summaryrefslogtreecommitdiff
path: root/memcpy-perf/memcpy-perf.cpp
blob: f6afb1235317ee14c9801e1be59b78babd0191dc (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
#include <iostream>
#include <chrono>
#include <vector>
#include <algorithm>
#include <numeric>
#include <stdlib.h>
#include <memory>
#include <cmath>
#include <string>
#include <thread>

#define CACHE_HIT_SIZE 1 << 17

using namespace std;

size_t size_start = 64;
size_t size_end = 16 * (1ull << 20);
size_t samples = 2048;
size_t size_per_test = 64 * (1ull << 20);
size_t tot_sum = 0;
size_t delay = 0;
float speed = 0;
bool dummy = false;

void __attribute__((noinline)) memcpy_noinline(void *dst, void *src, size_t size);
void __attribute__((noinline)) memset_noinline(void *dst, int value, size_t size);
uint64_t __attribute__((noinline)) sum(volatile void *src, size_t size);

enum BenchType {
    MemcpyBench,
    MemsetBench,
    SumBench,
};

static void usage(char* p) {
    printf("Usage: %s <test> <options>\n"
           "<test> is one of the following:\n"
           "  --memcpy\n"
           "  --memset\n"
           "  --sum\n"
           "<options> are optional and apply to all tests:\n"
           "  --dummy\n"
           "    Simulates cpu-only load of a test. Guaranteed to use L2\n"
           "    instead.  Not supported on --sum test.\n"
           "  --delay DELAY_DIVISOR\n"
           "  --start START_SIZE_MB\n"
           "    --end END_SIZE_MB (requires start, optional)\n"
           "  --samples NUM_SAMPLES\n"
           , p);
}

int main(int argc, char *argv[])
{
    BenchType type = MemcpyBench;
    if (argc <= 1) {
        usage(argv[0]);
        return 0;
    }
    for (int i = 1; i < argc; i++) {
      if (string(argv[i]) == string("--memcpy")) {
         type = MemcpyBench;
      } else if (string(argv[i]) == string("--memset")) {
         type = MemsetBench;
      } else if (string(argv[i]) == string("--sum")) {
         type = SumBench;
      } else if (string(argv[i]) == string("--dummy")) {
         dummy = true;
      } else if (i + 1 < argc) {
          if (string(argv[i]) == string("--delay")) {
             delay = atoi(argv[++i]);
          } else if (string(argv[i]) == string("--start")) {
             size_start = atoi(argv[++i]) * (1ull << 20);
             size_end = size_start;
          } else if (string(argv[i]) == string("--end")) {
             size_t end = atoi(argv[++i]) * (1ull << 20);
             if (end > size_start && i > 3
                 && string(argv[i-3]) == string("--start")) {
                 size_end = end;
             } else {
                 printf("Cannot specify --end without --start.\n");
                 return 0;
             }
          } else if (string(argv[i]) == string("--samples")) {
             samples = atoi(argv[++i]);
          } else {
             printf("Unknown argument %s\n", argv[i]);
             return 0;
          }
       } else {
          printf("The %s option requires a single argument.\n", argv[i]);
          return 0;
       }
    }

    unique_ptr<uint8_t[]> src(new uint8_t[size_end]);
    unique_ptr<uint8_t[]> dst(new uint8_t[size_end]);
    memset(src.get(), 1, size_end);

    double start_pow = log10(size_start);
    double end_pow = log10(size_end);
    double pow_inc = (end_pow - start_pow) / samples;

    //cout << "src: " << (uintptr_t)src.get() << endl;
    //cout << "dst: " <<  (uintptr_t)dst.get() << endl;

    for (double cur_pow = start_pow; cur_pow <= end_pow && samples > 0;
            cur_pow += pow_inc) {
        chrono::time_point<chrono::high_resolution_clock>
            copy_start, copy_end;

        size_t cur_size = (size_t)pow(10.0, cur_pow);
        size_t iter_per_size = size_per_test / cur_size;

        // run benchmark
        switch (type) {
            case MemsetBench: {
                memcpy_noinline(src.get(), dst.get(), cur_size);
                memset_noinline(dst.get(), 0xdeadbeef, cur_size);
                size_t hit_size = CACHE_HIT_SIZE;
                copy_start = chrono::high_resolution_clock::now();
                for (int i = 0; i < iter_per_size; i++) {
                    if (!dummy) {
                        memset_noinline(dst.get(), 0xdeadbeef, cur_size);
                    } else {
                        while (hit_size < cur_size) {
                            memset_noinline
                                (dst.get(), 0xdeadbeef, CACHE_HIT_SIZE);
                            hit_size += 1 << 17;
                        }
                    }
                    if (delay != 0)
                        this_thread::sleep_for(chrono
                            ::nanoseconds(size_per_test / delay));
                }
                copy_end = chrono::high_resolution_clock::now();
                break;
            }
            case MemcpyBench: {
                memcpy_noinline(dst.get(), src.get(), cur_size);
                memcpy_noinline(src.get(), dst.get(), cur_size);
                size_t hit_size = CACHE_HIT_SIZE;
                copy_start = chrono::high_resolution_clock::now();
                for (int i = 0; i < iter_per_size; i++) {
                    if (!dummy) {
                        memcpy_noinline(dst.get(), src.get(), cur_size);
                    } else {
                        while (hit_size < cur_size) {
                            memcpy_noinline
                                (dst.get(), src.get(), CACHE_HIT_SIZE);
                            hit_size += CACHE_HIT_SIZE;
                        }
                    }
                    if (delay != 0)
                        this_thread::sleep_for(chrono
                            ::nanoseconds(size_per_test / delay));
                }
                copy_end = chrono::high_resolution_clock::now();
                break;
            }
            case SumBench: {
                uint64_t s = 0;
                s += sum(src.get(), cur_size);
                copy_start = chrono::high_resolution_clock::now();
                for (int i = 0; i < iter_per_size; i++) {
                    s += sum(src.get(), cur_size);
                    if (delay != 0)
                        this_thread::sleep_for(chrono
                            ::nanoseconds(size_per_test / delay));
                }
                copy_end = chrono::high_resolution_clock::now();
                tot_sum += s;
                break;
            }
        }

        samples--;
        double ns_per_copy = chrono::duration_cast<chrono::nanoseconds>(copy_end - copy_start).count() / double(iter_per_size);
        double gb_per_sec = ((double)cur_size / (1ull<<30)) / (ns_per_copy / 1.0E9);
        if (type == MemcpyBench)
            gb_per_sec *= 2.0;
        double percent_waiting = 0;
        if (delay != 0) {
            percent_waiting = (size_per_test / delay) / ns_per_copy * 100;
        }
        cout << "size: " << cur_size << ", perf: " << gb_per_sec
             << "GB/s, iter: " << iter_per_size << ", \% time spent waiting: "
             << percent_waiting << endl;
    }
    return 0;
}