summaryrefslogtreecommitdiff
path: root/renderscript/include/rs_quaternion.rsh
blob: 4e08d2f81b7479e4b6cb845992990b6b8bae0485 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
/*
 * Copyright (C) 2011 The Android Open Source Project
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

/** @file rs_quaternion.rsh
 *  \brief Quaternion routines
 *
 *
 */

#ifndef __RS_QUATERNION_RSH__
#define __RS_QUATERNION_RSH__


/**
 * Set the quaternion components
 * @param w component
 * @param x component
 * @param y component
 * @param z component
 */
static void __attribute__((overloadable))
rsQuaternionSet(rs_quaternion *q, float w, float x, float y, float z) {
    q->w = w;
    q->x = x;
    q->y = y;
    q->z = z;
}

/**
 * Set the quaternion from another quaternion
 * @param q destination quaternion
 * @param rhs source quaternion
 */
static void __attribute__((overloadable))
rsQuaternionSet(rs_quaternion *q, const rs_quaternion *rhs) {
    q->w = rhs->w;
    q->x = rhs->x;
    q->y = rhs->y;
    q->z = rhs->z;
}

/**
 * Multiply quaternion by a scalar
 * @param q quaternion to multiply
 * @param s scalar
 */
static void __attribute__((overloadable))
rsQuaternionMultiply(rs_quaternion *q, float s) {
    q->w *= s;
    q->x *= s;
    q->y *= s;
    q->z *= s;
}

/**
 * Add two quaternions
 * @param q destination quaternion to add to
 * @param rsh right hand side quaternion to add
 */
static void
rsQuaternionAdd(rs_quaternion *q, const rs_quaternion *rhs) {
    q->w *= rhs->w;
    q->x *= rhs->x;
    q->y *= rhs->y;
    q->z *= rhs->z;
}

/**
 * Loads a quaternion that represents a rotation about an arbitrary unit vector
 * @param q quaternion to set
 * @param rot angle to rotate by
 * @param x component of a vector
 * @param y component of a vector
 * @param x component of a vector
 */
static void
rsQuaternionLoadRotateUnit(rs_quaternion *q, float rot, float x, float y, float z) {
    rot *= (float)(M_PI / 180.0f) * 0.5f;
    float c = cos(rot);
    float s = sin(rot);

    q->w = c;
    q->x = x * s;
    q->y = y * s;
    q->z = z * s;
}

/**
 * Loads a quaternion that represents a rotation about an arbitrary vector
 * (doesn't have to be unit)
 * @param q quaternion to set
 * @param rot angle to rotate by
 * @param x component of a vector
 * @param y component of a vector
 * @param x component of a vector
 */
static void
rsQuaternionLoadRotate(rs_quaternion *q, float rot, float x, float y, float z) {
    const float len = x*x + y*y + z*z;
    if (len != 1) {
        const float recipLen = 1.f / sqrt(len);
        x *= recipLen;
        y *= recipLen;
        z *= recipLen;
    }
    rsQuaternionLoadRotateUnit(q, rot, x, y, z);
}

/**
 * Conjugates the quaternion
 * @param q quaternion to conjugate
 */
static void
rsQuaternionConjugate(rs_quaternion *q) {
    q->x = -q->x;
    q->y = -q->y;
    q->z = -q->z;
}

/**
 * Dot product of two quaternions
 * @param q0 first quaternion
 * @param q1 second quaternion
 * @return dot product between q0 and q1
 */
static float
rsQuaternionDot(const rs_quaternion *q0, const rs_quaternion *q1) {
    return q0->w*q1->w + q0->x*q1->x + q0->y*q1->y + q0->z*q1->z;
}

/**
 * Normalizes the quaternion
 * @param q quaternion to normalize
 */
static void
rsQuaternionNormalize(rs_quaternion *q) {
    const float len = rsQuaternionDot(q, q);
    if (len != 1) {
        const float recipLen = 1.f / sqrt(len);
        rsQuaternionMultiply(q, recipLen);
    }
}

/**
 * Multiply quaternion by another quaternion
 * @param q destination quaternion
 * @param rhs right hand side quaternion to multiply by
 */
static void __attribute__((overloadable))
rsQuaternionMultiply(rs_quaternion *q, const rs_quaternion *rhs) {
    rs_quaternion qtmp;
    rsQuaternionSet(&qtmp, q);

    q->w = qtmp.w*rhs->w - qtmp.x*rhs->x - qtmp.y*rhs->y - qtmp.z*rhs->z;
    q->x = qtmp.w*rhs->x + qtmp.x*rhs->w + qtmp.y*rhs->z - qtmp.z*rhs->y;
    q->y = qtmp.w*rhs->y + qtmp.y*rhs->w + qtmp.z*rhs->x - qtmp.x*rhs->z;
    q->z = qtmp.w*rhs->z + qtmp.z*rhs->w + qtmp.x*rhs->y - qtmp.y*rhs->x;
    rsQuaternionNormalize(q);
}

/**
 * Performs spherical linear interpolation between two quaternions
 * @param q result quaternion from interpolation
 * @param q0 first param
 * @param q1 second param
 * @param t how much to interpolate by
 */
static void
rsQuaternionSlerp(rs_quaternion *q, const rs_quaternion *q0, const rs_quaternion *q1, float t) {
    if (t <= 0.0f) {
        rsQuaternionSet(q, q0);
        return;
    }
    if (t >= 1.0f) {
        rsQuaternionSet(q, q1);
        return;
    }

    rs_quaternion tempq0, tempq1;
    rsQuaternionSet(&tempq0, q0);
    rsQuaternionSet(&tempq1, q1);

    float angle = rsQuaternionDot(q0, q1);
    if (angle < 0) {
        rsQuaternionMultiply(&tempq0, -1.0f);
        angle *= -1.0f;
    }

    float scale, invScale;
    if (angle + 1.0f > 0.05f) {
        if (1.0f - angle >= 0.05f) {
            float theta = acos(angle);
            float invSinTheta = 1.0f / sin(theta);
            scale = sin(theta * (1.0f - t)) * invSinTheta;
            invScale = sin(theta * t) * invSinTheta;
        } else {
            scale = 1.0f - t;
            invScale = t;
        }
    } else {
        rsQuaternionSet(&tempq1, tempq0.z, -tempq0.y, tempq0.x, -tempq0.w);
        scale = sin(M_PI * (0.5f - t));
        invScale = sin(M_PI * t);
    }

    rsQuaternionSet(q, tempq0.w*scale + tempq1.w*invScale, tempq0.x*scale + tempq1.x*invScale,
                        tempq0.y*scale + tempq1.y*invScale, tempq0.z*scale + tempq1.z*invScale);
}

/**
 * Computes rotation matrix from the normalized quaternion
 * @param m resulting matrix
 * @param p normalized quaternion
 */
static void rsQuaternionGetMatrixUnit(rs_matrix4x4 *m, const rs_quaternion *q) {
    float xx = q->x * q->x;
    float xy = q->x * q->y;
    float xz = q->x * q->z;
    float xw = q->x * q->w;
    float yy = q->y * q->y;
    float yz = q->y * q->z;
    float yw = q->y * q->w;
    float zz = q->z * q->z;
    float zw = q->z * q->w;

    m->m[0]  = 1.0f - 2.0f * ( yy + zz );
    m->m[4]  =        2.0f * ( xy - zw );
    m->m[8]  =        2.0f * ( xz + yw );
    m->m[1]  =        2.0f * ( xy + zw );
    m->m[5]  = 1.0f - 2.0f * ( xx + zz );
    m->m[9]  =        2.0f * ( yz - xw );
    m->m[2]  =        2.0f * ( xz - yw );
    m->m[6]  =        2.0f * ( yz + xw );
    m->m[10] = 1.0f - 2.0f * ( xx + yy );
    m->m[3]  = m->m[7] = m->m[11] = m->m[12] = m->m[13] = m->m[14] = 0.0f;
    m->m[15] = 1.0f;
}

#endif