summaryrefslogtreecommitdiff
path: root/ocb.c
diff options
context:
space:
mode:
authorShawn Willden <swillden@google.com>2014-08-06 12:31:33 -0600
committerShawn Willden <swillden@google.com>2014-08-06 12:31:33 -0600
commit128ffe07c723d8ffe2d5ea528ba5f64436c8a55a (patch)
tree865f8560833cc69504beb7cf9a1038a8aeead6e5 /ocb.c
parent5ada7b6c525d2bfd5b556a698ccb11db23e052bb (diff)
downloadkeymaster-128ffe07c723d8ffe2d5ea528ba5f64436c8a55a.tar.gz
Add GoogleKeymaster. Very incomplete.
Change-Id: I53542c7132bd1a04afee93f3247b88ed7ed0bedc
Diffstat (limited to 'ocb.c')
-rw-r--r--ocb.c1481
1 files changed, 1481 insertions, 0 deletions
diff --git a/ocb.c b/ocb.c
new file mode 100644
index 0000000..84f367d
--- /dev/null
+++ b/ocb.c
@@ -0,0 +1,1481 @@
+/*------------------------------------------------------------------------
+/ OCB Version 3 Reference Code (Optimized C) Last modified 12-JUN-2013
+/-------------------------------------------------------------------------
+/ Copyright (c) 2013 Ted Krovetz.
+/
+/ Permission to use, copy, modify, and/or distribute this software for any
+/ purpose with or without fee is hereby granted, provided that the above
+/ copyright notice and this permission notice appear in all copies.
+/
+/ THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
+/ WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
+/ MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
+/ ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
+/ WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
+/ ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
+/ OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
+/
+/ Phillip Rogaway holds patents relevant to OCB. See the following for
+/ his patent grant: http://www.cs.ucdavis.edu/~rogaway/ocb/grant.htm
+/
+/ Special thanks to Keegan McAllister for suggesting several good improvements
+/
+/ Comments are welcome: Ted Krovetz <ted@krovetz.net> - Dedicated to Laurel K
+/------------------------------------------------------------------------- */
+
+/* ----------------------------------------------------------------------- */
+/* Usage notes */
+/* ----------------------------------------------------------------------- */
+
+/* - When AE_PENDING is passed as the 'final' parameter of any function,
+/ the length parameters must be a multiple of (BPI*16).
+/ - When available, SSE or AltiVec registers are used to manipulate data.
+/ So, when on machines with these facilities, all pointers passed to
+/ any function should be 16-byte aligned.
+/ - Plaintext and ciphertext pointers may be equal (ie, plaintext gets
+/ encrypted in-place), but no other pair of pointers may be equal.
+/ - This code assumes all x86 processors have SSE2 and SSSE3 instructions
+/ when compiling under MSVC. If untrue, alter the #define.
+/ - This code is tested for C99 and recent versions of GCC and MSVC. */
+
+/* ----------------------------------------------------------------------- */
+/* User configuration options */
+/* ----------------------------------------------------------------------- */
+
+/* Set the AES key length to use and length of authentication tag to produce.
+/ Setting either to 0 requires the value be set at runtime via ae_init().
+/ Some optimizations occur for each when set to a fixed value. */
+#define OCB_KEY_LEN 16 /* 0, 16, 24 or 32. 0 means set in ae_init */
+#define OCB_TAG_LEN 16 /* 0 to 16. 0 means set in ae_init */
+
+/* This implementation has built-in support for multiple AES APIs. Set any
+/ one of the following to non-zero to specify which to use. */
+#define USE_OPENSSL_AES 1 /* http://openssl.org */
+#define USE_REFERENCE_AES 0 /* Internet search: rijndael-alg-fst.c */
+#define USE_AES_NI 0 /* Uses compiler's intrinsics */
+
+/* During encryption and decryption, various "L values" are required.
+/ The L values can be precomputed during initialization (requiring extra
+/ space in ae_ctx), generated as needed (slightly slowing encryption and
+/ decryption), or some combination of the two. L_TABLE_SZ specifies how many
+/ L values to precompute. L_TABLE_SZ must be at least 3. L_TABLE_SZ*16 bytes
+/ are used for L values in ae_ctx. Plaintext and ciphertexts shorter than
+/ 2^L_TABLE_SZ blocks need no L values calculated dynamically. */
+#define L_TABLE_SZ 16
+
+/* Set L_TABLE_SZ_IS_ENOUGH non-zero iff you know that all plaintexts
+/ will be shorter than 2^(L_TABLE_SZ+4) bytes in length. This results
+/ in better performance. */
+#define L_TABLE_SZ_IS_ENOUGH 1
+
+/* ----------------------------------------------------------------------- */
+/* Includes and compiler specific definitions */
+/* ----------------------------------------------------------------------- */
+
+#include "ae.h"
+#include <stdlib.h>
+#include <string.h>
+
+/* Define standard sized integers */
+#if defined(_MSC_VER) && (_MSC_VER < 1600)
+typedef unsigned __int8 uint8_t;
+typedef unsigned __int32 uint32_t;
+typedef unsigned __int64 uint64_t;
+typedef __int64 int64_t;
+#else
+#include <stdint.h>
+#endif
+
+/* Compiler-specific intrinsics and fixes: bswap64, ntz */
+#if _MSC_VER
+#define inline __inline /* MSVC doesn't recognize "inline" in C */
+#define restrict __restrict /* MSVC doesn't recognize "restrict" in C */
+#define __SSE2__ (_M_IX86 || _M_AMD64 || _M_X64) /* Assume SSE2 */
+#define __SSSE3__ (_M_IX86 || _M_AMD64 || _M_X64) /* Assume SSSE3 */
+#include <intrin.h>
+#pragma intrinsic(_byteswap_uint64, _BitScanForward, memcpy)
+#define bswap64(x) _byteswap_uint64(x)
+static inline unsigned ntz(unsigned x) {
+ _BitScanForward(&x, x);
+ return x;
+}
+#elif __GNUC__
+#define inline __inline__ /* No "inline" in GCC ansi C mode */
+#define restrict __restrict__ /* No "restrict" in GCC ansi C mode */
+#define bswap64(x) __builtin_bswap64(x) /* Assuming GCC 4.3+ */
+#define ntz(x) __builtin_ctz((unsigned)(x)) /* Assuming GCC 3.4+ */
+#else /* Assume some C99 features: stdint.h, inline, restrict */
+#define bswap32(x) \
+ ((((x)&0xff000000u) >> 24) | (((x)&0x00ff0000u) >> 8) | (((x)&0x0000ff00u) << 8) | \
+ (((x)&0x000000ffu) << 24))
+
+static inline uint64_t bswap64(uint64_t x) {
+ union {
+ uint64_t u64;
+ uint32_t u32[2];
+ } in, out;
+ in.u64 = x;
+ out.u32[0] = bswap32(in.u32[1]);
+ out.u32[1] = bswap32(in.u32[0]);
+ return out.u64;
+}
+
+#if (L_TABLE_SZ <= 9) && (L_TABLE_SZ_IS_ENOUGH) /* < 2^13 byte texts */
+static inline unsigned ntz(unsigned x) {
+ static const unsigned char tz_table[] = {
+ 0, 2, 3, 2, 4, 2, 3, 2, 5, 2, 3, 2, 4, 2, 3, 2, 6, 2, 3, 2, 4, 2, 3, 2, 5, 2,
+ 3, 2, 4, 2, 3, 2, 7, 2, 3, 2, 4, 2, 3, 2, 5, 2, 3, 2, 4, 2, 3, 2, 6, 2, 3, 2,
+ 4, 2, 3, 2, 5, 2, 3, 2, 4, 2, 3, 2, 8, 2, 3, 2, 4, 2, 3, 2, 5, 2, 3, 2, 4, 2,
+ 3, 2, 6, 2, 3, 2, 4, 2, 3, 2, 5, 2, 3, 2, 4, 2, 3, 2, 7, 2, 3, 2, 4, 2, 3, 2,
+ 5, 2, 3, 2, 4, 2, 3, 2, 6, 2, 3, 2, 4, 2, 3, 2, 5, 2, 3, 2, 4, 2, 3, 2};
+ return tz_table[x / 4];
+}
+#else /* From http://supertech.csail.mit.edu/papers/debruijn.pdf */
+static inline unsigned ntz(unsigned x) {
+ static const unsigned char tz_table[32] = {0, 1, 28, 2, 29, 14, 24, 3, 30, 22, 20,
+ 15, 25, 17, 4, 8, 31, 27, 13, 23, 21, 19,
+ 16, 7, 26, 12, 18, 6, 11, 5, 10, 9};
+ return tz_table[((uint32_t)((x & -x) * 0x077CB531u)) >> 27];
+}
+#endif
+#endif
+
+/* ----------------------------------------------------------------------- */
+/* Define blocks and operations -- Patch if incorrect on your compiler. */
+/* ----------------------------------------------------------------------- */
+
+#if __SSE2__
+#include <xmmintrin.h> /* SSE instructions and _mm_malloc */
+#include <emmintrin.h> /* SSE2 instructions */
+typedef __m128i block;
+#define xor_block(x, y) _mm_xor_si128(x, y)
+#define zero_block() _mm_setzero_si128()
+#define unequal_blocks(x, y) (_mm_movemask_epi8(_mm_cmpeq_epi8(x, y)) != 0xffff)
+#if __SSSE3__ || USE_AES_NI
+#include <tmmintrin.h> /* SSSE3 instructions */
+#define swap_if_le(b) \
+ _mm_shuffle_epi8(b, _mm_set_epi8(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15))
+#else
+static inline block swap_if_le(block b) {
+ block a = _mm_shuffle_epi32(b, _MM_SHUFFLE(0, 1, 2, 3));
+ a = _mm_shufflehi_epi16(a, _MM_SHUFFLE(2, 3, 0, 1));
+ a = _mm_shufflelo_epi16(a, _MM_SHUFFLE(2, 3, 0, 1));
+ return _mm_xor_si128(_mm_srli_epi16(a, 8), _mm_slli_epi16(a, 8));
+}
+#endif
+static inline block gen_offset(uint64_t KtopStr[3], unsigned bot) {
+ block hi = _mm_load_si128((__m128i*)(KtopStr + 0)); /* hi = B A */
+ block lo = _mm_loadu_si128((__m128i*)(KtopStr + 1)); /* lo = C B */
+ __m128i lshift = _mm_cvtsi32_si128(bot);
+ __m128i rshift = _mm_cvtsi32_si128(64 - bot);
+ lo = _mm_xor_si128(_mm_sll_epi64(hi, lshift), _mm_srl_epi64(lo, rshift));
+#if __SSSE3__ || USE_AES_NI
+ return _mm_shuffle_epi8(lo, _mm_set_epi8(8, 9, 10, 11, 12, 13, 14, 15, 0, 1, 2, 3, 4, 5, 6, 7));
+#else
+ return swap_if_le(_mm_shuffle_epi32(lo, _MM_SHUFFLE(1, 0, 3, 2)));
+#endif
+}
+static inline block double_block(block bl) {
+ const __m128i mask = _mm_set_epi32(135, 1, 1, 1);
+ __m128i tmp = _mm_srai_epi32(bl, 31);
+ tmp = _mm_and_si128(tmp, mask);
+ tmp = _mm_shuffle_epi32(tmp, _MM_SHUFFLE(2, 1, 0, 3));
+ bl = _mm_slli_epi32(bl, 1);
+ return _mm_xor_si128(bl, tmp);
+}
+#elif __ALTIVEC__
+#include <altivec.h>
+typedef vector unsigned block;
+#define xor_block(x, y) vec_xor(x, y)
+#define zero_block() vec_splat_u32(0)
+#define unequal_blocks(x, y) vec_any_ne(x, y)
+#define swap_if_le(b) (b)
+#if __PPC64__
+block gen_offset(uint64_t KtopStr[3], unsigned bot) {
+ union {
+ uint64_t u64[2];
+ block bl;
+ } rval;
+ rval.u64[0] = (KtopStr[0] << bot) | (KtopStr[1] >> (64 - bot));
+ rval.u64[1] = (KtopStr[1] << bot) | (KtopStr[2] >> (64 - bot));
+ return rval.bl;
+}
+#else
+/* Special handling: Shifts are mod 32, and no 64-bit types */
+block gen_offset(uint64_t KtopStr[3], unsigned bot) {
+ const vector unsigned k32 = {32, 32, 32, 32};
+ vector unsigned hi = *(vector unsigned*)(KtopStr + 0);
+ vector unsigned lo = *(vector unsigned*)(KtopStr + 2);
+ vector unsigned bot_vec;
+ if (bot < 32) {
+ lo = vec_sld(hi, lo, 4);
+ } else {
+ vector unsigned t = vec_sld(hi, lo, 4);
+ lo = vec_sld(hi, lo, 8);
+ hi = t;
+ bot = bot - 32;
+ }
+ if (bot == 0)
+ return hi;
+ *(unsigned*)&bot_vec = bot;
+ vector unsigned lshift = vec_splat(bot_vec, 0);
+ vector unsigned rshift = vec_sub(k32, lshift);
+ hi = vec_sl(hi, lshift);
+ lo = vec_sr(lo, rshift);
+ return vec_xor(hi, lo);
+}
+#endif
+static inline block double_block(block b) {
+ const vector unsigned char mask = {135, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1};
+ const vector unsigned char perm = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 0};
+ const vector unsigned char shift7 = vec_splat_u8(7);
+ const vector unsigned char shift1 = vec_splat_u8(1);
+ vector unsigned char c = (vector unsigned char)b;
+ vector unsigned char t = vec_sra(c, shift7);
+ t = vec_and(t, mask);
+ t = vec_perm(t, t, perm);
+ c = vec_sl(c, shift1);
+ return (block)vec_xor(c, t);
+}
+#elif __ARM_NEON__
+#include <arm_neon.h>
+typedef int8x16_t block; /* Yay! Endian-neutral reads! */
+#define xor_block(x, y) veorq_s8(x, y)
+#define zero_block() vdupq_n_s8(0)
+static inline int unequal_blocks(block a, block b) {
+ int64x2_t t = veorq_s64((int64x2_t)a, (int64x2_t)b);
+ return (vgetq_lane_s64(t, 0) | vgetq_lane_s64(t, 1)) != 0;
+}
+#define swap_if_le(b) (b) /* Using endian-neutral int8x16_t */
+/* KtopStr is reg correct by 64 bits, return mem correct */
+block gen_offset(uint64_t KtopStr[3], unsigned bot) {
+ const union {
+ unsigned x;
+ unsigned char endian;
+ } little = {1};
+ const int64x2_t k64 = {-64, -64};
+ uint64x2_t hi = *(uint64x2_t*)(KtopStr + 0); /* hi = A B */
+ uint64x2_t lo = *(uint64x2_t*)(KtopStr + 1); /* hi = B C */
+ int64x2_t ls = vdupq_n_s64(bot);
+ int64x2_t rs = vqaddq_s64(k64, ls);
+ block rval = (block)veorq_u64(vshlq_u64(hi, ls), vshlq_u64(lo, rs));
+ if (little.endian)
+ rval = vrev64q_s8(rval);
+ return rval;
+}
+static inline block double_block(block b) {
+ const block mask = {135, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1};
+ block tmp = vshrq_n_s8(b, 7);
+ tmp = vandq_s8(tmp, mask);
+ tmp = vextq_s8(tmp, tmp, 1); /* Rotate high byte to end */
+ b = vshlq_n_s8(b, 1);
+ return veorq_s8(tmp, b);
+}
+#else
+typedef struct { uint64_t l, r; } block;
+static inline block xor_block(block x, block y) {
+ x.l ^= y.l;
+ x.r ^= y.r;
+ return x;
+}
+static inline block zero_block(void) {
+ const block t = {0, 0};
+ return t;
+}
+#define unequal_blocks(x, y) ((((x).l ^ (y).l) | ((x).r ^ (y).r)) != 0)
+static inline block swap_if_le(block b) {
+ const union {
+ unsigned x;
+ unsigned char endian;
+ } little = {1};
+ if (little.endian) {
+ block r;
+ r.l = bswap64(b.l);
+ r.r = bswap64(b.r);
+ return r;
+ } else
+ return b;
+}
+
+/* KtopStr is reg correct by 64 bits, return mem correct */
+block gen_offset(uint64_t KtopStr[3], unsigned bot) {
+ block rval;
+ if (bot != 0) {
+ rval.l = (KtopStr[0] << bot) | (KtopStr[1] >> (64 - bot));
+ rval.r = (KtopStr[1] << bot) | (KtopStr[2] >> (64 - bot));
+ } else {
+ rval.l = KtopStr[0];
+ rval.r = KtopStr[1];
+ }
+ return swap_if_le(rval);
+}
+
+#if __GNUC__ && __arm__
+static inline block double_block(block b) {
+ __asm__("adds %1,%1,%1\n\t"
+ "adcs %H1,%H1,%H1\n\t"
+ "adcs %0,%0,%0\n\t"
+ "adcs %H0,%H0,%H0\n\t"
+ "it cs\n\t"
+ "eorcs %1,%1,#135"
+ : "+r"(b.l), "+r"(b.r)
+ :
+ : "cc");
+ return b;
+}
+#else
+static inline block double_block(block b) {
+ uint64_t t = (uint64_t)((int64_t)b.l >> 63);
+ b.l = (b.l + b.l) ^ (b.r >> 63);
+ b.r = (b.r + b.r) ^ (t & 135);
+ return b;
+}
+#endif
+
+#endif
+
+/* ----------------------------------------------------------------------- */
+/* AES - Code uses OpenSSL API. Other implementations get mapped to it. */
+/* ----------------------------------------------------------------------- */
+
+/*---------------*/
+#if USE_OPENSSL_AES
+/*---------------*/
+
+#include <openssl/aes.h> /* http://openssl.org/ */
+
+/* How to ECB encrypt an array of blocks, in place */
+static inline void AES_ecb_encrypt_blks(block* blks, unsigned nblks, AES_KEY* key) {
+ while (nblks) {
+ --nblks;
+ AES_encrypt((unsigned char*)(blks + nblks), (unsigned char*)(blks + nblks), key);
+ }
+}
+
+static inline void AES_ecb_decrypt_blks(block* blks, unsigned nblks, AES_KEY* key) {
+ while (nblks) {
+ --nblks;
+ AES_decrypt((unsigned char*)(blks + nblks), (unsigned char*)(blks + nblks), key);
+ }
+}
+
+#define BPI 4 /* Number of blocks in buffer per ECB call */
+
+/*-------------------*/
+#elif USE_REFERENCE_AES
+/*-------------------*/
+
+#include "rijndael-alg-fst.h" /* Barreto's Public-Domain Code */
+#if (OCB_KEY_LEN == 0)
+typedef struct {
+ uint32_t rd_key[60];
+ int rounds;
+} AES_KEY;
+#define ROUNDS(ctx) ((ctx)->rounds)
+#define AES_set_encrypt_key(x, y, z) \
+ do { \
+ rijndaelKeySetupEnc((z)->rd_key, x, y); \
+ (z)->rounds = y / 32 + 6; \
+ } while (0)
+#define AES_set_decrypt_key(x, y, z) \
+ do { \
+ rijndaelKeySetupDec((z)->rd_key, x, y); \
+ (z)->rounds = y / 32 + 6; \
+ } while (0)
+#else
+typedef struct { uint32_t rd_key[OCB_KEY_LEN + 28]; } AES_KEY;
+#define ROUNDS(ctx) (6 + OCB_KEY_LEN / 4)
+#define AES_set_encrypt_key(x, y, z) rijndaelKeySetupEnc((z)->rd_key, x, y)
+#define AES_set_decrypt_key(x, y, z) rijndaelKeySetupDec((z)->rd_key, x, y)
+#endif
+#define AES_encrypt(x, y, z) rijndaelEncrypt((z)->rd_key, ROUNDS(z), x, y)
+#define AES_decrypt(x, y, z) rijndaelDecrypt((z)->rd_key, ROUNDS(z), x, y)
+
+static void AES_ecb_encrypt_blks(block* blks, unsigned nblks, AES_KEY* key) {
+ while (nblks) {
+ --nblks;
+ AES_encrypt((unsigned char*)(blks + nblks), (unsigned char*)(blks + nblks), key);
+ }
+}
+
+void AES_ecb_decrypt_blks(block* blks, unsigned nblks, AES_KEY* key) {
+ while (nblks) {
+ --nblks;
+ AES_decrypt((unsigned char*)(blks + nblks), (unsigned char*)(blks + nblks), key);
+ }
+}
+
+#define BPI 4 /* Number of blocks in buffer per ECB call */
+
+/*----------*/
+#elif USE_AES_NI
+/*----------*/
+
+#include <wmmintrin.h>
+
+#if (OCB_KEY_LEN == 0)
+typedef struct {
+ __m128i rd_key[15];
+ int rounds;
+} AES_KEY;
+#define ROUNDS(ctx) ((ctx)->rounds)
+#else
+typedef struct { __m128i rd_key[7 + OCB_KEY_LEN / 4]; } AES_KEY;
+#define ROUNDS(ctx) (6 + OCB_KEY_LEN / 4)
+#endif
+
+#define EXPAND_ASSIST(v1, v2, v3, v4, shuff_const, aes_const) \
+ v2 = _mm_aeskeygenassist_si128(v4, aes_const); \
+ v3 = _mm_castps_si128(_mm_shuffle_ps(_mm_castsi128_ps(v3), _mm_castsi128_ps(v1), 16)); \
+ v1 = _mm_xor_si128(v1, v3); \
+ v3 = _mm_castps_si128(_mm_shuffle_ps(_mm_castsi128_ps(v3), _mm_castsi128_ps(v1), 140)); \
+ v1 = _mm_xor_si128(v1, v3); \
+ v2 = _mm_shuffle_epi32(v2, shuff_const); \
+ v1 = _mm_xor_si128(v1, v2)
+
+#define EXPAND192_STEP(idx, aes_const) \
+ EXPAND_ASSIST(x0, x1, x2, x3, 85, aes_const); \
+ x3 = _mm_xor_si128(x3, _mm_slli_si128(x3, 4)); \
+ x3 = _mm_xor_si128(x3, _mm_shuffle_epi32(x0, 255)); \
+ kp[idx] = _mm_castps_si128(_mm_shuffle_ps(_mm_castsi128_ps(tmp), _mm_castsi128_ps(x0), 68)); \
+ kp[idx + 1] = \
+ _mm_castps_si128(_mm_shuffle_ps(_mm_castsi128_ps(x0), _mm_castsi128_ps(x3), 78)); \
+ EXPAND_ASSIST(x0, x1, x2, x3, 85, (aes_const * 2)); \
+ x3 = _mm_xor_si128(x3, _mm_slli_si128(x3, 4)); \
+ x3 = _mm_xor_si128(x3, _mm_shuffle_epi32(x0, 255)); \
+ kp[idx + 2] = x0; \
+ tmp = x3
+
+static void AES_128_Key_Expansion(const unsigned char* userkey, void* key) {
+ __m128i x0, x1, x2;
+ __m128i* kp = (__m128i*)key;
+ kp[0] = x0 = _mm_loadu_si128((__m128i*)userkey);
+ x2 = _mm_setzero_si128();
+ EXPAND_ASSIST(x0, x1, x2, x0, 255, 1);
+ kp[1] = x0;
+ EXPAND_ASSIST(x0, x1, x2, x0, 255, 2);
+ kp[2] = x0;
+ EXPAND_ASSIST(x0, x1, x2, x0, 255, 4);
+ kp[3] = x0;
+ EXPAND_ASSIST(x0, x1, x2, x0, 255, 8);
+ kp[4] = x0;
+ EXPAND_ASSIST(x0, x1, x2, x0, 255, 16);
+ kp[5] = x0;
+ EXPAND_ASSIST(x0, x1, x2, x0, 255, 32);
+ kp[6] = x0;
+ EXPAND_ASSIST(x0, x1, x2, x0, 255, 64);
+ kp[7] = x0;
+ EXPAND_ASSIST(x0, x1, x2, x0, 255, 128);
+ kp[8] = x0;
+ EXPAND_ASSIST(x0, x1, x2, x0, 255, 27);
+ kp[9] = x0;
+ EXPAND_ASSIST(x0, x1, x2, x0, 255, 54);
+ kp[10] = x0;
+}
+
+static void AES_192_Key_Expansion(const unsigned char* userkey, void* key) {
+ __m128i x0, x1, x2, x3, tmp, *kp = (__m128i*)key;
+ kp[0] = x0 = _mm_loadu_si128((__m128i*)userkey);
+ tmp = x3 = _mm_loadu_si128((__m128i*)(userkey + 16));
+ x2 = _mm_setzero_si128();
+ EXPAND192_STEP(1, 1);
+ EXPAND192_STEP(4, 4);
+ EXPAND192_STEP(7, 16);
+ EXPAND192_STEP(10, 64);
+}
+
+static void AES_256_Key_Expansion(const unsigned char* userkey, void* key) {
+ __m128i x0, x1, x2, x3, *kp = (__m128i*)key;
+ kp[0] = x0 = _mm_loadu_si128((__m128i*)userkey);
+ kp[1] = x3 = _mm_loadu_si128((__m128i*)(userkey + 16));
+ x2 = _mm_setzero_si128();
+ EXPAND_ASSIST(x0, x1, x2, x3, 255, 1);
+ kp[2] = x0;
+ EXPAND_ASSIST(x3, x1, x2, x0, 170, 1);
+ kp[3] = x3;
+ EXPAND_ASSIST(x0, x1, x2, x3, 255, 2);
+ kp[4] = x0;
+ EXPAND_ASSIST(x3, x1, x2, x0, 170, 2);
+ kp[5] = x3;
+ EXPAND_ASSIST(x0, x1, x2, x3, 255, 4);
+ kp[6] = x0;
+ EXPAND_ASSIST(x3, x1, x2, x0, 170, 4);
+ kp[7] = x3;
+ EXPAND_ASSIST(x0, x1, x2, x3, 255, 8);
+ kp[8] = x0;
+ EXPAND_ASSIST(x3, x1, x2, x0, 170, 8);
+ kp[9] = x3;
+ EXPAND_ASSIST(x0, x1, x2, x3, 255, 16);
+ kp[10] = x0;
+ EXPAND_ASSIST(x3, x1, x2, x0, 170, 16);
+ kp[11] = x3;
+ EXPAND_ASSIST(x0, x1, x2, x3, 255, 32);
+ kp[12] = x0;
+ EXPAND_ASSIST(x3, x1, x2, x0, 170, 32);
+ kp[13] = x3;
+ EXPAND_ASSIST(x0, x1, x2, x3, 255, 64);
+ kp[14] = x0;
+}
+
+static int AES_set_encrypt_key(const unsigned char* userKey, const int bits, AES_KEY* key) {
+ if (bits == 128) {
+ AES_128_Key_Expansion(userKey, key);
+ } else if (bits == 192) {
+ AES_192_Key_Expansion(userKey, key);
+ } else if (bits == 256) {
+ AES_256_Key_Expansion(userKey, key);
+ }
+#if (OCB_KEY_LEN == 0)
+ key->rounds = 6 + bits / 32;
+#endif
+ return 0;
+}
+
+static void AES_set_decrypt_key_fast(AES_KEY* dkey, const AES_KEY* ekey) {
+ int j = 0;
+ int i = ROUNDS(ekey);
+#if (OCB_KEY_LEN == 0)
+ dkey->rounds = i;
+#endif
+ dkey->rd_key[i--] = ekey->rd_key[j++];
+ while (i)
+ dkey->rd_key[i--] = _mm_aesimc_si128(ekey->rd_key[j++]);
+ dkey->rd_key[i] = ekey->rd_key[j];
+}
+
+static int AES_set_decrypt_key(const unsigned char* userKey, const int bits, AES_KEY* key) {
+ AES_KEY temp_key;
+ AES_set_encrypt_key(userKey, bits, &temp_key);
+ AES_set_decrypt_key_fast(key, &temp_key);
+ return 0;
+}
+
+static inline void AES_encrypt(const unsigned char* in, unsigned char* out, const AES_KEY* key) {
+ int j, rnds = ROUNDS(key);
+ const __m128i* sched = ((__m128i*)(key->rd_key));
+ __m128i tmp = _mm_load_si128((__m128i*)in);
+ tmp = _mm_xor_si128(tmp, sched[0]);
+ for (j = 1; j < rnds; j++)
+ tmp = _mm_aesenc_si128(tmp, sched[j]);
+ tmp = _mm_aesenclast_si128(tmp, sched[j]);
+ _mm_store_si128((__m128i*)out, tmp);
+}
+
+static inline void AES_decrypt(const unsigned char* in, unsigned char* out, const AES_KEY* key) {
+ int j, rnds = ROUNDS(key);
+ const __m128i* sched = ((__m128i*)(key->rd_key));
+ __m128i tmp = _mm_load_si128((__m128i*)in);
+ tmp = _mm_xor_si128(tmp, sched[0]);
+ for (j = 1; j < rnds; j++)
+ tmp = _mm_aesdec_si128(tmp, sched[j]);
+ tmp = _mm_aesdeclast_si128(tmp, sched[j]);
+ _mm_store_si128((__m128i*)out, tmp);
+}
+
+static inline void AES_ecb_encrypt_blks(block* blks, unsigned nblks, AES_KEY* key) {
+ unsigned i, j, rnds = ROUNDS(key);
+ const __m128i* sched = ((__m128i*)(key->rd_key));
+ for (i = 0; i < nblks; ++i)
+ blks[i] = _mm_xor_si128(blks[i], sched[0]);
+ for (j = 1; j < rnds; ++j)
+ for (i = 0; i < nblks; ++i)
+ blks[i] = _mm_aesenc_si128(blks[i], sched[j]);
+ for (i = 0; i < nblks; ++i)
+ blks[i] = _mm_aesenclast_si128(blks[i], sched[j]);
+}
+
+static inline void AES_ecb_decrypt_blks(block* blks, unsigned nblks, AES_KEY* key) {
+ unsigned i, j, rnds = ROUNDS(key);
+ const __m128i* sched = ((__m128i*)(key->rd_key));
+ for (i = 0; i < nblks; ++i)
+ blks[i] = _mm_xor_si128(blks[i], sched[0]);
+ for (j = 1; j < rnds; ++j)
+ for (i = 0; i < nblks; ++i)
+ blks[i] = _mm_aesdec_si128(blks[i], sched[j]);
+ for (i = 0; i < nblks; ++i)
+ blks[i] = _mm_aesdeclast_si128(blks[i], sched[j]);
+}
+
+#define BPI 8 /* Number of blocks in buffer per ECB call */
+/* Set to 4 for Westmere, 8 for Sandy Bridge */
+
+#endif
+
+/* ----------------------------------------------------------------------- */
+/* Define OCB context structure. */
+/* ----------------------------------------------------------------------- */
+
+/*------------------------------------------------------------------------
+/ Each item in the OCB context is stored either "memory correct" or
+/ "register correct". On big-endian machines, this is identical. On
+/ little-endian machines, one must choose whether the byte-string
+/ is in the correct order when it resides in memory or in registers.
+/ It must be register correct whenever it is to be manipulated
+/ arithmetically, but must be memory correct whenever it interacts
+/ with the plaintext or ciphertext.
+/------------------------------------------------------------------------- */
+
+struct _ae_ctx {
+ block offset; /* Memory correct */
+ block checksum; /* Memory correct */
+ block Lstar; /* Memory correct */
+ block Ldollar; /* Memory correct */
+ block L[L_TABLE_SZ]; /* Memory correct */
+ block ad_checksum; /* Memory correct */
+ block ad_offset; /* Memory correct */
+ block cached_Top; /* Memory correct */
+ uint64_t KtopStr[3]; /* Register correct, each item */
+ uint32_t ad_blocks_processed;
+ uint32_t blocks_processed;
+ AES_KEY decrypt_key;
+ AES_KEY encrypt_key;
+#if (OCB_TAG_LEN == 0)
+ unsigned tag_len;
+#endif
+};
+
+/* ----------------------------------------------------------------------- */
+/* L table lookup (or on-the-fly generation) */
+/* ----------------------------------------------------------------------- */
+
+#if L_TABLE_SZ_IS_ENOUGH
+#define getL(_ctx, _tz) ((_ctx)->L[_tz])
+#else
+static block getL(const ae_ctx* ctx, unsigned tz) {
+ if (tz < L_TABLE_SZ)
+ return ctx->L[tz];
+ else {
+ unsigned i;
+ /* Bring L[MAX] into registers, make it register correct */
+ block rval = swap_if_le(ctx->L[L_TABLE_SZ - 1]);
+ rval = double_block(rval);
+ for (i = L_TABLE_SZ; i < tz; i++)
+ rval = double_block(rval);
+ return swap_if_le(rval); /* To memory correct */
+ }
+}
+#endif
+
+/* ----------------------------------------------------------------------- */
+/* Public functions */
+/* ----------------------------------------------------------------------- */
+
+/* 32-bit SSE2 and Altivec systems need to be forced to allocate memory
+ on 16-byte alignments. (I believe all major 64-bit systems do already.) */
+
+ae_ctx* ae_allocate(void* misc) {
+ void* p;
+ (void)misc; /* misc unused in this implementation */
+#if (__SSE2__ && !_M_X64 && !_M_AMD64 && !__amd64__)
+ p = _mm_malloc(sizeof(ae_ctx), 16);
+#elif(__ALTIVEC__ && !__PPC64__)
+ if (posix_memalign(&p, 16, sizeof(ae_ctx)) != 0)
+ p = NULL;
+#else
+ p = malloc(sizeof(ae_ctx));
+#endif
+ return (ae_ctx*)p;
+}
+
+void ae_free(ae_ctx* ctx) {
+#if (__SSE2__ && !_M_X64 && !_M_AMD64 && !__amd64__)
+ _mm_free(ctx);
+#else
+ free(ctx);
+#endif
+}
+
+/* ----------------------------------------------------------------------- */
+
+int ae_clear(ae_ctx* ctx) /* Zero ae_ctx and undo initialization */
+{
+ memset(ctx, 0, sizeof(ae_ctx));
+ return AE_SUCCESS;
+}
+
+int ae_ctx_sizeof(void) {
+ return (int)sizeof(ae_ctx);
+}
+
+/* ----------------------------------------------------------------------- */
+
+int ae_init(ae_ctx* ctx, const void* key, int key_len, int nonce_len, int tag_len) {
+ unsigned i;
+ block tmp_blk;
+
+ if (nonce_len != 12)
+ return AE_NOT_SUPPORTED;
+
+/* Initialize encryption & decryption keys */
+#if (OCB_KEY_LEN > 0)
+ key_len = OCB_KEY_LEN;
+#endif
+ AES_set_encrypt_key((unsigned char*)key, key_len * 8, &ctx->encrypt_key);
+#if USE_AES_NI
+ AES_set_decrypt_key_fast(&ctx->decrypt_key, &ctx->encrypt_key);
+#else
+ AES_set_decrypt_key((unsigned char*)key, (int)(key_len * 8), &ctx->decrypt_key);
+#endif
+
+ /* Zero things that need zeroing */
+ ctx->cached_Top = ctx->ad_checksum = zero_block();
+ ctx->ad_blocks_processed = 0;
+
+ /* Compute key-dependent values */
+ AES_encrypt((unsigned char*)&ctx->cached_Top, (unsigned char*)&ctx->Lstar, &ctx->encrypt_key);
+ tmp_blk = swap_if_le(ctx->Lstar);
+ tmp_blk = double_block(tmp_blk);
+ ctx->Ldollar = swap_if_le(tmp_blk);
+ tmp_blk = double_block(tmp_blk);
+ ctx->L[0] = swap_if_le(tmp_blk);
+ for (i = 1; i < L_TABLE_SZ; i++) {
+ tmp_blk = double_block(tmp_blk);
+ ctx->L[i] = swap_if_le(tmp_blk);
+ }
+
+#if (OCB_TAG_LEN == 0)
+ ctx->tag_len = tag_len;
+#else
+ (void)tag_len; /* Suppress var not used error */
+#endif
+
+ return AE_SUCCESS;
+}
+
+/* ----------------------------------------------------------------------- */
+
+static block gen_offset_from_nonce(ae_ctx* ctx, const void* nonce) {
+ const union {
+ unsigned x;
+ unsigned char endian;
+ } little = {1};
+ union {
+ uint32_t u32[4];
+ uint8_t u8[16];
+ block bl;
+ } tmp;
+ unsigned idx;
+ uint32_t tagadd;
+
+/* Replace cached nonce Top if needed */
+#if (OCB_TAG_LEN > 0)
+ if (little.endian)
+ tmp.u32[0] = 0x01000000 + ((OCB_TAG_LEN * 8 % 128) << 1);
+ else
+ tmp.u32[0] = 0x00000001 + ((OCB_TAG_LEN * 8 % 128) << 25);
+#else
+ if (little.endian)
+ tmp.u32[0] = 0x01000000 + ((ctx->tag_len * 8 % 128) << 1);
+ else
+ tmp.u32[0] = 0x00000001 + ((ctx->tag_len * 8 % 128) << 25);
+#endif
+ tmp.u32[1] = ((uint32_t*)nonce)[0];
+ tmp.u32[2] = ((uint32_t*)nonce)[1];
+ tmp.u32[3] = ((uint32_t*)nonce)[2];
+ idx = (unsigned)(tmp.u8[15] & 0x3f); /* Get low 6 bits of nonce */
+ tmp.u8[15] = tmp.u8[15] & 0xc0; /* Zero low 6 bits of nonce */
+ if (unequal_blocks(tmp.bl, ctx->cached_Top)) { /* Cached? */
+ ctx->cached_Top = tmp.bl; /* Update cache, KtopStr */
+ AES_encrypt(tmp.u8, (unsigned char*)&ctx->KtopStr, &ctx->encrypt_key);
+ if (little.endian) { /* Make Register Correct */
+ ctx->KtopStr[0] = bswap64(ctx->KtopStr[0]);
+ ctx->KtopStr[1] = bswap64(ctx->KtopStr[1]);
+ }
+ ctx->KtopStr[2] = ctx->KtopStr[0] ^ (ctx->KtopStr[0] << 8) ^ (ctx->KtopStr[1] >> 56);
+ }
+ return gen_offset(ctx->KtopStr, idx);
+}
+
+static void process_ad(ae_ctx* ctx, const void* ad, int ad_len, int final) {
+ union {
+ uint32_t u32[4];
+ uint8_t u8[16];
+ block bl;
+ } tmp;
+ block ad_offset, ad_checksum;
+ const block* adp = (block*)ad;
+ unsigned i, k, tz, remaining;
+
+ ad_offset = ctx->ad_offset;
+ ad_checksum = ctx->ad_checksum;
+ i = ad_len / (BPI * 16);
+ if (i) {
+ unsigned ad_block_num = ctx->ad_blocks_processed;
+ do {
+ block ta[BPI], oa[BPI];
+ ad_block_num += BPI;
+ tz = ntz(ad_block_num);
+ oa[0] = xor_block(ad_offset, ctx->L[0]);
+ ta[0] = xor_block(oa[0], adp[0]);
+ oa[1] = xor_block(oa[0], ctx->L[1]);
+ ta[1] = xor_block(oa[1], adp[1]);
+ oa[2] = xor_block(ad_offset, ctx->L[1]);
+ ta[2] = xor_block(oa[2], adp[2]);
+#if BPI == 4
+ ad_offset = xor_block(oa[2], getL(ctx, tz));
+ ta[3] = xor_block(ad_offset, adp[3]);
+#elif BPI == 8
+ oa[3] = xor_block(oa[2], ctx->L[2]);
+ ta[3] = xor_block(oa[3], adp[3]);
+ oa[4] = xor_block(oa[1], ctx->L[2]);
+ ta[4] = xor_block(oa[4], adp[4]);
+ oa[5] = xor_block(oa[0], ctx->L[2]);
+ ta[5] = xor_block(oa[5], adp[5]);
+ oa[6] = xor_block(ad_offset, ctx->L[2]);
+ ta[6] = xor_block(oa[6], adp[6]);
+ ad_offset = xor_block(oa[6], getL(ctx, tz));
+ ta[7] = xor_block(ad_offset, adp[7]);
+#endif
+ AES_ecb_encrypt_blks(ta, BPI, &ctx->encrypt_key);
+ ad_checksum = xor_block(ad_checksum, ta[0]);
+ ad_checksum = xor_block(ad_checksum, ta[1]);
+ ad_checksum = xor_block(ad_checksum, ta[2]);
+ ad_checksum = xor_block(ad_checksum, ta[3]);
+#if (BPI == 8)
+ ad_checksum = xor_block(ad_checksum, ta[4]);
+ ad_checksum = xor_block(ad_checksum, ta[5]);
+ ad_checksum = xor_block(ad_checksum, ta[6]);
+ ad_checksum = xor_block(ad_checksum, ta[7]);
+#endif
+ adp += BPI;
+ } while (--i);
+ ctx->ad_blocks_processed = ad_block_num;
+ ctx->ad_offset = ad_offset;
+ ctx->ad_checksum = ad_checksum;
+ }
+
+ if (final) {
+ block ta[BPI];
+
+ /* Process remaining associated data, compute its tag contribution */
+ remaining = ((unsigned)ad_len) % (BPI * 16);
+ if (remaining) {
+ k = 0;
+#if (BPI == 8)
+ if (remaining >= 64) {
+ tmp.bl = xor_block(ad_offset, ctx->L[0]);
+ ta[0] = xor_block(tmp.bl, adp[0]);
+ tmp.bl = xor_block(tmp.bl, ctx->L[1]);
+ ta[1] = xor_block(tmp.bl, adp[1]);
+ ad_offset = xor_block(ad_offset, ctx->L[1]);
+ ta[2] = xor_block(ad_offset, adp[2]);
+ ad_offset = xor_block(ad_offset, ctx->L[2]);
+ ta[3] = xor_block(ad_offset, adp[3]);
+ remaining -= 64;
+ k = 4;
+ }
+#endif
+ if (remaining >= 32) {
+ ad_offset = xor_block(ad_offset, ctx->L[0]);
+ ta[k] = xor_block(ad_offset, adp[k]);
+ ad_offset = xor_block(ad_offset, getL(ctx, ntz(k + 2)));
+ ta[k + 1] = xor_block(ad_offset, adp[k + 1]);
+ remaining -= 32;
+ k += 2;
+ }
+ if (remaining >= 16) {
+ ad_offset = xor_block(ad_offset, ctx->L[0]);
+ ta[k] = xor_block(ad_offset, adp[k]);
+ remaining = remaining - 16;
+ ++k;
+ }
+ if (remaining) {
+ ad_offset = xor_block(ad_offset, ctx->Lstar);
+ tmp.bl = zero_block();
+ memcpy(tmp.u8, adp + k, remaining);
+ tmp.u8[remaining] = (unsigned char)0x80u;
+ ta[k] = xor_block(ad_offset, tmp.bl);
+ ++k;
+ }
+ AES_ecb_encrypt_blks(ta, k, &ctx->encrypt_key);
+ switch (k) {
+#if (BPI == 8)
+ case 8:
+ ad_checksum = xor_block(ad_checksum, ta[7]);
+ case 7:
+ ad_checksum = xor_block(ad_checksum, ta[6]);
+ case 6:
+ ad_checksum = xor_block(ad_checksum, ta[5]);
+ case 5:
+ ad_checksum = xor_block(ad_checksum, ta[4]);
+#endif
+ case 4:
+ ad_checksum = xor_block(ad_checksum, ta[3]);
+ case 3:
+ ad_checksum = xor_block(ad_checksum, ta[2]);
+ case 2:
+ ad_checksum = xor_block(ad_checksum, ta[1]);
+ case 1:
+ ad_checksum = xor_block(ad_checksum, ta[0]);
+ }
+ ctx->ad_checksum = ad_checksum;
+ }
+ }
+}
+
+/* ----------------------------------------------------------------------- */
+
+int ae_encrypt(ae_ctx* ctx, const void* nonce, const void* pt, int pt_len, const void* ad,
+ int ad_len, void* ct, void* tag, int final) {
+ union {
+ uint32_t u32[4];
+ uint8_t u8[16];
+ block bl;
+ } tmp;
+ block offset, checksum;
+ unsigned i, k;
+ block* ctp = (block*)ct;
+ const block* ptp = (block*)pt;
+
+ /* Non-null nonce means start of new message, init per-message values */
+ if (nonce) {
+ ctx->offset = gen_offset_from_nonce(ctx, nonce);
+ ctx->ad_offset = ctx->checksum = zero_block();
+ ctx->ad_blocks_processed = ctx->blocks_processed = 0;
+ if (ad_len >= 0)
+ ctx->ad_checksum = zero_block();
+ }
+
+ /* Process associated data */
+ if (ad_len > 0)
+ process_ad(ctx, ad, ad_len, final);
+
+ /* Encrypt plaintext data BPI blocks at a time */
+ offset = ctx->offset;
+ checksum = ctx->checksum;
+ i = pt_len / (BPI * 16);
+ if (i) {
+ block oa[BPI];
+ unsigned block_num = ctx->blocks_processed;
+ oa[BPI - 1] = offset;
+ do {
+ block ta[BPI];
+ block_num += BPI;
+ oa[0] = xor_block(oa[BPI - 1], ctx->L[0]);
+ ta[0] = xor_block(oa[0], ptp[0]);
+ checksum = xor_block(checksum, ptp[0]);
+ oa[1] = xor_block(oa[0], ctx->L[1]);
+ ta[1] = xor_block(oa[1], ptp[1]);
+ checksum = xor_block(checksum, ptp[1]);
+ oa[2] = xor_block(oa[1], ctx->L[0]);
+ ta[2] = xor_block(oa[2], ptp[2]);
+ checksum = xor_block(checksum, ptp[2]);
+#if BPI == 4
+ oa[3] = xor_block(oa[2], getL(ctx, ntz(block_num)));
+ ta[3] = xor_block(oa[3], ptp[3]);
+ checksum = xor_block(checksum, ptp[3]);
+#elif BPI == 8
+ oa[3] = xor_block(oa[2], ctx->L[2]);
+ ta[3] = xor_block(oa[3], ptp[3]);
+ checksum = xor_block(checksum, ptp[3]);
+ oa[4] = xor_block(oa[1], ctx->L[2]);
+ ta[4] = xor_block(oa[4], ptp[4]);
+ checksum = xor_block(checksum, ptp[4]);
+ oa[5] = xor_block(oa[0], ctx->L[2]);
+ ta[5] = xor_block(oa[5], ptp[5]);
+ checksum = xor_block(checksum, ptp[5]);
+ oa[6] = xor_block(oa[7], ctx->L[2]);
+ ta[6] = xor_block(oa[6], ptp[6]);
+ checksum = xor_block(checksum, ptp[6]);
+ oa[7] = xor_block(oa[6], getL(ctx, ntz(block_num)));
+ ta[7] = xor_block(oa[7], ptp[7]);
+ checksum = xor_block(checksum, ptp[7]);
+#endif
+ AES_ecb_encrypt_blks(ta, BPI, &ctx->encrypt_key);
+ ctp[0] = xor_block(ta[0], oa[0]);
+ ctp[1] = xor_block(ta[1], oa[1]);
+ ctp[2] = xor_block(ta[2], oa[2]);
+ ctp[3] = xor_block(ta[3], oa[3]);
+#if (BPI == 8)
+ ctp[4] = xor_block(ta[4], oa[4]);
+ ctp[5] = xor_block(ta[5], oa[5]);
+ ctp[6] = xor_block(ta[6], oa[6]);
+ ctp[7] = xor_block(ta[7], oa[7]);
+#endif
+ ptp += BPI;
+ ctp += BPI;
+ } while (--i);
+ ctx->offset = offset = oa[BPI - 1];
+ ctx->blocks_processed = block_num;
+ ctx->checksum = checksum;
+ }
+
+ if (final) {
+ block ta[BPI + 1], oa[BPI];
+
+ /* Process remaining plaintext and compute its tag contribution */
+ unsigned remaining = ((unsigned)pt_len) % (BPI * 16);
+ k = 0; /* How many blocks in ta[] need ECBing */
+ if (remaining) {
+#if (BPI == 8)
+ if (remaining >= 64) {
+ oa[0] = xor_block(offset, ctx->L[0]);
+ ta[0] = xor_block(oa[0], ptp[0]);
+ checksum = xor_block(checksum, ptp[0]);
+ oa[1] = xor_block(oa[0], ctx->L[1]);
+ ta[1] = xor_block(oa[1], ptp[1]);
+ checksum = xor_block(checksum, ptp[1]);
+ oa[2] = xor_block(oa[1], ctx->L[0]);
+ ta[2] = xor_block(oa[2], ptp[2]);
+ checksum = xor_block(checksum, ptp[2]);
+ offset = oa[3] = xor_block(oa[2], ctx->L[2]);
+ ta[3] = xor_block(offset, ptp[3]);
+ checksum = xor_block(checksum, ptp[3]);
+ remaining -= 64;
+ k = 4;
+ }
+#endif
+ if (remaining >= 32) {
+ oa[k] = xor_block(offset, ctx->L[0]);
+ ta[k] = xor_block(oa[k], ptp[k]);
+ checksum = xor_block(checksum, ptp[k]);
+ offset = oa[k + 1] = xor_block(oa[k], ctx->L[1]);
+ ta[k + 1] = xor_block(offset, ptp[k + 1]);
+ checksum = xor_block(checksum, ptp[k + 1]);
+ remaining -= 32;
+ k += 2;
+ }
+ if (remaining >= 16) {
+ offset = oa[k] = xor_block(offset, ctx->L[0]);
+ ta[k] = xor_block(offset, ptp[k]);
+ checksum = xor_block(checksum, ptp[k]);
+ remaining -= 16;
+ ++k;
+ }
+ if (remaining) {
+ tmp.bl = zero_block();
+ memcpy(tmp.u8, ptp + k, remaining);
+ tmp.u8[remaining] = (unsigned char)0x80u;
+ checksum = xor_block(checksum, tmp.bl);
+ ta[k] = offset = xor_block(offset, ctx->Lstar);
+ ++k;
+ }
+ }
+ offset = xor_block(offset, ctx->Ldollar); /* Part of tag gen */
+ ta[k] = xor_block(offset, checksum); /* Part of tag gen */
+ AES_ecb_encrypt_blks(ta, k + 1, &ctx->encrypt_key);
+ offset = xor_block(ta[k], ctx->ad_checksum); /* Part of tag gen */
+ if (remaining) {
+ --k;
+ tmp.bl = xor_block(tmp.bl, ta[k]);
+ memcpy(ctp + k, tmp.u8, remaining);
+ }
+ switch (k) {
+#if (BPI == 8)
+ case 7:
+ ctp[6] = xor_block(ta[6], oa[6]);
+ case 6:
+ ctp[5] = xor_block(ta[5], oa[5]);
+ case 5:
+ ctp[4] = xor_block(ta[4], oa[4]);
+ case 4:
+ ctp[3] = xor_block(ta[3], oa[3]);
+#endif
+ case 3:
+ ctp[2] = xor_block(ta[2], oa[2]);
+ case 2:
+ ctp[1] = xor_block(ta[1], oa[1]);
+ case 1:
+ ctp[0] = xor_block(ta[0], oa[0]);
+ }
+
+ /* Tag is placed at the correct location
+ */
+ if (tag) {
+#if (OCB_TAG_LEN == 16)
+ *(block*)tag = offset;
+#elif(OCB_TAG_LEN > 0)
+ memcpy((char*)tag, &offset, OCB_TAG_LEN);
+#else
+ memcpy((char*)tag, &offset, ctx->tag_len);
+#endif
+ } else {
+#if (OCB_TAG_LEN > 0)
+ memcpy((char*)ct + pt_len, &offset, OCB_TAG_LEN);
+ pt_len += OCB_TAG_LEN;
+#else
+ memcpy((char*)ct + pt_len, &offset, ctx->tag_len);
+ pt_len += ctx->tag_len;
+#endif
+ }
+ }
+ return (int)pt_len;
+}
+
+/* ----------------------------------------------------------------------- */
+
+/* Compare two regions of memory, taking a constant amount of time for a
+ given buffer size -- under certain assumptions about the compiler
+ and machine, of course.
+
+ Use this to avoid timing side-channel attacks.
+
+ Returns 0 for memory regions with equal contents; non-zero otherwise. */
+static int constant_time_memcmp(const void* av, const void* bv, size_t n) {
+ const uint8_t* a = (const uint8_t*)av;
+ const uint8_t* b = (const uint8_t*)bv;
+ uint8_t result = 0;
+ size_t i;
+
+ for (i = 0; i < n; i++) {
+ result |= *a ^ *b;
+ a++;
+ b++;
+ }
+
+ return (int)result;
+}
+
+int ae_decrypt(ae_ctx* ctx, const void* nonce, const void* ct, int ct_len, const void* ad,
+ int ad_len, void* pt, const void* tag, int final) {
+ union {
+ uint32_t u32[4];
+ uint8_t u8[16];
+ block bl;
+ } tmp;
+ block offset, checksum;
+ unsigned i, k;
+ block* ctp = (block*)ct;
+ block* ptp = (block*)pt;
+
+ /* Reduce ct_len tag bundled in ct */
+ if ((final) && (!tag))
+#if (OCB_TAG_LEN > 0)
+ ct_len -= OCB_TAG_LEN;
+#else
+ ct_len -= ctx->tag_len;
+#endif
+
+ /* Non-null nonce means start of new message, init per-message values */
+ if (nonce) {
+ ctx->offset = gen_offset_from_nonce(ctx, nonce);
+ ctx->ad_offset = ctx->checksum = zero_block();
+ ctx->ad_blocks_processed = ctx->blocks_processed = 0;
+ if (ad_len >= 0)
+ ctx->ad_checksum = zero_block();
+ }
+
+ /* Process associated data */
+ if (ad_len > 0)
+ process_ad(ctx, ad, ad_len, final);
+
+ /* Encrypt plaintext data BPI blocks at a time */
+ offset = ctx->offset;
+ checksum = ctx->checksum;
+ i = ct_len / (BPI * 16);
+ if (i) {
+ block oa[BPI];
+ unsigned block_num = ctx->blocks_processed;
+ oa[BPI - 1] = offset;
+ do {
+ block ta[BPI];
+ block_num += BPI;
+ oa[0] = xor_block(oa[BPI - 1], ctx->L[0]);
+ ta[0] = xor_block(oa[0], ctp[0]);
+ oa[1] = xor_block(oa[0], ctx->L[1]);
+ ta[1] = xor_block(oa[1], ctp[1]);
+ oa[2] = xor_block(oa[1], ctx->L[0]);
+ ta[2] = xor_block(oa[2], ctp[2]);
+#if BPI == 4
+ oa[3] = xor_block(oa[2], getL(ctx, ntz(block_num)));
+ ta[3] = xor_block(oa[3], ctp[3]);
+#elif BPI == 8
+ oa[3] = xor_block(oa[2], ctx->L[2]);
+ ta[3] = xor_block(oa[3], ctp[3]);
+ oa[4] = xor_block(oa[1], ctx->L[2]);
+ ta[4] = xor_block(oa[4], ctp[4]);
+ oa[5] = xor_block(oa[0], ctx->L[2]);
+ ta[5] = xor_block(oa[5], ctp[5]);
+ oa[6] = xor_block(oa[7], ctx->L[2]);
+ ta[6] = xor_block(oa[6], ctp[6]);
+ oa[7] = xor_block(oa[6], getL(ctx, ntz(block_num)));
+ ta[7] = xor_block(oa[7], ctp[7]);
+#endif
+ AES_ecb_decrypt_blks(ta, BPI, &ctx->decrypt_key);
+ ptp[0] = xor_block(ta[0], oa[0]);
+ checksum = xor_block(checksum, ptp[0]);
+ ptp[1] = xor_block(ta[1], oa[1]);
+ checksum = xor_block(checksum, ptp[1]);
+ ptp[2] = xor_block(ta[2], oa[2]);
+ checksum = xor_block(checksum, ptp[2]);
+ ptp[3] = xor_block(ta[3], oa[3]);
+ checksum = xor_block(checksum, ptp[3]);
+#if (BPI == 8)
+ ptp[4] = xor_block(ta[4], oa[4]);
+ checksum = xor_block(checksum, ptp[4]);
+ ptp[5] = xor_block(ta[5], oa[5]);
+ checksum = xor_block(checksum, ptp[5]);
+ ptp[6] = xor_block(ta[6], oa[6]);
+ checksum = xor_block(checksum, ptp[6]);
+ ptp[7] = xor_block(ta[7], oa[7]);
+ checksum = xor_block(checksum, ptp[7]);
+#endif
+ ptp += BPI;
+ ctp += BPI;
+ } while (--i);
+ ctx->offset = offset = oa[BPI - 1];
+ ctx->blocks_processed = block_num;
+ ctx->checksum = checksum;
+ }
+
+ if (final) {
+ block ta[BPI + 1], oa[BPI];
+
+ /* Process remaining plaintext and compute its tag contribution */
+ unsigned remaining = ((unsigned)ct_len) % (BPI * 16);
+ k = 0; /* How many blocks in ta[] need ECBing */
+ if (remaining) {
+#if (BPI == 8)
+ if (remaining >= 64) {
+ oa[0] = xor_block(offset, ctx->L[0]);
+ ta[0] = xor_block(oa[0], ctp[0]);
+ oa[1] = xor_block(oa[0], ctx->L[1]);
+ ta[1] = xor_block(oa[1], ctp[1]);
+ oa[2] = xor_block(oa[1], ctx->L[0]);
+ ta[2] = xor_block(oa[2], ctp[2]);
+ offset = oa[3] = xor_block(oa[2], ctx->L[2]);
+ ta[3] = xor_block(offset, ctp[3]);
+ remaining -= 64;
+ k = 4;
+ }
+#endif
+ if (remaining >= 32) {
+ oa[k] = xor_block(offset, ctx->L[0]);
+ ta[k] = xor_block(oa[k], ctp[k]);
+ offset = oa[k + 1] = xor_block(oa[k], ctx->L[1]);
+ ta[k + 1] = xor_block(offset, ctp[k + 1]);
+ remaining -= 32;
+ k += 2;
+ }
+ if (remaining >= 16) {
+ offset = oa[k] = xor_block(offset, ctx->L[0]);
+ ta[k] = xor_block(offset, ctp[k]);
+ remaining -= 16;
+ ++k;
+ }
+ if (remaining) {
+ block pad;
+ offset = xor_block(offset, ctx->Lstar);
+ AES_encrypt((unsigned char*)&offset, tmp.u8, &ctx->encrypt_key);
+ pad = tmp.bl;
+ memcpy(tmp.u8, ctp + k, remaining);
+ tmp.bl = xor_block(tmp.bl, pad);
+ tmp.u8[remaining] = (unsigned char)0x80u;
+ memcpy(ptp + k, tmp.u8, remaining);
+ checksum = xor_block(checksum, tmp.bl);
+ }
+ }
+ AES_ecb_decrypt_blks(ta, k, &ctx->decrypt_key);
+ switch (k) {
+#if (BPI == 8)
+ case 7:
+ ptp[6] = xor_block(ta[6], oa[6]);
+ checksum = xor_block(checksum, ptp[6]);
+ case 6:
+ ptp[5] = xor_block(ta[5], oa[5]);
+ checksum = xor_block(checksum, ptp[5]);
+ case 5:
+ ptp[4] = xor_block(ta[4], oa[4]);
+ checksum = xor_block(checksum, ptp[4]);
+ case 4:
+ ptp[3] = xor_block(ta[3], oa[3]);
+ checksum = xor_block(checksum, ptp[3]);
+#endif
+ case 3:
+ ptp[2] = xor_block(ta[2], oa[2]);
+ checksum = xor_block(checksum, ptp[2]);
+ case 2:
+ ptp[1] = xor_block(ta[1], oa[1]);
+ checksum = xor_block(checksum, ptp[1]);
+ case 1:
+ ptp[0] = xor_block(ta[0], oa[0]);
+ checksum = xor_block(checksum, ptp[0]);
+ }
+
+ /* Calculate expected tag */
+ offset = xor_block(offset, ctx->Ldollar);
+ tmp.bl = xor_block(offset, checksum);
+ AES_encrypt(tmp.u8, tmp.u8, &ctx->encrypt_key);
+ tmp.bl = xor_block(tmp.bl, ctx->ad_checksum); /* Full tag */
+
+ /* Compare with proposed tag, change ct_len if invalid */
+ if ((OCB_TAG_LEN == 16) && tag) {
+ if (unequal_blocks(tmp.bl, *(block*)tag))
+ ct_len = AE_INVALID;
+ } else {
+#if (OCB_TAG_LEN > 0)
+ int len = OCB_TAG_LEN;
+#else
+ int len = ctx->tag_len;
+#endif
+ if (tag) {
+ if (constant_time_memcmp(tag, tmp.u8, len) != 0)
+ ct_len = AE_INVALID;
+ } else {
+ if (constant_time_memcmp((char*)ct + ct_len, tmp.u8, len) != 0)
+ ct_len = AE_INVALID;
+ }
+ }
+ }
+ return ct_len;
+}
+
+/* ----------------------------------------------------------------------- */
+/* Simple test program */
+/* ----------------------------------------------------------------------- */
+
+#if 0
+
+#include <stdio.h>
+#include <time.h>
+
+#if __GNUC__
+#define ALIGN(n) __attribute__((aligned(n)))
+#elif _MSC_VER
+#define ALIGN(n) __declspec(align(n))
+#else /* Not GNU/Microsoft: delete alignment uses. */
+#define ALIGN(n)
+#endif
+
+static void pbuf(void *p, unsigned len, const void *s)
+{
+ unsigned i;
+ if (s)
+ printf("%s", (char *)s);
+ for (i = 0; i < len; i++)
+ printf("%02X", (unsigned)(((unsigned char *)p)[i]));
+ printf("\n");
+}
+
+static void vectors(ae_ctx *ctx, int len)
+{
+ ALIGN(16) char pt[128];
+ ALIGN(16) char ct[144];
+ ALIGN(16) char nonce[] = {0,1,2,3,4,5,6,7,8,9,10,11};
+ int i;
+ for (i=0; i < 128; i++) pt[i] = i;
+ i = ae_encrypt(ctx,nonce,pt,len,pt,len,ct,NULL,AE_FINALIZE);
+ printf("P=%d,A=%d: ",len,len); pbuf(ct, i, NULL);
+ i = ae_encrypt(ctx,nonce,pt,0,pt,len,ct,NULL,AE_FINALIZE);
+ printf("P=%d,A=%d: ",0,len); pbuf(ct, i, NULL);
+ i = ae_encrypt(ctx,nonce,pt,len,pt,0,ct,NULL,AE_FINALIZE);
+ printf("P=%d,A=%d: ",len,0); pbuf(ct, i, NULL);
+}
+
+void validate()
+{
+ ALIGN(16) char pt[1024];
+ ALIGN(16) char ct[1024];
+ ALIGN(16) char tag[16];
+ ALIGN(16) char nonce[12] = {0,};
+ ALIGN(16) char key[32] = {0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31};
+ ae_ctx ctx;
+ char *val_buf, *next;
+ int i, len;
+
+ val_buf = (char *)malloc(22400 + 16);
+ next = val_buf = (char *)(((size_t)val_buf + 16) & ~((size_t)15));
+
+ if (0) {
+ ae_init(&ctx, key, 16, 12, 16);
+ /* pbuf(&ctx, sizeof(ctx), "CTX: "); */
+ vectors(&ctx,0);
+ vectors(&ctx,8);
+ vectors(&ctx,16);
+ vectors(&ctx,24);
+ vectors(&ctx,32);
+ vectors(&ctx,40);
+ }
+
+ memset(key,0,32);
+ memset(pt,0,128);
+ ae_init(&ctx, key, OCB_KEY_LEN, 12, OCB_TAG_LEN);
+
+ /* RFC Vector test */
+ for (i = 0; i < 128; i++) {
+ int first = ((i/3)/(BPI*16))*(BPI*16);
+ int second = first;
+ int third = i - (first + second);
+
+ nonce[11] = i;
+
+ if (0) {
+ ae_encrypt(&ctx,nonce,pt,i,pt,i,ct,NULL,AE_FINALIZE);
+ memcpy(next,ct,(size_t)i+OCB_TAG_LEN);
+ next = next+i+OCB_TAG_LEN;
+
+ ae_encrypt(&ctx,nonce,pt,i,pt,0,ct,NULL,AE_FINALIZE);
+ memcpy(next,ct,(size_t)i+OCB_TAG_LEN);
+ next = next+i+OCB_TAG_LEN;
+
+ ae_encrypt(&ctx,nonce,pt,0,pt,i,ct,NULL,AE_FINALIZE);
+ memcpy(next,ct,OCB_TAG_LEN);
+ next = next+OCB_TAG_LEN;
+ } else {
+ ae_encrypt(&ctx,nonce,pt,first,pt,first,ct,NULL,AE_PENDING);
+ ae_encrypt(&ctx,NULL,pt+first,second,pt+first,second,ct+first,NULL,AE_PENDING);
+ ae_encrypt(&ctx,NULL,pt+first+second,third,pt+first+second,third,ct+first+second,NULL,AE_FINALIZE);
+ memcpy(next,ct,(size_t)i+OCB_TAG_LEN);
+ next = next+i+OCB_TAG_LEN;
+
+ ae_encrypt(&ctx,nonce,pt,first,pt,0,ct,NULL,AE_PENDING);
+ ae_encrypt(&ctx,NULL,pt+first,second,pt,0,ct+first,NULL,AE_PENDING);
+ ae_encrypt(&ctx,NULL,pt+first+second,third,pt,0,ct+first+second,NULL,AE_FINALIZE);
+ memcpy(next,ct,(size_t)i+OCB_TAG_LEN);
+ next = next+i+OCB_TAG_LEN;
+
+ ae_encrypt(&ctx,nonce,pt,0,pt,first,ct,NULL,AE_PENDING);
+ ae_encrypt(&ctx,NULL,pt,0,pt+first,second,ct,NULL,AE_PENDING);
+ ae_encrypt(&ctx,NULL,pt,0,pt+first+second,third,ct,NULL,AE_FINALIZE);
+ memcpy(next,ct,OCB_TAG_LEN);
+ next = next+OCB_TAG_LEN;
+ }
+
+ }
+ nonce[11] = 0;
+ ae_encrypt(&ctx,nonce,NULL,0,val_buf,next-val_buf,ct,tag,AE_FINALIZE);
+ pbuf(tag,OCB_TAG_LEN,0);
+
+
+ /* Encrypt/Decrypt test */
+ for (i = 0; i < 128; i++) {
+ int first = ((i/3)/(BPI*16))*(BPI*16);
+ int second = first;
+ int third = i - (first + second);
+
+ nonce[11] = i%128;
+
+ if (1) {
+ len = ae_encrypt(&ctx,nonce,val_buf,i,val_buf,i,ct,tag,AE_FINALIZE);
+ len = ae_encrypt(&ctx,nonce,val_buf,i,val_buf,-1,ct,tag,AE_FINALIZE);
+ len = ae_decrypt(&ctx,nonce,ct,len,val_buf,-1,pt,tag,AE_FINALIZE);
+ if (len == -1) { printf("Authentication error: %d\n", i); return; }
+ if (len != i) { printf("Length error: %d\n", i); return; }
+ if (memcmp(val_buf,pt,i)) { printf("Decrypt error: %d\n", i); return; }
+ } else {
+ len = ae_encrypt(&ctx,nonce,val_buf,i,val_buf,i,ct,NULL,AE_FINALIZE);
+ ae_decrypt(&ctx,nonce,ct,first,val_buf,first,pt,NULL,AE_PENDING);
+ ae_decrypt(&ctx,NULL,ct+first,second,val_buf+first,second,pt+first,NULL,AE_PENDING);
+ len = ae_decrypt(&ctx,NULL,ct+first+second,len-(first+second),val_buf+first+second,third,pt+first+second,NULL,AE_FINALIZE);
+ if (len == -1) { printf("Authentication error: %d\n", i); return; }
+ if (memcmp(val_buf,pt,i)) { printf("Decrypt error: %d\n", i); return; }
+ }
+
+ }
+ printf("Decrypt: PASS\n");
+}
+
+int main()
+{
+ validate();
+ return 0;
+}
+#endif
+
+#if USE_AES_NI
+char infoString[] = "OCB3 (AES-NI)";
+#elif USE_REFERENCE_AES
+char infoString[] = "OCB3 (Reference)";
+#elif USE_OPENSSL_AES
+char infoString[] = "OCB3 (OpenSSL)";
+#endif