aboutsummaryrefslogtreecommitdiff
path: root/kernel_collector.cc
blob: d86efbdcc8cd64036c22ea22a33cc56d2e93fc3d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
// Copyright (c) 2012 The Chromium OS Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "crash-reporter/kernel_collector.h"

#include <map>
#include <sys/stat.h>

#include <base/files/file_util.h>
#include <base/logging.h>
#include <base/strings/string_util.h>
#include <base/strings/stringprintf.h>

using base::FilePath;
using base::StringPrintf;

namespace {

const char kDefaultKernelStackSignature[] = "kernel-UnspecifiedStackSignature";
const char kDumpParentPath[] = "/dev";
const char kDumpPath[] = "/dev/pstore";
const char kDumpFormat[] = "dmesg-ramoops-%zu";
const char kKernelExecName[] = "kernel";
// Maximum number of records to examine in the kDumpPath.
const size_t kMaxDumpRecords = 100;
const pid_t kKernelPid = 0;
const char kKernelSignatureKey[] = "sig";
// Byte length of maximum human readable portion of a kernel crash signature.
const int kMaxHumanStringLength = 40;
const uid_t kRootUid = 0;
// Time in seconds from the final kernel log message for a call stack
// to count towards the signature of the kcrash.
const int kSignatureTimestampWindow = 2;
// Kernel log timestamp regular expression.
const char kTimestampRegex[] = "^<.*>\\[\\s*(\\d+\\.\\d+)\\]";

//
// These regular expressions enable to us capture the PC in a backtrace.
// The backtrace is obtained through dmesg or the kernel's preserved/kcrashmem
// feature.
//
// For ARM we see:
//   "<5>[   39.458982] PC is at write_breakme+0xd0/0x1b4"
// For MIPS we see:
//   "<5>[ 3378.552000] epc   : 804010f0 lkdtm_do_action+0x68/0x3f8"
// For x86:
//   "<0>[   37.474699] EIP: [<790ed488>] write_breakme+0x80/0x108
//    SS:ESP 0068:e9dd3efc"
//
const char* const kPCRegex[] = {
  0,
  " PC is at ([^\\+ ]+).*",
  " epc\\s+:\\s+\\S+\\s+([^\\+ ]+).*",  // MIPS has an exception program counter
  " EIP: \\[<.*>\\] ([^\\+ ]+).*",  // X86 uses EIP for the program counter
  " RIP  \\[<.*>\\] ([^\\+ ]+).*",  // X86_64 uses RIP for the program counter
};

COMPILE_ASSERT(arraysize(kPCRegex) == KernelCollector::kArchCount,
               missing_arch_pc_regexp);

}  // namespace

KernelCollector::KernelCollector()
    : is_enabled_(false),
      ramoops_dump_path_(kDumpPath),
      records_(0),
      // We expect crash dumps in the format of architecture we are built for.
      arch_(GetCompilerArch()) {
}

KernelCollector::~KernelCollector() {
}

void KernelCollector::OverridePreservedDumpPath(const FilePath &file_path) {
  ramoops_dump_path_ = file_path;
}

bool KernelCollector::ReadRecordToString(std::string *contents,
                                         size_t current_record,
                                         bool *record_found) {
  // A record is a ramoops dump. It has an associated size of "record_size".
  std::string record;
  std::string captured;

  // Ramoops appends a header to a crash which contains ==== followed by a
  // timestamp. Ignore the header.
  pcrecpp::RE record_re(
      "====\\d+\\.\\d+\n(.*)",
      pcrecpp::RE_Options().set_multiline(true).set_dotall(true));

  pcrecpp::RE sanity_check_re("\n<\\d+>\\[\\s*(\\d+\\.\\d+)\\]");

  FilePath ramoops_record;
  GetRamoopsRecordPath(&ramoops_record, current_record);
  if (!base::ReadFileToString(ramoops_record, &record)) {
    LOG(ERROR) << "Unable to open " << ramoops_record.value();
    return false;
  }

  *record_found = false;
  if (record_re.FullMatch(record, &captured)) {
    // Found a ramoops header, so strip the header and append the rest.
    contents->append(captured);
    *record_found = true;
  } else if (sanity_check_re.PartialMatch(record.substr(0, 1024))) {
    // pstore compression has been added since kernel 3.12. In order to
    // decompress dmesg correctly, ramoops driver has to strip the header
    // before handing over the record to the pstore driver, so we don't
    // need to do it here anymore. However, the sanity check is needed because
    // sometimes a pstore record is just a chunk of uninitialized memory which
    // is not the result of a kernel crash. See crbug.com/443764
    contents->append(record);
    *record_found = true;
  } else {
    LOG(WARNING) << "Found invalid record at " << ramoops_record.value();
  }

  // Remove the record from pstore after it's found.
  if (*record_found)
    base::DeleteFile(ramoops_record, false);

  return true;
}

void KernelCollector::GetRamoopsRecordPath(FilePath *path,
                                           size_t record) {
  // Disable error "format not a string literal, argument types not checked"
  // because this is valid, but GNU apparently doesn't bother checking a const
  // format string.
  #pragma GCC diagnostic push
  #pragma GCC diagnostic ignored "-Wformat-nonliteral"
  *path = ramoops_dump_path_.Append(StringPrintf(kDumpFormat, record));
  #pragma GCC diagnostic pop
}

bool KernelCollector::LoadParameters() {
  // Discover how many ramoops records are being exported by the driver.
  size_t count;

  for (count = 0; count < kMaxDumpRecords; ++count) {
    FilePath ramoops_record;
    GetRamoopsRecordPath(&ramoops_record, count);

    if (!base::PathExists(ramoops_record))
      break;
  }

  records_ = count;
  return (records_ > 0);
}

bool KernelCollector::LoadPreservedDump(std::string *contents) {
  // Load dumps from the preserved memory and save them in contents.
  // Since the system is set to restart on oops we won't actually ever have
  // multiple records (only 0 or 1), but check in case we don't restart on
  // oops in the future.
  bool any_records_found = false;
  bool record_found = false;
  // clear contents since ReadFileToString actually appends to the string.
  contents->clear();

  for (size_t i = 0; i < records_; ++i) {
    if (!ReadRecordToString(contents, i, &record_found)) {
      break;
    }
    if (record_found) {
      any_records_found = true;
    }
  }

  if (!any_records_found) {
    LOG(ERROR) << "No valid records found in " << ramoops_dump_path_.value();
    return false;
  }

  return true;
}

void KernelCollector::StripSensitiveData(std::string *kernel_dump) {
  // Strip any data that the user might not want sent up to the crash servers.
  // We'll read in from kernel_dump and also place our output there.
  //
  // At the moment, the only sensitive data we strip is MAC addresses.

  // Get rid of things that look like MAC addresses, since they could possibly
  // give information about where someone has been.  This is strings that look
  // like this: 11:22:33:44:55:66
  // Complications:
  // - Within a given kernel_dump, want to be able to tell when the same MAC
  //   was used more than once.  Thus, we'll consistently replace the first
  //   MAC found with 00:00:00:00:00:01, the second with ...:02, etc.
  // - ACPI commands look like MAC addresses.  We'll specifically avoid getting
  //   rid of those.
  std::ostringstream result;
  std::string pre_mac_str;
  std::string mac_str;
  std::map<std::string, std::string> mac_map;
  pcrecpp::StringPiece input(*kernel_dump);

  // This RE will find the next MAC address and can return us the data preceding
  // the MAC and the MAC itself.
  pcrecpp::RE mac_re("(.*?)("
                     "[0-9a-fA-F][0-9a-fA-F]:"
                     "[0-9a-fA-F][0-9a-fA-F]:"
                     "[0-9a-fA-F][0-9a-fA-F]:"
                     "[0-9a-fA-F][0-9a-fA-F]:"
                     "[0-9a-fA-F][0-9a-fA-F]:"
                     "[0-9a-fA-F][0-9a-fA-F])",
                     pcrecpp::RE_Options()
                       .set_multiline(true)
                       .set_dotall(true));

  // This RE will identify when the 'pre_mac_str' shows that the MAC address
  // was really an ACPI cmd.  The full string looks like this:
  //   ata1.00: ACPI cmd ef/10:03:00:00:00:a0 (SET FEATURES) filtered out
  pcrecpp::RE acpi_re("ACPI cmd ef/$",
                      pcrecpp::RE_Options()
                        .set_multiline(true)
                        .set_dotall(true));

  // Keep consuming, building up a result string as we go.
  while (mac_re.Consume(&input, &pre_mac_str, &mac_str)) {
    if (acpi_re.PartialMatch(pre_mac_str)) {
      // We really saw an ACPI command; add to result w/ no stripping.
      result << pre_mac_str << mac_str;
    } else {
      // Found a MAC address; look up in our hash for the mapping.
      std::string replacement_mac = mac_map[mac_str];
      if (replacement_mac == "") {
        // It wasn't present, so build up a replacement string.
        int mac_id = mac_map.size();

        // Handle up to 2^32 unique MAC address; overkill, but doesn't hurt.
        replacement_mac = StringPrintf("00:00:%02x:%02x:%02x:%02x",
                                       (mac_id & 0xff000000) >> 24,
                                       (mac_id & 0x00ff0000) >> 16,
                                       (mac_id & 0x0000ff00) >> 8,
                                       (mac_id & 0x000000ff));
        mac_map[mac_str] = replacement_mac;
      }

      // Dump the string before the MAC and the fake MAC address into result.
      result << pre_mac_str << replacement_mac;
    }
  }

  // One last bit of data might still be in the input.
  result << input;

  // We'll just assign right back to kernel_dump.
  *kernel_dump = result.str();
}

bool KernelCollector::DumpDirMounted() {
  struct stat st_parent;
  if (stat(kDumpParentPath, &st_parent)) {
    PLOG(WARNING) << "Could not stat " << kDumpParentPath;
    return false;
  }

  struct stat st_dump;
  if (stat(kDumpPath, &st_dump)) {
    PLOG(WARNING) << "Could not stat " << kDumpPath;
    return false;
  }

  if (st_parent.st_dev == st_dump.st_dev) {
    LOG(WARNING) << "Dump dir " << kDumpPath << " not mounted";
    return false;
  }

  return true;
}

bool KernelCollector::Enable() {
  if (arch_ == kArchUnknown || arch_ >= kArchCount ||
      kPCRegex[arch_] == nullptr) {
    LOG(WARNING) << "KernelCollector does not understand this architecture";
    return false;
  }

  if (!DumpDirMounted()) {
    LOG(WARNING) << "Kernel does not support crash dumping";
    return false;
  }

  // To enable crashes, we will eventually need to set
  // the chnv bit in BIOS, but it does not yet work.
  LOG(INFO) << "Enabling kernel crash handling";
  is_enabled_ = true;
  return true;
}

// Hash a string to a number.  We define our own hash function to not
// be dependent on a C++ library that might change.  This function
// uses basically the same approach as tr1/functional_hash.h but with
// a larger prime number (16127 vs 131).
static unsigned HashString(const std::string &input) {
  unsigned hash = 0;
  for (size_t i = 0; i < input.length(); ++i)
    hash = hash * 16127 + input[i];
  return hash;
}

void KernelCollector::ProcessStackTrace(
    pcrecpp::StringPiece kernel_dump,
    bool print_diagnostics,
    unsigned *hash,
    float *last_stack_timestamp,
    bool *is_watchdog_crash) {
  pcrecpp::RE line_re("(.+)", pcrecpp::MULTILINE());
  pcrecpp::RE stack_trace_start_re(std::string(kTimestampRegex) +
        " (Call Trace|Backtrace):$");

  // Match lines such as the following and grab out "function_name".
  // The ? may or may not be present.
  //
  // For ARM:
  // <4>[ 3498.731164] [<c0057220>] ? (function_name+0x20/0x2c) from
  // [<c018062c>] (foo_bar+0xdc/0x1bc)
  //
  // For MIPS:
  // <5>[ 3378.656000] [<804010f0>] lkdtm_do_action+0x68/0x3f8
  //
  // For X86:
  // <4>[ 6066.849504]  [<7937bcee>] ? function_name+0x66/0x6c
  //
  pcrecpp::RE stack_entry_re(std::string(kTimestampRegex) +
    "\\s+\\[<[[:xdigit:]]+>\\]"      // Matches "  [<7937bcee>]"
    "([\\s\\?(]+)"                   // Matches " ? (" (ARM) or " ? " (X86)
    "([^\\+ )]+)");                  // Matches until delimiter reached
  std::string line;
  std::string hashable;
  std::string previous_hashable;
  bool is_watchdog = false;

  *hash = 0;
  *last_stack_timestamp = 0;

  // Find the last and second-to-last stack traces.  The latter is used when
  // the panic is from a watchdog timeout.
  while (line_re.FindAndConsume(&kernel_dump, &line)) {
    std::string certainty;
    std::string function_name;
    if (stack_trace_start_re.PartialMatch(line, last_stack_timestamp)) {
      if (print_diagnostics) {
        printf("Stack trace starting.%s\n",
               hashable.empty() ? "" : "  Saving prior trace.");
      }
      previous_hashable = hashable;
      hashable.clear();
      is_watchdog = false;
    } else if (stack_entry_re.PartialMatch(line,
                                           last_stack_timestamp,
                                           &certainty,
                                           &function_name)) {
      bool is_certain = certainty.find('?') == std::string::npos;
      if (print_diagnostics) {
        printf("@%f: stack entry for %s (%s)\n",
               *last_stack_timestamp,
               function_name.c_str(),
               is_certain ? "certain" : "uncertain");
      }
      // Do not include any uncertain (prefixed by '?') frames in our hash.
      if (!is_certain)
        continue;
      if (!hashable.empty())
        hashable.append("|");
      if (function_name == "watchdog_timer_fn" ||
          function_name == "watchdog") {
        is_watchdog = true;
      }
      hashable.append(function_name);
    }
  }

  // If the last stack trace contains a watchdog function we assume the panic
  // is from the watchdog timer, and we hash the previous stack trace rather
  // than the last one, assuming that the previous stack is that of the hung
  // thread.
  //
  // In addition, if the hashable is empty (meaning all frames are uncertain,
  // for whatever reason) also use the previous frame, as it cannot be any
  // worse.
  if (is_watchdog || hashable.empty()) {
    hashable = previous_hashable;
  }

  *hash = HashString(hashable);
  *is_watchdog_crash = is_watchdog;

  if (print_diagnostics) {
    printf("Hash based on stack trace: \"%s\" at %f.\n",
           hashable.c_str(), *last_stack_timestamp);
  }
}

// static
KernelCollector::ArchKind KernelCollector::GetCompilerArch() {
#if defined(COMPILER_GCC) && defined(ARCH_CPU_ARM_FAMILY)
  return kArchArm;
#elif defined(COMPILER_GCC) && defined(ARCH_CPU_MIPS_FAMILY)
  return kArchMips;
#elif defined(COMPILER_GCC) && defined(ARCH_CPU_X86_64)
  return kArchX86_64;
#elif defined(COMPILER_GCC) && defined(ARCH_CPU_X86_FAMILY)
  return kArchX86;
#else
  return kArchUnknown;
#endif
}

bool KernelCollector::FindCrashingFunction(
  pcrecpp::StringPiece kernel_dump,
  bool print_diagnostics,
  float stack_trace_timestamp,
  std::string *crashing_function) {
  float timestamp = 0;

  // Use the correct regex for this architecture.
  pcrecpp::RE eip_re(std::string(kTimestampRegex) + kPCRegex[arch_],
                     pcrecpp::MULTILINE());

  while (eip_re.FindAndConsume(&kernel_dump, &timestamp, crashing_function)) {
    if (print_diagnostics) {
      printf("@%f: found crashing function %s\n",
             timestamp,
             crashing_function->c_str());
    }
  }
  if (timestamp == 0) {
    if (print_diagnostics) {
      printf("Found no crashing function.\n");
    }
    return false;
  }
  if (stack_trace_timestamp != 0 &&
      abs(static_cast<int>(stack_trace_timestamp - timestamp))
        > kSignatureTimestampWindow) {
    if (print_diagnostics) {
      printf("Found crashing function but not within window.\n");
    }
    return false;
  }
  if (print_diagnostics) {
    printf("Found crashing function %s\n", crashing_function->c_str());
  }
  return true;
}

bool KernelCollector::FindPanicMessage(pcrecpp::StringPiece kernel_dump,
                                       bool print_diagnostics,
                                       std::string *panic_message) {
  // Match lines such as the following and grab out "Fatal exception"
  // <0>[  342.841135] Kernel panic - not syncing: Fatal exception
  pcrecpp::RE kernel_panic_re(std::string(kTimestampRegex) +
                              " Kernel panic[^\\:]*\\:\\s*(.*)",
                              pcrecpp::MULTILINE());
  float timestamp = 0;
  while (kernel_panic_re.FindAndConsume(&kernel_dump,
                                        &timestamp,
                                        panic_message)) {
    if (print_diagnostics) {
      printf("@%f: panic message %s\n",
             timestamp,
             panic_message->c_str());
    }
  }
  if (timestamp == 0) {
    if (print_diagnostics) {
      printf("Found no panic message.\n");
    }
    return false;
  }
  return true;
}

bool KernelCollector::ComputeKernelStackSignature(
    const std::string &kernel_dump,
    std::string *kernel_signature,
    bool print_diagnostics) {
  unsigned stack_hash = 0;
  float last_stack_timestamp = 0;
  std::string human_string;
  bool is_watchdog_crash;

  ProcessStackTrace(kernel_dump,
                    print_diagnostics,
                    &stack_hash,
                    &last_stack_timestamp,
                    &is_watchdog_crash);

  if (!FindCrashingFunction(kernel_dump,
                            print_diagnostics,
                            last_stack_timestamp,
                            &human_string)) {
    if (!FindPanicMessage(kernel_dump, print_diagnostics, &human_string)) {
      if (print_diagnostics) {
        printf("Found no human readable string, using empty string.\n");
      }
      human_string.clear();
    }
  }

  if (human_string.empty() && stack_hash == 0) {
    if (print_diagnostics) {
      printf("Found neither a stack nor a human readable string, failing.\n");
    }
    return false;
  }

  human_string = human_string.substr(0, kMaxHumanStringLength);
  *kernel_signature = StringPrintf("%s-%s%s-%08X",
                                   kKernelExecName,
                                   (is_watchdog_crash ? "(HANG)-" : ""),
                                   human_string.c_str(),
                                   stack_hash);
  return true;
}

bool KernelCollector::Collect() {
  std::string kernel_dump;
  FilePath root_crash_directory;

  if (!LoadParameters()) {
    return false;
  }
  if (!LoadPreservedDump(&kernel_dump)) {
    return false;
  }
  StripSensitiveData(&kernel_dump);
  if (kernel_dump.empty()) {
    return false;
  }
  std::string signature;
  if (!ComputeKernelStackSignature(kernel_dump, &signature, false)) {
    signature = kDefaultKernelStackSignature;
  }

  std::string reason = "handling";
  bool feedback = true;
  if (IsDeveloperImage()) {
    reason = "developer build - always dumping";
    feedback = true;
  } else if (!is_feedback_allowed_function_()) {
    reason = "ignoring - no consent";
    feedback = false;
  }

  LOG(INFO) << "Received prior crash notification from "
            << "kernel (signature " << signature << ") (" << reason << ")";

  if (feedback) {
    count_crash_function_();

    if (!GetCreatedCrashDirectoryByEuid(kRootUid,
                                        &root_crash_directory,
                                        nullptr)) {
      return true;
    }

    std::string dump_basename =
        FormatDumpBasename(kKernelExecName, time(nullptr), kKernelPid);
    FilePath kernel_crash_path = root_crash_directory.Append(
        StringPrintf("%s.kcrash", dump_basename.c_str()));

    // We must use WriteNewFile instead of base::WriteFile as we
    // do not want to write with root access to a symlink that an attacker
    // might have created.
    if (WriteNewFile(kernel_crash_path,
                     kernel_dump.data(),
                     kernel_dump.length()) !=
        static_cast<int>(kernel_dump.length())) {
      LOG(INFO) << "Failed to write kernel dump to "
                << kernel_crash_path.value().c_str();
      return true;
    }

    AddCrashMetaData(kKernelSignatureKey, signature);
    WriteCrashMetaData(
        root_crash_directory.Append(
            StringPrintf("%s.meta", dump_basename.c_str())),
        kKernelExecName,
        kernel_crash_path.value());

    LOG(INFO) << "Stored kcrash to " << kernel_crash_path.value();
  }

  return true;
}