE_DCHECK_EQ(table_[b], table_[b ^ 1]);
+ // Maintain the invariant that node->next is NULL for all Nodes in Trees.
+ node->next = NULL;
+ return iterator(static_cast<Tree*>(table_[b])
+ ->insert(KeyPtrFromNodePtr(node))
+ .first,
+ this, b & ~static_cast<size_t>(1));
+ }
+
+ // Returns whether it did resize. Currently this is only used when
+ // num_elements_ increases, though it could be used in other situations.
+ // It checks for load too low as well as load too high: because any number
+ // of erases can occur between inserts, the load could be as low as 0 here.
+ // Resizing to a lower size is not always helpful, but failing to do so can
+ // destroy the expected big-O bounds for some operations. By having the
+ // policy that sometimes we resize down as well as up, clients can easily
+ // keep O(size()) = O(number of buckets) if they want that.
+ bool ResizeIfLoadIsOutOfRange(size_type new_size) {
+ const size_type kMaxMapLoadTimes16 = 12; // controls RAM vs CPU tradeoff
+ const size_type hi_cutoff = num_buckets_ * kMaxMapLoadTimes16 / 16;
+ const size_type lo_cutoff = hi_cutoff / 4;
+ // We don't care how many elements are in trees. If a lot are,
+ // we may resize even though there are many empty buckets. In
+ // practice, this seems fine.
+ if (GOOGLE_PREDICT_FALSE(new_size >= hi_cutoff)) {
+ if (num_buckets_ <= max_size() / 2) {
+ Resize(num_buckets_ * 2);
+ return true;
+ }
+ } else if (GOOGLE_PREDICT_FALSE(new_size <= lo_cutoff &&
+ num_buckets_ > kMinTableSize)) {
+ size_type lg2_of_size_reduction_factor = 1;
+ // It's possible we want to shrink a lot here... size() could even be 0.
+ // So, estimate how much to shrink by making sure we don't shrink so
+ // much that we would need to grow the table after a few inserts.
+ const size_type hypothetical_size = new_size * 5 / 4 + 1;
+ while ((hypothetical_size << lg2_of_size_reduction_factor) <
+ hi_cutoff) {
+ ++lg2_of_size_reduction_factor;
+ }
+ size_type new_num_buckets = std::max<size_type>(
+ kMinTableSize, num_buckets_ >> lg2_of_size_reduction_factor);
+ if (new_num_buckets != num_buckets_) {
+ Resize(new_num_buckets);
+ return true;
+ }
+ }
+ return false;
+ }
+
+ // Resize to the given number of buckets.
+ void Resize(size_t new_num_buckets) {
+ GOOGLE_DCHECK_GE(new_num_buckets, kMinTableSize);
+ void** const old_table = table_;
+ const size_type old_table_size = num_buckets_;
+ num_buckets_ = new_num_buckets;
+ table_ = CreateEmptyTable(num_buckets_);
+ const size_type start = index_of_first_non_null_;
+ index_of_first_non_null_ = num_buckets_;
+ for (size_type i = start; i < old_table_size; i++) {
+ if (TableEntryIsNonEmptyList(old_table, i)) {
+ TransferList(old_table, i);
+ } else if (TableEntryIsTree(old_table, i)) {
+ TransferTree(old_table, i++);
+ }
+ }
+ Dealloc<void*>(old_table, old_table_size);
+ }
+
+ void TransferList(void* const* table, size_type index) {
+ Node* node = static_cast<Node*>(table[index]);
+ do {
+ Node* next = node->next;
+ InsertUnique(BucketNumber(*KeyPtrFromNodePtr(node)), node);
+ node = next;
+ } while (node != NULL);
+ }
+
+ void TransferTree(void* const* table, size_type index) {
+ Tree* tree = static_cast<Tree*>(table[index]);
+ typename Tree::iterator tree_it = tree->begin();
+ do {
+ Node* node = NodePtrFromKeyPtr(*tree_it);
+ InsertUnique(BucketNumber(**tree_it), node);
+ } while (++tree_it != tree->end());
+ DestroyTree(tree);
+ }
+
+ Node* EraseFromLinkedList(Node* item, Node* head) {
+ if (head == item) {
+ return head->next;
+ } else {
+ head->next = EraseFromLinkedList(item, head->next);
+ return head;
+ }
+ }
+
+ bool TableEntryIsEmpty(size_type b) const {
+ return TableEntryIsEmpty(table_, b);
+ }
+ bool TableEntryIsNonEmptyList(size_type b) const {
+ return TableEntryIsNonEmptyList(table_, b);
+ }
+ bool TableEntryIsTree(size_type b) const {
+ return TableEntryIsTree(table_, b);
+ }
+ bool TableEntryIsList(size_type b) const {
+ return TableEntryIsList(table_, b);
+ }
+ static bool TableEntryIsEmpty(void* const* table, size_type b) {
+ return table[b] == NULL;
+ }
+ static bool TableEntryIsNonEmptyList(void* const* table, size_type b) {
+ return table[b] != NULL && table[b] != table[b ^ 1];
+ }
+ static bool TableEntryIsTree(void* const* table, size_type b) {
+ return !TableEntryIsEmpty(table, b) &&
+ !TableEntryIsNonEmptyList(table, b);
+ }
+ static bool TableEntryIsList(void* const* table, size_type b) {
+ return !TableEntryIsTree(table, b);
+ }
+
+ void TreeConvert(size_type b) {
+ GOOGLE_DCHECK(!TableEntryIsTree(b) && !TableEntryIsTree(b ^ 1));
+ typename Allocator::template rebind<Tree>::other tree_allocator(alloc_);
+ Tree* tree = tree_allocator.allocate(1);
+ // We want to use the three-arg form of construct, if it exists, but we
+ // create a temporary and use the two-arg construct that's known to exist.
+ // It's clunky, but the compiler should be able to generate more-or-less
+ // the same code.
+ tree_allocator.construct(tree,
+ Tree(KeyCompare(), KeyPtrAllocator(alloc_)));
+ // Now the tree is ready to use.
+ size_type count = CopyListToTree(b, tree) + CopyListToTree(b ^ 1, tree);
+ GOOGLE_DCHECK_EQ(count, tree->size());
+ table_[b] = table_[b ^ 1] = static_cast<void*>(tree);
+ }
+
+ // Copy a linked list in the given bucket to a tree.
+ // Returns the number of things it copied.
+ size_type CopyListToTree(size_type b, Tree* tree) {
+ size_type count = 0;
+ Node* node = static_cast<Node*>(table_[b]);
+ while (node != NULL) {
+ tree->insert(KeyPtrFromNodePtr(node));
+ ++count;
+ Node* next = node->next;
+ node->next = NULL;
+ node = next;
+ }
+ return count;
+ }
+
+ // Return whether table_[b] is a linked list that seems awfully long.
+ // Requires table_[b] to point to a non-empty linked list.
+ bool TableEntryIsTooLong(size_type b) {
+ const size_type kMaxLength = 8;
+ size_type count = 0;
+ Node* node = static_cast<Node*>(table_[b]);
+ do {
+ ++count;
+ node = node->next;
+ } while (node != NULL);
+ // Invariant: no linked list ever is more than kMaxLength in length.
+ GOOGLE_DCHECK_LE(count, kMaxLength);
+ return count >= kMaxLength;
+ }
+
+ size_type BucketNumber(const Key& k) const {
+ // We inherit from hasher, so one-arg operator() provides a hash function.
+ size_type h = (*const_cast<InnerMap*>(this))(k);
+ // To help prevent people from making assumptions about the hash function,
+ // we use the seed differently depending on NDEBUG. The default hash
+ // function, the seeding, etc., are all likely to change in the future.
+#ifndef NDEBUG
+ return (h * (seed_ | 1)) & (num_buckets_ - 1);
+#else
+ return (h + seed_) & (num_buckets_ - 1);
+#endif
+ }
+
+ bool IsMatch(const Key& k0, const Key& k1) const {
+ return std::equal_to<Key>()(k0, k1);
+ }
+
+ // Return a power of two no less than max(kMinTableSize, n).
+ // Assumes either n < kMinTableSize or n is a power of two.
+ size_type TableSize(size_type n) {
+ return n < kMinTableSize ? kMinTableSize : n;
+ }
+
+ // Use alloc_ to allocate an array of n objects of type U.
+ template <typename U>
+ U* Alloc(size_type n) {
+ typedef typename Allocator::template rebind<U>::other alloc_type;
+ return alloc_type(alloc_).allocate(n);
+ }
+
+ // Use alloc_ to deallocate an array of n objects of type U.
+ template <typename U>
+ void Dealloc(U* t, size_type n) {
+ typedef typename Allocator::template rebind<U>::other alloc_type;
+ alloc_type(alloc_).deallocate(t, n);
+ }
+
+ void DestroyNode(Node* node) {
+ alloc_.destroy(&node->kv);
+ Dealloc<Node>(node, 1);
+ }
+
+ void DestroyTree(Tree* tree) {
+ typename Allocator::template rebind<Tree>::other tree_allocator(alloc_);
+ tree_allocator.destroy(tree);
+ tree_allocator.deallocate(tree, 1);
+ }
+
+ void** CreateEmptyTable(size_type n) {
+ GOOGLE_DCHECK(n >= kMinTableSize);
+ GOOGLE_DCHECK_EQ(n & (n - 1), 0);
+ void** result = Alloc<void*>(n);
+ memset(result, 0, n * sizeof(result[0]));
+ return result;
+ }
+
+ // Return a randomish value.
+ size_type Seed() const {
+ // random_device can throw, so avoid it unless we are compiling with
+ // exceptions enabled.
+#if __cpp_exceptions && LANG_CXX11
+ try {
+ std::random_device rd;
+ std::knuth_b knuth(rd());
+ std::uniform_int_distribution<size_type> u;
+ return u(knuth);
+ } catch (...) { }
+#endif
+ size_type s = static_cast<size_type>(reinterpret_cast<uintptr_t>(this));
+#if defined(__x86_64__) && defined(__GNUC__)
+ uint32 hi, lo;
+ asm("rdtsc" : "=a" (lo), "=d" (hi));
+ s += ((static_cast<uint64>(hi) << 32) | lo);
+#endif
+ return s;
+ }
+
+ size_type num_elements_;
+ size_type num_buckets_;
+ size_type seed_;
+ size_type index_of_first_non_null_;
+ void** table_; // an array with num_buckets_ entries
+ Allocator alloc_;
+ GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(InnerMap);
+ }; // end of class InnerMap
+
+ typedef hash_map<Key, value_type*, hash<Key>, equal_to<Key>,
+ MapAllocator<std::pair<const Key, MapPair<Key, T>*> > >
+ DeprecatedInnerMap;
+
+ public:
+ // Iterators
+ class iterator_base {
+ public:
+ // We support "old style" and "new style" iterators for now. This is
+ // temporary. Also, for "iterator()" we have an unknown category.
+ // TODO(gpike): get rid of this.
+ enum IteratorStyle { kUnknown, kOld, kNew };
+ explicit iterator_base(IteratorStyle style) : iterator_style_(style) {}
+
+ bool OldStyle() const {
+ GOOGLE_DCHECK_NE(iterator_style_, kUnknown);
+ return iterator_style_ == kOld;
+ }
+ bool UnknownStyle() const {
+ return iterator_style_ == kUnknown;
+ }
+ bool SameStyle(const iterator_base& other) const {
+ return iterator_style_ == other.iterator_style_;
+ }
+
+ private:
+ IteratorStyle iterator_style_;
+ };
+
+ class const_iterator
+ : private iterator_base,
+ public std::iterator<std::forward_iterator_tag, value_type, ptrdiff_t,
+ const value_type*, const value_type&> {
+ typedef typename InnerMap::const_iterator InnerIt;
+ typedef typename DeprecatedInnerMap::const_iterator DeprecatedInnerIt;
+
+ public:
+ const_iterator() : iterator_base(iterator_base::kUnknown) {}
+ explicit const_iterator(const DeprecatedInnerIt& dit)
+ : iterator_base(iterator_base::kOld), dit_(dit) {}
+ explicit const_iterator(const InnerIt& it)
+ : iterator_base(iterator_base::kNew), it_(it) {}
+
+ const_iterator(const const_iterator& other)
+ : iterator_base(other), it_(other.it_), dit_(other.dit_) {}
+
+ const_reference operator*() const {
+ return this->OldStyle() ? *dit_->second : *it_->value();
+ }
+ const_pointer operator->() const { return &(operator*()); }
+
+ const_iterator& operator++() {
+ if (this->OldStyle())
+ ++dit_;
+ else
+ ++it_;
+ return *this;
+ }
+ const_iterator operator++(int) {
+ return this->OldStyle() ? const_iterator(dit_++) : const_iterator(it_++);
+ }
+
+ friend bool operator==(const const_iterator& a, const const_iterator& b) {
+ if (!a.SameStyle(b)) return false;
+ if (a.UnknownStyle()) return true;
+ return a.OldStyle() ? (a.dit_ == b.dit_) : (a.it_ == b.it_);
+ }
+ friend bool operator!=(const const_iterator& a, const const_iterator& b) {
+ return !(a == b);
+ }
+
+ private:
+ InnerIt it_;
+ DeprecatedInnerIt dit_;
+ };
+
+ class iterator : private iterator_base,
+ public std::iterator<std::forward_iterator_tag, value_type> {
+ typedef typename InnerMap::iterator InnerIt;
+ typedef typename DeprecatedInnerMap::iterator DeprecatedInnerIt;
+
+ public:
+ iterator() : iterator_base(iterator_base::kUnknown) {}
+ explicit iterator(const DeprecatedInnerIt& dit)
+ : iterator_base(iterator_base::kOld), dit_(dit) {}
+ explicit iterator(const InnerIt& it)
+ : iterator_base(iterator_base::kNew), it_(it) {}
+
+ reference operator*() const {
+ return this->OldStyle() ? *dit_->second : *it_->value();
+ }
+ pointer operator->() const { return &(operator*()); }
+
+ iterator& operator++() {
+ if (this->OldStyle())
+ ++dit_;
+ else
+ ++it_;
+ return *this;
+ }
+ iterator operator++(int) {
+ return this->OldStyle() ? iterator(dit_++) : iterator(it_++);
+ }
+
+ // Allow implicit conversion to const_iterator.
+ operator const_iterator() const {
+ return this->OldStyle() ?
+ const_iterator(typename DeprecatedInnerMap::const_iterator(dit_)) :
+ const_iterator(typename InnerMap::const_iterator(it_));
+ }
+
+ friend bool operator==(const iterator& a, const iterator& b) {
+ if (!a.SameStyle(b)) return false;
+ if (a.UnknownStyle()) return true;
+ return a.OldStyle() ? a.dit_ == b.dit_ : a.it_ == b.it_;
+ }
+ friend bool operator!=(const iterator& a, const iterator& b) {
+ return !(a == b);
+ }
+
+ private:
+ friend class Map;
+
+ InnerIt it_;
+ DeprecatedInnerIt dit_;
+ };
+
+ iterator begin() {
+ return old_style_ ? iterator(deprecated_elements_->begin())
+ : iterator(elements_->begin());
+ }
+ iterator end() {
+ return old_style_ ? iterator(deprecated_elements_->end())
+ : iterator(elements_->end());
+ }
+ const_iterator begin() const {
+ return old_style_ ? const_iterator(deprecated_elements_->begin())
+ : const_iterator(iterator(elements_->begin()));
+ }
+ const_iterator end() const {
+ return old_style_ ? const_iterator(deprecated_elements_->end())
+ : const_iterator(iterator(elements_->end()));
+ }
+ const_iterator cbegin() const { return begin(); }
+ const_iterator cend() const { return end(); }
+
+ // Capacity
+ size_type size() const {
+ return old_style_ ? deprecated_elements_->size() : elements_->size();
+ }
+ bool empty() const { return size() == 0; }
+
+ // Element access
+ T& operator[](const key_type& key) {
+ value_type** value =
+ old_style_ ? &(*deprecated_elements_)[key] : &(*elements_)[key];
+ if (*value == NULL) {
+ *value = CreateValueTypeInternal(key);
+ internal::MapValueInitializer<google::protobuf::is_proto_enum<T>::value,
+ T>::Initialize((*value)->second,
+ default_enum_value_);
+ }
+ return (*value)->second;
+ }
+ const T& at(const key_type& key) const {
+ const_iterator it = find(key);
+ GOOGLE_CHECK(it != end());
+ return it->second;
+ }
+ T& at(const key_type& key) {
+ iterator it = find(key);
+ GOOGLE_CHECK(it != end());
+ return it->second;
+ }
+
+ // Lookup
+ size_type count(const key_type& key) const {
+ if (find(key) != end()) assert(key == find(key)->first);
+ return find(key) == end() ? 0 : 1;
+ }
+ const_iterator find(const key_type& key) const {
+ return old_style_ ? const_iterator(deprecated_elements_->find(key))
+ : const_iterator(iterator(elements_->find(key)));
+ }
+ iterator find(const key_type& key) {
+ return old_style_ ? iterator(deprecated_elements_->find(key))
+ : iterator(elements_->find(key));
+ }
+ std::pair<const_iterator, const_iterator> equal_range(
+ const key_type& key) const {
+ const_iterator it = find(key);
+ if (it == end()) {
+ return std::pair<const_iterator, const_iterator>(it, it);
+ } else {
+ const_iterator begin = it++;
+ return std::pair<const_iterator, const_iterator>(begin, it);
+ }
+ }
+ std::pair<iterator, iterator> equal_range(const key_type& key) {
+ iterator it = find(key);
+ if (it == end()) {
+ return std::pair<iterator, iterator>(it, it);
+ } else {
+ iterator begin = it++;
+ return std::pair<iterator, iterator>(begin, it);
+ }
+ }
+
+ // insert
+ std::pair<iterator, bool> insert(const value_type& value) {
+ if (old_style_) {
+ iterator it = find(value.first);
+ if (it != end()) {
+ return std::pair<iterator, bool>(it, false);
+ } else {
+ return std::pair<iterator, bool>(
+ iterator(deprecated_elements_->insert(std::pair<Key, value_type*>(
+ value.first, CreateValueTypeInternal(value))).first), true);
+ }
+ } else {
+ std::pair<typename InnerMap::iterator, bool> p =
+ elements_->insert(value.first);
+ if (p.second) {
+ p.first->value() = CreateValueTypeInternal(value);
+ }
+ return std::pair<iterator, bool>(iterator(p.first), p.second);
+ }
+ }
+ template <class InputIt>
+ void insert(InputIt first, InputIt last) {
+ for (InputIt it = first; it != last; ++it) {
+ iterator exist_it = find(it->first);
+ if (exist_it == end()) {
+ operator[](it->first) = it->second;
+ }
+ }
+ }
+
+ // Erase and clear
+ size_type erase(const key_type& key) {
+ iterator it = find(key);
+ if (it == end()) {
+ return 0;
+ } else {
+ erase(it);
+ return 1;
+ }
+ }
+ iterator erase(iterator pos) {
+ if (arena_ == NULL) delete pos.operator->();
+ iterator i = pos++;
+ if (old_style_)
+ deprecated_elements_->erase(i.dit_);
+ else
+ elements_->erase(i.it_);
+ return pos;
+ }
+ void erase(iterator first, iterator last) {
+ while (first != last) {
+ first = erase(first);
+ }
+ }
+ void clear() { erase(begin(), end()); }
+
+ // Assign
+ Map& operator=(const Map& other) {
+ if (this != &other) {
+ clear();
+ insert(other.begin(), other.end());
+ }
+ return *this;
+ }
+
+ void swap(Map& other) {
+ if (arena_ == other.arena_ && old_style_ == other.old_style_) {
+ std::swap(default_enum_value_, other.default_enum_value_);
+ if (old_style_) {
+ std::swap(deprecated_elements_, other.deprecated_elements_);
+ } else {
+ std::swap(elements_, other.elements_);
+ }
+ } else {
+ // TODO(zuguang): optimize this. The temporary copy can be allocated
+ // in the same arena as the other message, and the "other = copy" can
+ // be replaced with the fast-path swap above.
+ Map copy = *this;
+ *this = other;
+ other = copy;
+ }
+ }
+
+ // Access to hasher. Currently this returns a copy, but it may
+ // be modified to return a const reference in the future.
+ hasher hash_function() const {
+ return old_style_ ? deprecated_elements_->hash_function()
+ : elements_->hash_function();
+ }
+
+ private:
+ // Set default enum value only for proto2 map field whose value is enum type.
+ void SetDefaultEnumValue(int default_enum_value) {
+ default_enum_value_ = default_enum_value;
+ }
+
+ value_type* CreateValueTypeInternal(const Key& key) {
+ if (arena_ == NULL) {
+ return new value_type(key);
+ } else {
+ value_type* value = reinterpret_cast<value_type*>(
+ Arena::CreateArray<uint8>(arena_, sizeof(value_type)));
+ Arena::CreateInArenaStorage(const_cast<Key*>(&value->first), arena_);
+ Arena::CreateInArenaStorage(&value->second, arena_);
+ const_cast<Key&>(value->first) = key;
+ return value;
+ }
+ }
+
+ value_type* CreateValueTypeInternal(const value_type& value) {
+ if (arena_ == NULL) {
+ return new value_type(value);
+ } else {
+ value_type* p = reinterpret_cast<value_type*>(
+ Arena::CreateArray<uint8>(arena_, sizeof(value_type)));
+ Arena::CreateInArenaStorage(const_cast<Key*>(&p->first), arena_);
+ Arena::CreateInArenaStorage(&p->second, arena_);
+ const_cast<Key&>(p->first) = value.first;
+ p->second = value.second;
+ return p;
+ }
+ }
+
+ Arena* arena_;
+ int default_enum_value_;
+ // The following is a tagged union because we support two map styles
+ // for now.
+ // TODO(gpike): get rid of the old style.
+ const bool old_style_;
+ union {
+ InnerMap* elements_;
+ DeprecatedInnerMap* deprecated_elements_;
+ };
+
+ friend class ::google::protobuf::Arena;
+ typedef void InternalArenaConstructable_;
+ typedef void DestructorSkippable_;
+ template <typename K, typename V,
+ internal::WireFormatLite::FieldType key_wire_type,
+ internal::WireFormatLite::FieldType value_wire_type,
+ int default_enum_value>
+ friend class internal::MapFieldLite;
+};
+
+} // namespace protobuf
+} // namespace google
+
+GOOGLE_PROTOBUF_HASH_NAMESPACE_DECLARATION_START
+template<>
+struct hash<google::protobuf::MapKey> {
+ size_t
+ operator()(const google::protobuf::MapKey& map_key) const {
+ switch (map_key.type()) {
+ case google::protobuf::FieldDescriptor::CPPTYPE_DOUBLE:
+ case google::protobuf::FieldDescriptor::CPPTYPE_FLOAT:
+ case google::protobuf::FieldDescriptor::CPPTYPE_ENUM:
+ case google::protobuf::FieldDescriptor::CPPTYPE_MESSAGE:
+ GOOGLE_LOG(FATAL) << "Unsupported";
+ break;
+ case google::protobuf::FieldDescriptor::CPPTYPE_STRING:
+ return hash<string>()(map_key.GetStringValue());
+ case google::protobuf::FieldDescriptor::CPPTYPE_INT64:
+ return hash< ::google::protobuf::int64>()(map_key.GetInt64Value());
+ case google::protobuf::FieldDescriptor::CPPTYPE_INT32:
+ return hash< ::google::protobuf::int32>()(map_key.GetInt32Value());
+ case google::protobuf::FieldDescriptor::CPPTYPE_UINT64:
+ return hash< ::google::protobuf::uint64>()(map_key.GetUInt64Value());
+ case google::protobuf::FieldDescriptor::CPPTYPE_UINT32:
+ return hash< ::google::protobuf::uint32>()(map_key.GetUInt32Value());
+ case google::protobuf::FieldDescriptor::CPPTYPE_BOOL:
+ return hash<bool>()(map_key.GetBoolValue());
+ }
+ GOOGLE_LOG(FATAL) << "Can't get here.";
+ return 0;
+ }
+ bool
+ operator()(const google::protobuf::MapKey& map_key1,
+ const google::protobuf::MapKey& map_key2) const {
+ return map_key1 < map_key2;
+ }
+};
+GOOGLE_PROTOBUF_HASH_NAMESPACE_DECLARATION_END
+
+#endif // GOOGLE_PROTOBUF_MAP_H__