aboutsummaryrefslogtreecommitdiff
path: root/ConstantExpression.cpp
blob: 6930c0f4fe389ff8c5d6951bbfd046c8fe5a20fd (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
/*
 * Copyright (C) 2016 The Android Open Source Project
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#include "ConstantExpression.h"

#include <android-base/logging.h>
#include <android-base/parseint.h>
#include <stdio.h>
#include <algorithm>
#include <iostream>
#include <sstream>
#include <string>

#include "EnumType.h"
#include "Scope.h"  // LocalIdentifier

// The macros are really nasty here. Consider removing
// as many macros as possible.

#define OPEQ(__y__) (std::string(mOp) == std::string(__y__))
#define COMPUTE_UNARY(__op__)  if (op == std::string(#__op__)) return __op__ val;
#define COMPUTE_BINARY(__op__) if (op == std::string(#__op__)) return lval __op__ rval;
#define OP_IS_BIN_ARITHMETIC  (OPEQ("+") || OPEQ("-") || OPEQ("*") || OPEQ("/") || OPEQ("%"))
#define OP_IS_BIN_BITFLIP     (OPEQ("|") || OPEQ("^") || OPEQ("&"))
#define OP_IS_BIN_COMP        (OPEQ("<") || OPEQ(">") || OPEQ("<=") || OPEQ(">=") || OPEQ("==") || OPEQ("!="))
#define OP_IS_BIN_SHIFT       (OPEQ(">>") || OPEQ("<<"))
#define OP_IS_BIN_LOGICAL     (OPEQ("||") || OPEQ("&&"))
#define SK(__x__) ScalarType::Kind::KIND_##__x__
#define SHOULD_NOT_REACH() CHECK(false) << __LINE__ << ": should not reach here: "

// NOLINT to suppress missing parentheses warnings about __def__.
#define SWITCH_KIND(__cond__, __action__, __def__)           \
        switch(__cond__) {                                        \
            case SK(BOOL): __action__(bool)                         \
            case SK(UINT8): __action__(uint8_t)                     \
            case SK(INT8): __action__(int8_t)                       \
            case SK(UINT16): __action__(uint16_t)                   \
            case SK(INT16): __action__(int16_t)                     \
            case SK(UINT32): __action__(uint32_t)                   \
            case SK(INT32): __action__(int32_t)                     \
            case SK(UINT64): __action__(uint64_t)                   \
            case SK(INT64): __action__(int64_t)                     \
            default: __def__                        /* NOLINT */    \
        }

namespace android {

static inline bool isSupported(ScalarType::Kind kind) {
    return SK(BOOL) == kind || ScalarType(kind, nullptr /* parent */).isValidEnumStorageType();
}

/* See docs at the end for details on integral promotion. */
ScalarType::Kind integralPromotion(ScalarType::Kind in) {
    return SK(INT32) < in ? in : SK(INT32); // note that KIND_INT32 < KIND_UINT32
}

/* See docs at the end for details on usual arithmetic conversion. */
ScalarType::Kind usualArithmeticConversion(ScalarType::Kind lft,
                                           ScalarType::Kind rgt) {
    CHECK(isSupported(lft) && isSupported(rgt));
    // Kinds in concern: bool, (u)int[8|16|32|64]
    if(lft == rgt) return lft; // easy case
    if(lft == SK(BOOL)) return rgt;
    if(rgt == SK(BOOL)) return lft;
    bool isLftSigned = (lft == SK(INT8))  || (lft == SK(INT16))
                    || (lft == SK(INT32)) || (lft == SK(INT64));
    bool isRgtSigned = (rgt == SK(INT8))  || (rgt == SK(INT16))
                    || (rgt == SK(INT32)) || (rgt == SK(INT64));
    if(isLftSigned == isRgtSigned) return lft < rgt ? rgt : lft;
    ScalarType::Kind unsignedRank = isLftSigned ? rgt : lft;
    ScalarType::Kind signedRank   = isLftSigned ? lft : rgt;
    if(unsignedRank >= signedRank) return unsignedRank;
    if(signedRank > unsignedRank)  return signedRank;

    // Although there is such rule to return "the unsigned counterpart of
    // the signed operand", it should not reach here in our HIDL grammar.
    CHECK(false) << "Could not do usual arithmetic conversion for type " << lft << "and" << rgt;
    switch(signedRank) {
        case SK(INT8):  return SK(UINT8);
        case SK(INT16): return SK(UINT16);
        case SK(INT32): return SK(UINT32);
        case SK(INT64): return SK(UINT64);
        default: return SK(UINT64);
    }
}

template <class T>
T handleUnary(const std::string& op, T val) {
    COMPUTE_UNARY(+)
    COMPUTE_UNARY(-)
    COMPUTE_UNARY(!)

// bitwise negation of a boolean expression always evaluates to 'true'
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wbool-operation"
    COMPUTE_UNARY(~)
#pragma clang diagnostic pop

    // Should not reach here.
    SHOULD_NOT_REACH() << "Could not handleUnary for " << op << " " << val;
    return static_cast<T>(0xdeadbeef);
}

template <class T>
T handleBinaryCommon(T lval, const std::string& op, T rval) {
    COMPUTE_BINARY(+)
    COMPUTE_BINARY(-)
    COMPUTE_BINARY(*)
    COMPUTE_BINARY(/)
    COMPUTE_BINARY(%)
    COMPUTE_BINARY(|)
    COMPUTE_BINARY(^)
    COMPUTE_BINARY(&)
    // comparison operators: return 0 or 1 by nature.
    COMPUTE_BINARY(==)
    COMPUTE_BINARY(!=)
    COMPUTE_BINARY(<)
    COMPUTE_BINARY(>)
    COMPUTE_BINARY(<=)
    COMPUTE_BINARY(>=)
    // Should not reach here.
    SHOULD_NOT_REACH() << "Could not handleBinaryCommon for "
                       << lval << " " << op << " " << rval;
    return static_cast<T>(0xdeadbeef);
}

// The compiler doesn't know T is at least KIND_INT32, and will instantiate bool
// version of this function, and will warn about converting the result of '<<'
// to a boolean.
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wint-in-bool-context"
template <class T>
T handleShift(T lval, const std::string& op, int64_t rval) {
    // just cast rval to int64_t and it should fit.
    COMPUTE_BINARY(>>)
    COMPUTE_BINARY(<<)
    // Should not reach here.
    SHOULD_NOT_REACH() << "Could not handleShift for "
                       << lval << " " << op << " " << rval;
    return static_cast<T>(0xdeadbeef);
}
#pragma GCC diagnostic pop

bool handleLogical(bool lval, const std::string& op, bool rval) {
    COMPUTE_BINARY(||);
    COMPUTE_BINARY(&&);
    // Should not reach here.
    SHOULD_NOT_REACH() << "Could not handleLogical for "
                       << lval << " " << op << " " << rval;
    return false;
}

std::unique_ptr<ConstantExpression> ConstantExpression::Zero(ScalarType::Kind kind) {
    return ValueOf(kind, 0);
}

std::unique_ptr<ConstantExpression> ConstantExpression::One(ScalarType::Kind kind) {
    return ValueOf(kind, 1);
}

std::unique_ptr<ConstantExpression> ConstantExpression::ValueOf(ScalarType::Kind kind,
                                                                uint64_t value) {
    return std::make_unique<LiteralConstantExpression>(kind, value);
}

ConstantExpression::ConstantExpression(const std::string& expr) : mExpr(expr) {}

bool ConstantExpression::isEvaluated() const {
    return mIsEvaluated;
}

LiteralConstantExpression::LiteralConstantExpression(ScalarType::Kind kind, uint64_t value,
                                                     const std::string& expr)
    : ConstantExpression(expr) {
    CHECK(!expr.empty());
    CHECK(isSupported(kind));

    mTrivialDescription = std::to_string(value) == expr;
    mValueKind = kind;
    mValue = value;
    mIsEvaluated = true;
}

LiteralConstantExpression::LiteralConstantExpression(ScalarType::Kind kind, uint64_t value)
  : LiteralConstantExpression(kind, value, std::to_string(value)) {}

LiteralConstantExpression* LiteralConstantExpression::tryParse(const std::string& value) {
    CHECK(!value.empty());

    bool isLong = false, isUnsigned = false;
    bool isHex = (value[0] == '0' && value.length() > 1 && (value[1] == 'x' || value[1] == 'X'));

    auto rbegin = value.rbegin();
    auto rend = value.rend();
    for (; rbegin != rend && (*rbegin == 'u' || *rbegin == 'U' || *rbegin == 'l' || *rbegin == 'L');
         ++rbegin) {
        isUnsigned |= (*rbegin == 'u' || *rbegin == 'U');
        isLong |= (*rbegin == 'l' || *rbegin == 'L');
    }
    std::string newVal(value.begin(), rbegin.base());
    CHECK(!newVal.empty());

    uint64_t rawValue = 0;

    bool parseOK = base::ParseUint(newVal, &rawValue);
    if (!parseOK) {
        return nullptr;
    }

    ScalarType::Kind kind;

    // guess literal type.
    if(isLong) {
        if(isUnsigned) // ul
            kind = SK(UINT64);
        else // l
            kind = SK(INT64);
    } else { // no l suffix
        if(isUnsigned) { // u
            if(rawValue <= UINT32_MAX)
                kind = SK(UINT32);
            else
                kind = SK(UINT64);
        } else { // no suffix
            if(isHex) {
                if(rawValue <= INT32_MAX) // rawValue always >= 0
                    kind = SK(INT32);
                else if(rawValue <= UINT32_MAX)
                    kind = SK(UINT32);
                else if(rawValue <= INT64_MAX) // rawValue always >= 0
                    kind = SK(INT64);
                else if(rawValue <= UINT64_MAX)
                    kind = SK(UINT64);
                else
                    return nullptr;
            } else {
                if(rawValue <= INT32_MAX) // rawValue always >= 0
                    kind = SK(INT32);
                else
                    kind = SK(INT64);
            }
        }
    }

    return new LiteralConstantExpression(kind, rawValue, value);
}

void LiteralConstantExpression::evaluate() {
    // Evaluated in constructor
    CHECK(isEvaluated());
}

void UnaryConstantExpression::evaluate() {
    if (isEvaluated()) return;
    CHECK(mUnary->isEvaluated());
    mIsEvaluated = true;

    mValueKind = mUnary->mValueKind;

#define CASE_UNARY(__type__)                                          \
    mValue = handleUnary(mOp, static_cast<__type__>(mUnary->mValue)); \
    return;

    SWITCH_KIND(mValueKind, CASE_UNARY, SHOULD_NOT_REACH(); return;)
}

void BinaryConstantExpression::evaluate() {
    if (isEvaluated()) return;
    CHECK(mLval->isEvaluated());
    CHECK(mRval->isEvaluated());
    mIsEvaluated = true;

    bool isArithmeticOrBitflip = OP_IS_BIN_ARITHMETIC || OP_IS_BIN_BITFLIP;

    // CASE 1: + - *  / % | ^ & < > <= >= == !=
    if(isArithmeticOrBitflip || OP_IS_BIN_COMP) {
        // promoted kind for both operands.
        ScalarType::Kind promoted = usualArithmeticConversion(integralPromotion(mLval->mValueKind),
                                                              integralPromotion(mRval->mValueKind));
        // result kind.
        mValueKind = isArithmeticOrBitflip
                    ? promoted // arithmetic or bitflip operators generates promoted type
                    : SK(BOOL); // comparison operators generates bool

#define CASE_BINARY_COMMON(__type__)                                       \
    mValue = handleBinaryCommon(static_cast<__type__>(mLval->mValue), mOp, \
                                static_cast<__type__>(mRval->mValue));     \
    return;

        SWITCH_KIND(promoted, CASE_BINARY_COMMON, SHOULD_NOT_REACH(); return;)
    }

    // CASE 2: << >>
    std::string newOp = mOp;
    if(OP_IS_BIN_SHIFT) {
        mValueKind = integralPromotion(mLval->mValueKind);
        // instead of promoting rval, simply casting it to int64 should also be good.
        int64_t numBits = mRval->cast<int64_t>();
        if(numBits < 0) {
            // shifting with negative number of bits is undefined in C. In HIDL it
            // is defined as shifting into the other direction.
            newOp = OPEQ("<<") ? std::string(">>") : std::string("<<");
            numBits = -numBits;
        }

#define CASE_SHIFT(__type__)                                                    \
    mValue = handleShift(static_cast<__type__>(mLval->mValue), newOp, numBits); \
    return;

        SWITCH_KIND(mValueKind, CASE_SHIFT, SHOULD_NOT_REACH(); return;)
    }

    // CASE 3: && ||
    if(OP_IS_BIN_LOGICAL) {
        mValueKind = SK(BOOL);
        // easy; everything is bool.
        mValue = handleLogical(mLval->mValue, mOp, mRval->mValue);
        return;
    }

    SHOULD_NOT_REACH();
}

void TernaryConstantExpression::evaluate() {
    if (isEvaluated()) return;
    CHECK(mCond->isEvaluated());
    CHECK(mTrueVal->isEvaluated());
    CHECK(mFalseVal->isEvaluated());
    mIsEvaluated = true;

    // note: for ?:, unlike arithmetic ops, integral promotion is not processed.
    mValueKind = usualArithmeticConversion(mTrueVal->mValueKind, mFalseVal->mValueKind);

#define CASE_TERNARY(__type__)                                           \
    mValue = mCond->mValue ? (static_cast<__type__>(mTrueVal->mValue))   \
                           : (static_cast<__type__>(mFalseVal->mValue)); \
    return;

    SWITCH_KIND(mValueKind, CASE_TERNARY, SHOULD_NOT_REACH(); return;)
}

void ReferenceConstantExpression::evaluate() {
    if (isEvaluated()) return;
    CHECK(mReference->constExpr() != nullptr);

    ConstantExpression* expr = mReference->constExpr();
    CHECK(expr->isEvaluated());

    mValueKind = expr->mValueKind;
    mValue = expr->mValue;
    mIsEvaluated = true;
}

status_t AttributeConstantExpression::validate() const {
    if (mTag == "len") {
        if (!mReference->isEnum()) {
            std::cerr << "ERROR: " << mExpr << " refers to " << mReference->typeName()
                      << " but should refer to an enum." << std::endl;
            return UNKNOWN_ERROR;
        }
    } else {
        std::cerr << "ERROR: " << mExpr << " is not a supported tag" << std::endl;
        return UNKNOWN_ERROR;
    }

    return OK;
}

void AttributeConstantExpression::evaluate() {
    if (isEvaluated()) return;

    CHECK(mTag == "len");
    CHECK(mReference->isEnum());

    EnumType* enumType = static_cast<EnumType*>(mReference.get());
    mValue = enumType->numValueNames();

    if (mValue <= INT32_MAX)
        mValueKind = SK(INT32);
    else
        mValueKind = SK(INT64);

    mIsEvaluated = true;
}

std::unique_ptr<ConstantExpression> ConstantExpression::addOne(ScalarType::Kind baseKind) {
    auto ret = std::make_unique<BinaryConstantExpression>(
        this, "+", ConstantExpression::One(baseKind).release());
    return ret;
}

std::string ConstantExpression::value() const {
    return value(mValueKind);
}

std::string ConstantExpression::value(ScalarType::Kind castKind) const {
    CHECK(isEvaluated());
    return rawValue(castKind) + descriptionSuffix();
}

std::string ConstantExpression::cppValue() const {
    return cppValue(mValueKind);
}

std::string ConstantExpression::cppValue(ScalarType::Kind castKind) const {
    CHECK(isEvaluated());
    std::string literal(rawValue(castKind));
    // this is a hack to translate
    //       enum x : int64_t {  y = 1l << 63 };
    // into
    //       enum class x : int64_t { y = (int64_t)-9223372036854775808ull };
    // by adding the explicit cast.
    // Because 9223372036854775808 is uint64_t, and
    // -(uint64_t)9223372036854775808 == 9223372036854775808 could not
    // be narrowed to int64_t.
    if(castKind == SK(INT64) && (int64_t)mValue == INT64_MIN) {
        literal = "static_cast<" +
                  ScalarType(SK(INT64), nullptr /* parent */).getCppStackType()  // "int64_t"
                  + ">(" + literal + "ull)";
    } else {
        // add suffix if necessary.
        if (castKind == SK(UINT32) || castKind == SK(UINT64)) literal += "u";
        if (castKind == SK(UINT64) || castKind == SK(INT64)) literal += "ll";
    }

    return literal + descriptionSuffix();
}

std::string ConstantExpression::javaValue() const {
    return javaValue(mValueKind);
}

std::string ConstantExpression::javaValue(ScalarType::Kind castKind) const {
    CHECK(isEvaluated());
    std::string literal;

    switch(castKind) {
        case SK(UINT64):
            literal = rawValue(SK(INT64)) + "L";
            break;
        case SK(INT64):
            literal = rawValue(SK(INT64)) + "L";
            break;
        case SK(UINT32):
            literal = rawValue(SK(INT32));
            break;
        case SK(UINT16):
            literal = rawValue(SK(INT16));
            break;
        case SK(UINT8):
            literal = rawValue(SK(INT8));
            break;
        case SK(BOOL)  :
            literal = this->cast<bool>() ? "true" : "false";
            break;
        default:
            literal = rawValue(castKind);
            break;
    }

    return literal + descriptionSuffix();
}

const std::string& ConstantExpression::expression() const {
    return mExpr;
}

std::string ConstantExpression::rawValue() const {
    return rawValue(mValueKind);
}

std::string ConstantExpression::rawValue(ScalarType::Kind castKind) const {
    CHECK(isEvaluated());

#define CASE_STR(__type__) return std::to_string(this->cast<__type__>());

    SWITCH_KIND(castKind, CASE_STR, SHOULD_NOT_REACH(); return nullptr; );
}

template<typename T>
T ConstantExpression::cast() const {
    CHECK(isEvaluated());

#define CASE_CAST_T(__type__) return static_cast<T>(static_cast<__type__>(mValue));

    SWITCH_KIND(mValueKind, CASE_CAST_T, SHOULD_NOT_REACH(); return 0; );
}

std::string ConstantExpression::descriptionSuffix() const {
    CHECK(isEvaluated());

    if (!mTrivialDescription) {
        CHECK(!mExpr.empty());

        return " /* " + mExpr + " */";
    }
    return "";
}

size_t ConstantExpression::castSizeT() const {
    CHECK(isEvaluated());
    return this->cast<size_t>();
}

bool ConstantExpression::isReferenceConstantExpression() const {
    return false;
}

status_t ConstantExpression::validate() const {
    return OK;
}

std::vector<ConstantExpression*> ConstantExpression::getConstantExpressions() {
    const auto& constRet = static_cast<const ConstantExpression*>(this)->getConstantExpressions();
    std::vector<ConstantExpression*> ret(constRet.size());
    std::transform(constRet.begin(), constRet.end(), ret.begin(),
                   [](const auto* ce) { return const_cast<ConstantExpression*>(ce); });
    return ret;
}

std::vector<Reference<LocalIdentifier>*> ConstantExpression::getReferences() {
    const auto& constRet = static_cast<const ConstantExpression*>(this)->getReferences();
    std::vector<Reference<LocalIdentifier>*> ret(constRet.size());
    std::transform(constRet.begin(), constRet.end(), ret.begin(),
                   [](const auto* ce) { return const_cast<Reference<LocalIdentifier>*>(ce); });
    return ret;
}

std::vector<const Reference<LocalIdentifier>*> ConstantExpression::getReferences() const {
    return {};
}

std::vector<Reference<Type>*> ConstantExpression::getTypeReferences() {
    const auto& constRet = static_cast<const ConstantExpression*>(this)->getTypeReferences();
    std::vector<Reference<Type>*> ret(constRet.size());
    std::transform(constRet.begin(), constRet.end(), ret.begin(),
                   [](const auto* ce) { return const_cast<Reference<Type>*>(ce); });
    return ret;
}

std::vector<const Reference<Type>*> ConstantExpression::getTypeReferences() const {
    return {};
}

status_t ConstantExpression::recursivePass(const std::function<status_t(ConstantExpression*)>& func,
                                           std::unordered_set<const ConstantExpression*>* visited,
                                           bool processBeforeDependencies) {
    if (mIsPostParseCompleted) return OK;

    if (visited->find(this) != visited->end()) return OK;
    visited->insert(this);

    if (processBeforeDependencies) {
        status_t err = func(this);
        if (err != OK) return err;
    }

    for (auto* nextCE : getConstantExpressions()) {
        status_t err = nextCE->recursivePass(func, visited, processBeforeDependencies);
        if (err != OK) return err;
    }

    for (auto* nextRef : getReferences()) {
        auto* nextCE = nextRef->shallowGet()->constExpr();
        CHECK(nextCE != nullptr) << "Local identifier is not a constant expression";
        status_t err = nextCE->recursivePass(func, visited, processBeforeDependencies);
        if (err != OK) return err;
    }

    if (!processBeforeDependencies) {
        status_t err = func(this);
        if (err != OK) return err;
    }

    return OK;
}

status_t ConstantExpression::recursivePass(
    const std::function<status_t(const ConstantExpression*)>& func,
    std::unordered_set<const ConstantExpression*>* visited, bool processBeforeDependencies) const {
    if (mIsPostParseCompleted) return OK;

    if (visited->find(this) != visited->end()) return OK;
    visited->insert(this);

    if (processBeforeDependencies) {
        status_t err = func(this);
        if (err != OK) return err;
    }

    for (const auto* nextCE : getConstantExpressions()) {
        status_t err = nextCE->recursivePass(func, visited, processBeforeDependencies);
        if (err != OK) return err;
    }

    for (const auto* nextRef : getReferences()) {
        const auto* nextCE = nextRef->shallowGet()->constExpr();
        CHECK(nextCE != nullptr) << "Local identifier is not a constant expression";
        status_t err = nextCE->recursivePass(func, visited, processBeforeDependencies);
        if (err != OK) return err;
    }

    if (!processBeforeDependencies) {
        status_t err = func(this);
        if (err != OK) return err;
    }

    return OK;
}

ConstantExpression::CheckAcyclicStatus::CheckAcyclicStatus(
    status_t status, const ConstantExpression* cycleEnd,
    const ReferenceConstantExpression* lastReference)
    : status(status), cycleEnd(cycleEnd), lastReference(lastReference) {
    CHECK(cycleEnd == nullptr || status != OK);
    CHECK((cycleEnd == nullptr) == (lastReference == nullptr));
}

ConstantExpression::CheckAcyclicStatus ConstantExpression::checkAcyclic(
    std::unordered_set<const ConstantExpression*>* visited,
    std::unordered_set<const ConstantExpression*>* stack) const {
    if (stack->find(this) != stack->end()) {
        CHECK(isReferenceConstantExpression())
            << "Only reference constant expression could be the cycle end";

        std::cerr << "ERROR: Cyclic declaration:\n";
        return CheckAcyclicStatus(UNKNOWN_ERROR, this,
                                  static_cast<const ReferenceConstantExpression*>(this));
    }

    if (visited->find(this) != visited->end()) return CheckAcyclicStatus(OK);
    visited->insert(this);
    stack->insert(this);

    for (const auto* nextCE : getConstantExpressions()) {
        auto err = nextCE->checkAcyclic(visited, stack);
        if (err.status != OK) {
            return err;
        }
    }

    for (const auto* nextRef : getReferences()) {
        const auto* nextCE = nextRef->shallowGet()->constExpr();
        CHECK(nextCE != nullptr) << "Local identifier is not a constant expression";
        auto err = nextCE->checkAcyclic(visited, stack);

        if (err.status != OK) {
            if (err.cycleEnd == nullptr) return err;

            // Only ReferenceConstantExpression has references,
            CHECK(isReferenceConstantExpression())
                << "Only reference constant expression could have refereneces";

            // mExpr is defined explicitly before evaluation
            std::cerr << "  '" << err.lastReference->mExpr << "' in '" << mExpr << "' at "
                      << nextRef->location() << "\n";

            if (err.cycleEnd == this) {
                return CheckAcyclicStatus(err.status);
            }
            return CheckAcyclicStatus(err.status, err.cycleEnd,
                                      static_cast<const ReferenceConstantExpression*>(this));
        }
    }

    CHECK(stack->find(this) != stack->end());
    stack->erase(this);
    return CheckAcyclicStatus(OK);
}

void ConstantExpression::setPostParseCompleted() {
    CHECK(!mIsPostParseCompleted);
    mIsPostParseCompleted = true;
}

void ConstantExpression::surroundWithParens() {
    mExpr = "(" + mExpr + ")";
}

std::vector<const ConstantExpression*> LiteralConstantExpression::getConstantExpressions() const {
    return {};
}

UnaryConstantExpression::UnaryConstantExpression(const std::string& op, ConstantExpression* value)
    : ConstantExpression(op + value->mExpr), mUnary(value), mOp(op) {}

std::vector<const ConstantExpression*> UnaryConstantExpression::getConstantExpressions() const {
    return {mUnary};
}

BinaryConstantExpression::BinaryConstantExpression(ConstantExpression* lval, const std::string& op,
                                                   ConstantExpression* rval)
    : ConstantExpression(lval->mExpr + " " + op + " " + rval->mExpr),
      mLval(lval),
      mRval(rval),
      mOp(op) {}

std::vector<const ConstantExpression*> BinaryConstantExpression::getConstantExpressions() const {
    return {mLval, mRval};
}

TernaryConstantExpression::TernaryConstantExpression(ConstantExpression* cond,
                                                     ConstantExpression* trueVal,
                                                     ConstantExpression* falseVal)
    : ConstantExpression(cond->mExpr + "?" + trueVal->mExpr + ":" + falseVal->mExpr),
      mCond(cond),
      mTrueVal(trueVal),
      mFalseVal(falseVal) {}

std::vector<const ConstantExpression*> TernaryConstantExpression::getConstantExpressions() const {
    return {mCond, mTrueVal, mFalseVal};
}

ReferenceConstantExpression::ReferenceConstantExpression(const Reference<LocalIdentifier>& value,
                                                         const std::string& expr)
    : ConstantExpression(expr), mReference(value) {
    mTrivialDescription = mExpr.empty();
}

bool ReferenceConstantExpression::isReferenceConstantExpression() const {
    return true;
}

std::vector<const ConstantExpression*> ReferenceConstantExpression::getConstantExpressions() const {
    // Returns reference instead
    return {};
}

std::vector<const Reference<LocalIdentifier>*> ReferenceConstantExpression::getReferences() const {
    return {&mReference};
}

AttributeConstantExpression::AttributeConstantExpression(const Reference<Type>& value,
                                                         const std::string& fqname,
                                                         const std::string& tag)
    : ConstantExpression(fqname + "#" + tag), mReference(value), mTag(tag) {}

std::vector<const ConstantExpression*> AttributeConstantExpression::getConstantExpressions() const {
    // Returns reference instead
    return {};
}

std::vector<const Reference<Type>*> AttributeConstantExpression::getTypeReferences() const {
    return {&mReference};
}

/*

Evaluating expressions in HIDL language

The following rules are mostly like that in:
http://en.cppreference.com/w/cpp/language/operator_arithmetic
http://en.cppreference.com/w/cpp/language/operator_logical
http://en.cppreference.com/w/cpp/language/operator_comparison
http://en.cppreference.com/w/cpp/language/operator_other

The type of literal is the first type which the value
can fit from the list of types depending on the suffix and bases.

suffix              decimal bases           hexadecimal bases
no suffix           int32_t                 int32_t
                    int64_t                 uint32_t
                                            int64_t
                                            uint64_t

u/U                 uint32_t                (same as left)
                    uint64_t

l/L                 int64_t                 int64_t

ul/UL/uL/Ul         uint64_t                uint64_t


Note: There are no negative integer literals.
      -1 is the unary minus applied to 1.

Unary arithmetic and bitwise operators (~ + -):
  don't change the type of the argument.
  (so -1u = -(1u) has type uint32_t)

Binary arithmetic and bitwise operators (except shifts) (+ - * / % & | ^):
1. Integral promotion is first applied on both sides.
2. If both operands have the same type, no promotion is necessary.
3. Usual arithmetic conversions.

Integral promotion: if an operand is of a type with less than 32 bits,
(including bool), it is promoted to int32_t.

Usual arithmetic conversions:
1. If operands are both signed or both unsigned, lesser conversion rank is
   converted to greater conversion rank.
2. Otherwise, if unsigned's rank >= signed's rank, -> unsigned's type
3. Otherwise, if signed's type can hold all values in unsigned's type,
   -> signed's type
4. Otherwise, both converted to the unsigned counterpart of the signed operand's
   type.
rank: bool < int8_t < int16_t < int32_t < int64_t


Shift operators (<< >>):
1. Integral promotion is applied on both sides.
2. For unsigned a, a << b discards bits that shifts out.
   For signed non-negative a, a << b is legal if no bits shifts out, otherwise error.
   For signed negative a, a << b gives error.
3. For unsigned and signed non-negative a, a >> b discards bits that shifts out.
   For signed negative a, a >> b discards bits that shifts out, and the signed
   bit gets extended. ("arithmetic right shift")
4. Shifting with negative number of bits is undefined. (Currently, the
   parser will shift into the other direction. This behavior may change.)
5. Shifting with number of bits exceeding the width of the type is undefined.
   (Currently, 1 << 32 == 1. This behavior may change.)

Logical operators (!, &&, ||):
1. Convert first operand to bool. (true if non-zero, false otherwise)
2. If short-circuited, return the result as type bool, value 1 or 0.
3. Otherwise, convert second operand to bool, evaluate the result, and return
   the result in the same fashion.

Arithmetic comparison operators (< > <= >= == !=):
1. Promote operands in the same way as binary arithmetic and bitwise operators.
   (Integral promotion + Usual arithmetic conversions)
2. Return type bool, value 0 or 1 the same way as logical operators.

Ternary conditional operator (?:):
1. Evaluate the conditional and evaluate the operands.
2. Return type of expression is the type under usual arithmetic conversions on
   the second and third operand. (No integral promotions necessary.)

*/

}  // namespace android