summaryrefslogtreecommitdiff
path: root/lib/python2.7/test/test_cmath.py
diff options
context:
space:
mode:
Diffstat (limited to 'lib/python2.7/test/test_cmath.py')
-rw-r--r--lib/python2.7/test/test_cmath.py474
1 files changed, 0 insertions, 474 deletions
diff --git a/lib/python2.7/test/test_cmath.py b/lib/python2.7/test/test_cmath.py
deleted file mode 100644
index 8b5c4bf..0000000
--- a/lib/python2.7/test/test_cmath.py
+++ /dev/null
@@ -1,474 +0,0 @@
-from test.test_support import run_unittest
-from test.test_math import parse_testfile, test_file
-import unittest
-import cmath, math
-from cmath import phase, polar, rect, pi
-
-INF = float('inf')
-NAN = float('nan')
-
-complex_zeros = [complex(x, y) for x in [0.0, -0.0] for y in [0.0, -0.0]]
-complex_infinities = [complex(x, y) for x, y in [
- (INF, 0.0), # 1st quadrant
- (INF, 2.3),
- (INF, INF),
- (2.3, INF),
- (0.0, INF),
- (-0.0, INF), # 2nd quadrant
- (-2.3, INF),
- (-INF, INF),
- (-INF, 2.3),
- (-INF, 0.0),
- (-INF, -0.0), # 3rd quadrant
- (-INF, -2.3),
- (-INF, -INF),
- (-2.3, -INF),
- (-0.0, -INF),
- (0.0, -INF), # 4th quadrant
- (2.3, -INF),
- (INF, -INF),
- (INF, -2.3),
- (INF, -0.0)
- ]]
-complex_nans = [complex(x, y) for x, y in [
- (NAN, -INF),
- (NAN, -2.3),
- (NAN, -0.0),
- (NAN, 0.0),
- (NAN, 2.3),
- (NAN, INF),
- (-INF, NAN),
- (-2.3, NAN),
- (-0.0, NAN),
- (0.0, NAN),
- (2.3, NAN),
- (INF, NAN)
- ]]
-
-class CMathTests(unittest.TestCase):
- # list of all functions in cmath
- test_functions = [getattr(cmath, fname) for fname in [
- 'acos', 'acosh', 'asin', 'asinh', 'atan', 'atanh',
- 'cos', 'cosh', 'exp', 'log', 'log10', 'sin', 'sinh',
- 'sqrt', 'tan', 'tanh']]
- # test first and second arguments independently for 2-argument log
- test_functions.append(lambda x : cmath.log(x, 1729. + 0j))
- test_functions.append(lambda x : cmath.log(14.-27j, x))
-
- def setUp(self):
- self.test_values = open(test_file)
-
- def tearDown(self):
- self.test_values.close()
-
- def rAssertAlmostEqual(self, a, b, rel_err = 2e-15, abs_err = 5e-323,
- msg=None):
- """Fail if the two floating-point numbers are not almost equal.
-
- Determine whether floating-point values a and b are equal to within
- a (small) rounding error. The default values for rel_err and
- abs_err are chosen to be suitable for platforms where a float is
- represented by an IEEE 754 double. They allow an error of between
- 9 and 19 ulps.
- """
-
- # special values testing
- if math.isnan(a):
- if math.isnan(b):
- return
- self.fail(msg or '{!r} should be nan'.format(b))
-
- if math.isinf(a):
- if a == b:
- return
- self.fail(msg or 'finite result where infinity expected: '
- 'expected {!r}, got {!r}'.format(a, b))
-
- # if both a and b are zero, check whether they have the same sign
- # (in theory there are examples where it would be legitimate for a
- # and b to have opposite signs; in practice these hardly ever
- # occur).
- if not a and not b:
- if math.copysign(1., a) != math.copysign(1., b):
- self.fail(msg or 'zero has wrong sign: expected {!r}, '
- 'got {!r}'.format(a, b))
-
- # if a-b overflows, or b is infinite, return False. Again, in
- # theory there are examples where a is within a few ulps of the
- # max representable float, and then b could legitimately be
- # infinite. In practice these examples are rare.
- try:
- absolute_error = abs(b-a)
- except OverflowError:
- pass
- else:
- # test passes if either the absolute error or the relative
- # error is sufficiently small. The defaults amount to an
- # error of between 9 ulps and 19 ulps on an IEEE-754 compliant
- # machine.
- if absolute_error <= max(abs_err, rel_err * abs(a)):
- return
- self.fail(msg or
- '{!r} and {!r} are not sufficiently close'.format(a, b))
-
- def test_constants(self):
- e_expected = 2.71828182845904523536
- pi_expected = 3.14159265358979323846
- self.assertAlmostEqual(cmath.pi, pi_expected, places=9,
- msg="cmath.pi is {}; should be {}".format(cmath.pi, pi_expected))
- self.assertAlmostEqual(cmath.e, e_expected, places=9,
- msg="cmath.e is {}; should be {}".format(cmath.e, e_expected))
-
- def test_user_object(self):
- # Test automatic calling of __complex__ and __float__ by cmath
- # functions
-
- # some random values to use as test values; we avoid values
- # for which any of the functions in cmath is undefined
- # (i.e. 0., 1., -1., 1j, -1j) or would cause overflow
- cx_arg = 4.419414439 + 1.497100113j
- flt_arg = -6.131677725
-
- # a variety of non-complex numbers, used to check that
- # non-complex return values from __complex__ give an error
- non_complexes = ["not complex", 1, 5L, 2., None,
- object(), NotImplemented]
-
- # Now we introduce a variety of classes whose instances might
- # end up being passed to the cmath functions
-
- # usual case: new-style class implementing __complex__
- class MyComplex(object):
- def __init__(self, value):
- self.value = value
- def __complex__(self):
- return self.value
-
- # old-style class implementing __complex__
- class MyComplexOS:
- def __init__(self, value):
- self.value = value
- def __complex__(self):
- return self.value
-
- # classes for which __complex__ raises an exception
- class SomeException(Exception):
- pass
- class MyComplexException(object):
- def __complex__(self):
- raise SomeException
- class MyComplexExceptionOS:
- def __complex__(self):
- raise SomeException
-
- # some classes not providing __float__ or __complex__
- class NeitherComplexNorFloat(object):
- pass
- class NeitherComplexNorFloatOS:
- pass
- class MyInt(object):
- def __int__(self): return 2
- def __long__(self): return 2L
- def __index__(self): return 2
- class MyIntOS:
- def __int__(self): return 2
- def __long__(self): return 2L
- def __index__(self): return 2
-
- # other possible combinations of __float__ and __complex__
- # that should work
- class FloatAndComplex(object):
- def __float__(self):
- return flt_arg
- def __complex__(self):
- return cx_arg
- class FloatAndComplexOS:
- def __float__(self):
- return flt_arg
- def __complex__(self):
- return cx_arg
- class JustFloat(object):
- def __float__(self):
- return flt_arg
- class JustFloatOS:
- def __float__(self):
- return flt_arg
-
- for f in self.test_functions:
- # usual usage
- self.assertEqual(f(MyComplex(cx_arg)), f(cx_arg))
- self.assertEqual(f(MyComplexOS(cx_arg)), f(cx_arg))
- # other combinations of __float__ and __complex__
- self.assertEqual(f(FloatAndComplex()), f(cx_arg))
- self.assertEqual(f(FloatAndComplexOS()), f(cx_arg))
- self.assertEqual(f(JustFloat()), f(flt_arg))
- self.assertEqual(f(JustFloatOS()), f(flt_arg))
- # TypeError should be raised for classes not providing
- # either __complex__ or __float__, even if they provide
- # __int__, __long__ or __index__. An old-style class
- # currently raises AttributeError instead of a TypeError;
- # this could be considered a bug.
- self.assertRaises(TypeError, f, NeitherComplexNorFloat())
- self.assertRaises(TypeError, f, MyInt())
- self.assertRaises(Exception, f, NeitherComplexNorFloatOS())
- self.assertRaises(Exception, f, MyIntOS())
- # non-complex return value from __complex__ -> TypeError
- for bad_complex in non_complexes:
- self.assertRaises(TypeError, f, MyComplex(bad_complex))
- self.assertRaises(TypeError, f, MyComplexOS(bad_complex))
- # exceptions in __complex__ should be propagated correctly
- self.assertRaises(SomeException, f, MyComplexException())
- self.assertRaises(SomeException, f, MyComplexExceptionOS())
-
- def test_input_type(self):
- # ints and longs should be acceptable inputs to all cmath
- # functions, by virtue of providing a __float__ method
- for f in self.test_functions:
- for arg in [2, 2L, 2.]:
- self.assertEqual(f(arg), f(arg.__float__()))
-
- # but strings should give a TypeError
- for f in self.test_functions:
- for arg in ["a", "long_string", "0", "1j", ""]:
- self.assertRaises(TypeError, f, arg)
-
- def test_cmath_matches_math(self):
- # check that corresponding cmath and math functions are equal
- # for floats in the appropriate range
-
- # test_values in (0, 1)
- test_values = [0.01, 0.1, 0.2, 0.5, 0.9, 0.99]
-
- # test_values for functions defined on [-1., 1.]
- unit_interval = test_values + [-x for x in test_values] + \
- [0., 1., -1.]
-
- # test_values for log, log10, sqrt
- positive = test_values + [1.] + [1./x for x in test_values]
- nonnegative = [0.] + positive
-
- # test_values for functions defined on the whole real line
- real_line = [0.] + positive + [-x for x in positive]
-
- test_functions = {
- 'acos' : unit_interval,
- 'asin' : unit_interval,
- 'atan' : real_line,
- 'cos' : real_line,
- 'cosh' : real_line,
- 'exp' : real_line,
- 'log' : positive,
- 'log10' : positive,
- 'sin' : real_line,
- 'sinh' : real_line,
- 'sqrt' : nonnegative,
- 'tan' : real_line,
- 'tanh' : real_line}
-
- for fn, values in test_functions.items():
- float_fn = getattr(math, fn)
- complex_fn = getattr(cmath, fn)
- for v in values:
- z = complex_fn(v)
- self.rAssertAlmostEqual(float_fn(v), z.real)
- self.assertEqual(0., z.imag)
-
- # test two-argument version of log with various bases
- for base in [0.5, 2., 10.]:
- for v in positive:
- z = cmath.log(v, base)
- self.rAssertAlmostEqual(math.log(v, base), z.real)
- self.assertEqual(0., z.imag)
-
- def test_specific_values(self):
- if not float.__getformat__("double").startswith("IEEE"):
- return
-
- def rect_complex(z):
- """Wrapped version of rect that accepts a complex number instead of
- two float arguments."""
- return cmath.rect(z.real, z.imag)
-
- def polar_complex(z):
- """Wrapped version of polar that returns a complex number instead of
- two floats."""
- return complex(*polar(z))
-
- for id, fn, ar, ai, er, ei, flags in parse_testfile(test_file):
- arg = complex(ar, ai)
- expected = complex(er, ei)
- if fn == 'rect':
- function = rect_complex
- elif fn == 'polar':
- function = polar_complex
- else:
- function = getattr(cmath, fn)
- if 'divide-by-zero' in flags or 'invalid' in flags:
- try:
- actual = function(arg)
- except ValueError:
- continue
- else:
- self.fail('ValueError not raised in test '
- '{}: {}(complex({!r}, {!r}))'.format(id, fn, ar, ai))
-
- if 'overflow' in flags:
- try:
- actual = function(arg)
- except OverflowError:
- continue
- else:
- self.fail('OverflowError not raised in test '
- '{}: {}(complex({!r}, {!r}))'.format(id, fn, ar, ai))
-
- actual = function(arg)
-
- if 'ignore-real-sign' in flags:
- actual = complex(abs(actual.real), actual.imag)
- expected = complex(abs(expected.real), expected.imag)
- if 'ignore-imag-sign' in flags:
- actual = complex(actual.real, abs(actual.imag))
- expected = complex(expected.real, abs(expected.imag))
-
- # for the real part of the log function, we allow an
- # absolute error of up to 2e-15.
- if fn in ('log', 'log10'):
- real_abs_err = 2e-15
- else:
- real_abs_err = 5e-323
-
- error_message = (
- '{}: {}(complex({!r}, {!r}))\n'
- 'Expected: complex({!r}, {!r})\n'
- 'Received: complex({!r}, {!r})\n'
- 'Received value insufficiently close to expected value.'
- ).format(id, fn, ar, ai,
- expected.real, expected.imag,
- actual.real, actual.imag)
- self.rAssertAlmostEqual(expected.real, actual.real,
- abs_err=real_abs_err,
- msg=error_message)
- self.rAssertAlmostEqual(expected.imag, actual.imag,
- msg=error_message)
-
- def assertCISEqual(self, a, b):
- eps = 1E-7
- if abs(a[0] - b[0]) > eps or abs(a[1] - b[1]) > eps:
- self.fail((a ,b))
-
- def test_polar(self):
- self.assertCISEqual(polar(0), (0., 0.))
- self.assertCISEqual(polar(1.), (1., 0.))
- self.assertCISEqual(polar(-1.), (1., pi))
- self.assertCISEqual(polar(1j), (1., pi/2))
- self.assertCISEqual(polar(-1j), (1., -pi/2))
-
- def test_phase(self):
- self.assertAlmostEqual(phase(0), 0.)
- self.assertAlmostEqual(phase(1.), 0.)
- self.assertAlmostEqual(phase(-1.), pi)
- self.assertAlmostEqual(phase(-1.+1E-300j), pi)
- self.assertAlmostEqual(phase(-1.-1E-300j), -pi)
- self.assertAlmostEqual(phase(1j), pi/2)
- self.assertAlmostEqual(phase(-1j), -pi/2)
-
- # zeros
- self.assertEqual(phase(complex(0.0, 0.0)), 0.0)
- self.assertEqual(phase(complex(0.0, -0.0)), -0.0)
- self.assertEqual(phase(complex(-0.0, 0.0)), pi)
- self.assertEqual(phase(complex(-0.0, -0.0)), -pi)
-
- # infinities
- self.assertAlmostEqual(phase(complex(-INF, -0.0)), -pi)
- self.assertAlmostEqual(phase(complex(-INF, -2.3)), -pi)
- self.assertAlmostEqual(phase(complex(-INF, -INF)), -0.75*pi)
- self.assertAlmostEqual(phase(complex(-2.3, -INF)), -pi/2)
- self.assertAlmostEqual(phase(complex(-0.0, -INF)), -pi/2)
- self.assertAlmostEqual(phase(complex(0.0, -INF)), -pi/2)
- self.assertAlmostEqual(phase(complex(2.3, -INF)), -pi/2)
- self.assertAlmostEqual(phase(complex(INF, -INF)), -pi/4)
- self.assertEqual(phase(complex(INF, -2.3)), -0.0)
- self.assertEqual(phase(complex(INF, -0.0)), -0.0)
- self.assertEqual(phase(complex(INF, 0.0)), 0.0)
- self.assertEqual(phase(complex(INF, 2.3)), 0.0)
- self.assertAlmostEqual(phase(complex(INF, INF)), pi/4)
- self.assertAlmostEqual(phase(complex(2.3, INF)), pi/2)
- self.assertAlmostEqual(phase(complex(0.0, INF)), pi/2)
- self.assertAlmostEqual(phase(complex(-0.0, INF)), pi/2)
- self.assertAlmostEqual(phase(complex(-2.3, INF)), pi/2)
- self.assertAlmostEqual(phase(complex(-INF, INF)), 0.75*pi)
- self.assertAlmostEqual(phase(complex(-INF, 2.3)), pi)
- self.assertAlmostEqual(phase(complex(-INF, 0.0)), pi)
-
- # real or imaginary part NaN
- for z in complex_nans:
- self.assertTrue(math.isnan(phase(z)))
-
- def test_abs(self):
- # zeros
- for z in complex_zeros:
- self.assertEqual(abs(z), 0.0)
-
- # infinities
- for z in complex_infinities:
- self.assertEqual(abs(z), INF)
-
- # real or imaginary part NaN
- self.assertEqual(abs(complex(NAN, -INF)), INF)
- self.assertTrue(math.isnan(abs(complex(NAN, -2.3))))
- self.assertTrue(math.isnan(abs(complex(NAN, -0.0))))
- self.assertTrue(math.isnan(abs(complex(NAN, 0.0))))
- self.assertTrue(math.isnan(abs(complex(NAN, 2.3))))
- self.assertEqual(abs(complex(NAN, INF)), INF)
- self.assertEqual(abs(complex(-INF, NAN)), INF)
- self.assertTrue(math.isnan(abs(complex(-2.3, NAN))))
- self.assertTrue(math.isnan(abs(complex(-0.0, NAN))))
- self.assertTrue(math.isnan(abs(complex(0.0, NAN))))
- self.assertTrue(math.isnan(abs(complex(2.3, NAN))))
- self.assertEqual(abs(complex(INF, NAN)), INF)
- self.assertTrue(math.isnan(abs(complex(NAN, NAN))))
-
- # result overflows
- if float.__getformat__("double").startswith("IEEE"):
- self.assertRaises(OverflowError, abs, complex(1.4e308, 1.4e308))
-
- def assertCEqual(self, a, b):
- eps = 1E-7
- if abs(a.real - b[0]) > eps or abs(a.imag - b[1]) > eps:
- self.fail((a ,b))
-
- def test_rect(self):
- self.assertCEqual(rect(0, 0), (0, 0))
- self.assertCEqual(rect(1, 0), (1., 0))
- self.assertCEqual(rect(1, -pi), (-1., 0))
- self.assertCEqual(rect(1, pi/2), (0, 1.))
- self.assertCEqual(rect(1, -pi/2), (0, -1.))
-
- def test_isnan(self):
- self.assertFalse(cmath.isnan(1))
- self.assertFalse(cmath.isnan(1j))
- self.assertFalse(cmath.isnan(INF))
- self.assertTrue(cmath.isnan(NAN))
- self.assertTrue(cmath.isnan(complex(NAN, 0)))
- self.assertTrue(cmath.isnan(complex(0, NAN)))
- self.assertTrue(cmath.isnan(complex(NAN, NAN)))
- self.assertTrue(cmath.isnan(complex(NAN, INF)))
- self.assertTrue(cmath.isnan(complex(INF, NAN)))
-
- def test_isinf(self):
- self.assertFalse(cmath.isinf(1))
- self.assertFalse(cmath.isinf(1j))
- self.assertFalse(cmath.isinf(NAN))
- self.assertTrue(cmath.isinf(INF))
- self.assertTrue(cmath.isinf(complex(INF, 0)))
- self.assertTrue(cmath.isinf(complex(0, INF)))
- self.assertTrue(cmath.isinf(complex(INF, INF)))
- self.assertTrue(cmath.isinf(complex(NAN, INF)))
- self.assertTrue(cmath.isinf(complex(INF, NAN)))
-
-
-def test_main():
- run_unittest(CMathTests)
-
-if __name__ == "__main__":
- test_main()