summaryrefslogtreecommitdiff
path: root/libunwindstack/tests/fuzz/UnwinderComponentCreator.cpp
blob: 51a9d8cf5939ad9625ca0c254c956650588963b2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
/*
 * Copyright 2020 The Android Open Source Project
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#include "UnwinderComponentCreator.h"

#include <map>
#include <memory>
#include <string>
#include <vector>

std::unique_ptr<Regs> GetRegisters(ArchEnum arch) {
  switch (arch) {
    case unwindstack::ARCH_ARM: {
      std::unique_ptr<unwindstack::RegsArm> regs = std::make_unique<unwindstack::RegsArm>();
      return regs;
    }
    case unwindstack::ARCH_ARM64: {
      std::unique_ptr<unwindstack::RegsArm64> regs = std::make_unique<unwindstack::RegsArm64>();
      return regs;
    }
    case unwindstack::ARCH_X86: {
      std::unique_ptr<unwindstack::RegsX86> regs = std::make_unique<unwindstack::RegsX86>();
      return regs;
    }
    case unwindstack::ARCH_X86_64: {
      std::unique_ptr<unwindstack::RegsX86_64> regs = std::make_unique<unwindstack::RegsX86_64>();
      return regs;
    }
    case unwindstack::ARCH_MIPS: {
      std::unique_ptr<unwindstack::RegsMips> regs = std::make_unique<unwindstack::RegsMips>();
      return regs;
    }
    case unwindstack::ARCH_MIPS64: {
      std::unique_ptr<unwindstack::RegsMips64> regs = std::make_unique<unwindstack::RegsMips64>();
      return regs;
    }
    case unwindstack::ARCH_UNKNOWN:
    default: {
      std::unique_ptr<unwindstack::RegsX86_64> regs = std::make_unique<unwindstack::RegsX86_64>();
      return regs;
    }
  }
}

ArchEnum GetArch(FuzzedDataProvider* data_provider) {
  uint8_t arch = data_provider->ConsumeIntegralInRange<uint8_t>(1, kArchCount);
  return static_cast<ArchEnum>(arch);
}

void ElfAddMapInfo(Maps* maps, uint64_t start, uint64_t end, uint64_t offset, uint64_t flags,
                   const char* name, Elf* elf = nullptr) {
  std::string str_name(name);
  maps->Add(start, end, offset, flags, name, static_cast<uint64_t>(-1));
  if (elf != nullptr) {
    const auto& map_info = *--maps->end();
    map_info->elf().reset(elf);
  }
}

void ElfPushFakeFunctionData(FuzzedDataProvider* data_provider, ElfInterfaceFake* elf) {
  uint8_t func_count = data_provider->ConsumeIntegralInRange<uint>(0, kMaxFuncCount);
  for (uint8_t i = 0; i < func_count; i++) {
    std::string func_name = data_provider->ConsumeRandomLengthString(kMaxFuncNameLen);
    bool global = data_provider->ConsumeBool();
    if (global) {
      elf->FakeSetGlobalVariable(func_name, data_provider->ConsumeIntegral<uint64_t>());
    } else {
      ElfInterfaceFake::FakePushFunctionData(FunctionData(func_name, i));
    }
  }
}
void ElfPushFakeStepData(FuzzedDataProvider* data_provider) {
  uint8_t step_count = data_provider->ConsumeIntegralInRange<uint>(0, kMaxStepCount);
  for (uint8_t i = 0; i < step_count; i++) {
    uint64_t pc = data_provider->ConsumeIntegral<uint64_t>();
    uint64_t sp = data_provider->ConsumeIntegral<uint64_t>();
    bool finished = i + 1 == step_count;
    ElfInterfaceFake::FakePushStepData(StepData(pc, sp, finished));
  }
}

ElfFake* PopulateElfFake(FuzzedDataProvider* data_provider) {
  // This will be passed to a smart pointer in ElfAddMapInfo.
  ElfFake* elf = new ElfFake(new MemoryFake);

  // This will be handled by a smart pointer within Elf.
  ElfInterfaceFake* interface_fake = new ElfInterfaceFake(nullptr);
  std::string build_id = data_provider->ConsumeRandomLengthString(kMaxBuildIdLen);
  interface_fake->FakeSetBuildID(build_id);
  std::string so_name = data_provider->ConsumeRandomLengthString(kMaxSoNameLen);
  interface_fake->FakeSetSoname(so_name.c_str());

  elf->FakeSetArch(GetArch(data_provider));
  elf->FakeSetLoadBias(data_provider->ConsumeIntegral<uint64_t>());

  ElfPushFakeFunctionData(data_provider, interface_fake);
  ElfPushFakeStepData(data_provider);

  elf->FakeSetInterface(interface_fake);
  ElfInterfaceFake::FakeClear();
  return elf;
}

static constexpr size_t kPageSize = 4096;

static inline bool AlignToPage(uint64_t address, uint64_t* aligned_address) {
  if (__builtin_add_overflow(address, kPageSize - 1, aligned_address)) {
    return false;
  }
  *aligned_address &= ~(kPageSize - 1);
  return true;
}

std::unique_ptr<Maps> GetMaps(FuzzedDataProvider* data_provider) {
  std::unique_ptr<Maps> maps = std::make_unique<Maps>();
  std::map<uint64_t, uint64_t> map_ends;
  uint8_t entry_count = data_provider->ConsumeIntegralInRange<uint8_t>(0, kMaxMapEntryCount);
  for (uint8_t i = 0; i < entry_count; i++) {
    uint64_t start;
    if (!AlignToPage(data_provider->ConsumeIntegral<uint64_t>(), &start)) {
      // Overflowed.
      continue;
    }
    uint64_t end;
    if (!AlignToPage(data_provider->ConsumeIntegralInRange<uint64_t>(start, UINT64_MAX), &end)) {
      // Overflowed.
      continue;
    }
    if (start == end) {
      // It's impossible to see start == end in the real world, so
      // make sure the map contains at least one page of data.
      if (__builtin_add_overflow(end, 0x1000, &end)) {
        continue;
      }
    }
    // Make sure not to add overlapping maps, that is not something that can
    // happen in the real world.
    auto entry = map_ends.upper_bound(start);
    if (entry != map_ends.end() && end > entry->second) {
      continue;
    }
    map_ends[end] = start;

    uint64_t offset;
    if (!AlignToPage(data_provider->ConsumeIntegral<uint64_t>(), &offset)) {
      // Overflowed.
      continue;
    }
    std::string map_info_name = data_provider->ConsumeRandomLengthString(kMaxMapInfoNameLen);
    uint8_t flags = PROT_READ | PROT_WRITE;

    bool exec = data_provider->ConsumeBool();
    if (exec) {
      flags |= PROT_EXEC;
    }

    bool shouldAddElf = data_provider->ConsumeBool();
    if (shouldAddElf) {
      ElfAddMapInfo(maps.get(), start, end, offset, flags, map_info_name.c_str(),
                    PopulateElfFake(data_provider));
    } else {
      ElfAddMapInfo(maps.get(), start, end, offset, flags, map_info_name.c_str());
    }
  }
  maps->Sort();
  return maps;
}

// This code (until PutElfFilesInMemory) is pretty much directly copied from JitDebugTest.cpp
// There's a few minor modifications, most notably, all methods accept a MemoryFake pointer, and
// PutElfInMemory inserts JIT data when called.
void WriteDescriptor32(MemoryFake* memory, uint64_t addr, uint32_t entry) {
  // Format of the 32 bit JITDescriptor structure:
  //   uint32_t version
  memory->SetData32(addr, 1);
  //   uint32_t action_flag
  memory->SetData32(addr + 4, 0);
  //   uint32_t relevant_entry
  memory->SetData32(addr + 8, 0);
  //   uint32_t first_entry
  memory->SetData32(addr + 12, entry);
}

void WriteDescriptor64(MemoryFake* memory, uint64_t addr, uint64_t entry) {
  // Format of the 64 bit JITDescriptor structure:
  //   uint32_t version
  memory->SetData32(addr, 1);
  //   uint32_t action_flag
  memory->SetData32(addr + 4, 0);
  //   uint64_t relevant_entry
  memory->SetData64(addr + 8, 0);
  //   uint64_t first_entry
  memory->SetData64(addr + 16, entry);
}

void WriteEntry32Pack(MemoryFake* memory, uint64_t addr, uint32_t prev, uint32_t next,
                      uint32_t elf_addr, uint64_t elf_size) {
  // Format of the 32 bit JITCodeEntry structure:
  //   uint32_t next
  memory->SetData32(addr, next);
  //   uint32_t prev
  memory->SetData32(addr + 4, prev);
  //   uint32_t symfile_addr
  memory->SetData32(addr + 8, elf_addr);
  //   uint64_t symfile_size
  memory->SetData64(addr + 12, elf_size);
}

void WriteEntry32Pad(MemoryFake* memory, uint64_t addr, uint32_t prev, uint32_t next,
                     uint32_t elf_addr, uint64_t elf_size) {
  // Format of the 32 bit JITCodeEntry structure:
  //   uint32_t next
  memory->SetData32(addr, next);
  //   uint32_t prev
  memory->SetData32(addr + 4, prev);
  //   uint32_t symfile_addr
  memory->SetData32(addr + 8, elf_addr);
  //   uint32_t pad
  memory->SetData32(addr + 12, 0);
  //   uint64_t symfile_size
  memory->SetData64(addr + 16, elf_size);
}

void WriteEntry64(MemoryFake* memory, uint64_t addr, uint64_t prev, uint64_t next,
                  uint64_t elf_addr, uint64_t elf_size) {
  // Format of the 64 bit JITCodeEntry structure:
  //   uint64_t next
  memory->SetData64(addr, next);
  //   uint64_t prev
  memory->SetData64(addr + 8, prev);
  //   uint64_t symfile_addr
  memory->SetData64(addr + 16, elf_addr);
  //   uint64_t symfile_size
  memory->SetData64(addr + 24, elf_size);
}

template <typename EhdrType, typename ShdrType>
void PutElfInMemory(MemoryFake* memory, uint64_t offset, uint8_t class_type, uint8_t machine_type,
                    uint32_t pc, uint32_t size) {
  EhdrType ehdr;
  memset(&ehdr, 0, sizeof(ehdr));
  uint64_t sh_offset = sizeof(ehdr);
  memcpy(ehdr.e_ident, ELFMAG, SELFMAG);
  ehdr.e_ident[EI_CLASS] = class_type;
  ehdr.e_machine = machine_type;
  ehdr.e_shstrndx = 1;
  ehdr.e_shoff = sh_offset;
  ehdr.e_shentsize = sizeof(ShdrType);
  ehdr.e_shnum = 3;
  memory->SetMemory(offset, &ehdr, sizeof(ehdr));

  ShdrType shdr;
  memset(&shdr, 0, sizeof(shdr));
  shdr.sh_type = SHT_NULL;
  memory->SetMemory(offset + sh_offset, &shdr, sizeof(shdr));

  sh_offset += sizeof(shdr);
  memset(&shdr, 0, sizeof(shdr));
  shdr.sh_type = SHT_STRTAB;
  shdr.sh_name = 1;
  shdr.sh_offset = 0x500;
  shdr.sh_size = 0x100;
  memory->SetMemory(offset + sh_offset, &shdr, sizeof(shdr));
  memory->SetMemory(offset + 0x500, ".debug_frame");

  sh_offset += sizeof(shdr);
  memset(&shdr, 0, sizeof(shdr));
  shdr.sh_type = SHT_PROGBITS;
  shdr.sh_name = 0;
  shdr.sh_addr = 0x600;
  shdr.sh_offset = 0x600;
  shdr.sh_size = 0x200;
  memory->SetMemory(offset + sh_offset, &shdr, sizeof(shdr));

  // Now add a single cie/fde.
  uint64_t dwarf_offset = offset + 0x600;
  if (class_type == ELFCLASS32) {
    // CIE 32 information.
    memory->SetData32(dwarf_offset, 0xfc);
    memory->SetData32(dwarf_offset + 0x4, 0xffffffff);
    memory->SetData8(dwarf_offset + 0x8, 1);
    memory->SetData8(dwarf_offset + 0x9, '\0');
    memory->SetData8(dwarf_offset + 0xa, 0x4);
    memory->SetData8(dwarf_offset + 0xb, 0x4);
    memory->SetData8(dwarf_offset + 0xc, 0x1);

    // FDE 32 information.
    memory->SetData32(dwarf_offset + 0x100, 0xfc);
    memory->SetData32(dwarf_offset + 0x104, 0);
    memory->SetData32(dwarf_offset + 0x108, pc);
    memory->SetData32(dwarf_offset + 0x10c, size);
  } else {
    // CIE 64 information.
    memory->SetData32(dwarf_offset, 0xffffffff);
    memory->SetData64(dwarf_offset + 4, 0xf4);
    memory->SetData64(dwarf_offset + 0xc, 0xffffffffffffffffULL);
    memory->SetData8(dwarf_offset + 0x14, 1);
    memory->SetData8(dwarf_offset + 0x15, '\0');
    memory->SetData8(dwarf_offset + 0x16, 0x4);
    memory->SetData8(dwarf_offset + 0x17, 0x4);
    memory->SetData8(dwarf_offset + 0x18, 0x1);

    // FDE 64 information.
    memory->SetData32(dwarf_offset + 0x100, 0xffffffff);
    memory->SetData64(dwarf_offset + 0x104, 0xf4);
    memory->SetData64(dwarf_offset + 0x10c, 0);
    memory->SetData64(dwarf_offset + 0x114, pc);
    memory->SetData64(dwarf_offset + 0x11c, size);
  }
}

void PutElfFilesInMemory(MemoryFake* memory, FuzzedDataProvider* data_provider) {
  uint8_t elf_file_count = data_provider->ConsumeIntegralInRange<uint8_t>(0, kMaxJitElfFiles);
  int entry_offset = 0;
  int prev_jit_addr = 0;
  for (uint8_t i = 0; i < elf_file_count; i++) {
    uint64_t offset = data_provider->ConsumeIntegral<uint64_t>();
    // Technically the max valid value is ELFCLASSNUM - 1 (2), but
    // we want to test values outside of that range.
    uint8_t class_type = data_provider->ConsumeIntegral<uint8_t>();
    // Same here, EM_NUM is 253, max valid machine type is 252
    uint8_t machine_type = data_provider->ConsumeIntegral<uint8_t>();
    uint32_t pc = data_provider->ConsumeIntegral<uint32_t>();
    uint32_t size = data_provider->ConsumeIntegral<uint32_t>();
    bool sixty_four_bit = data_provider->ConsumeBool();
    bool write_jit = data_provider->ConsumeBool();
    if (sixty_four_bit) {
      PutElfInMemory<Elf64_Ehdr, Elf64_Shdr>(memory, offset, class_type, machine_type, pc, size);
    } else {
      PutElfInMemory<Elf32_Ehdr, Elf32_Shdr>(memory, offset, class_type, machine_type, pc, size);
    }
    if (write_jit) {
      bool use_pad = data_provider->ConsumeBool();
      // It is possible this will overwrite part of the ELF.
      // This provides an interesting test of how malformed ELF
      // data is handled.
      uint64_t cur_descriptor_addr = 0x11800 + entry_offset;
      uint64_t cur_jit_addr = 0x200000 + entry_offset;
      uint64_t next_jit_addr = cur_jit_addr + size;
      if (sixty_four_bit) {
        WriteDescriptor64(memory, 0x11800, cur_jit_addr);
        WriteEntry64(memory, cur_jit_addr, prev_jit_addr, next_jit_addr, pc, size);
      } else {
        // Loop back. Again, this may corrupt data,
        // but that will allow for testing edge cases with
        // malformed JIT data.
        if (cur_jit_addr > UINT32_MAX) {
          entry_offset = 0;
          cur_jit_addr = 0x200000;
          cur_descriptor_addr = 0x11800;
          next_jit_addr = cur_jit_addr + size;
        }
        WriteDescriptor32(memory, cur_descriptor_addr, cur_jit_addr);
        if (use_pad) {
          WriteEntry32Pad(memory, cur_jit_addr, prev_jit_addr, next_jit_addr, pc, size);
        } else {
          WriteEntry32Pack(memory, cur_jit_addr, prev_jit_addr, next_jit_addr, pc, size);
        }
      }
      entry_offset += size;
      prev_jit_addr = cur_jit_addr;
    }
  }
}

std::vector<std::string> GetStringList(FuzzedDataProvider* data_provider, uint max_str_len,
                                       uint max_strings) {
  uint str_count = data_provider->ConsumeIntegralInRange<uint>(0, max_strings);
  std::vector<std::string> strings;
  for (uint i = 0; i < str_count; i++) {
    strings.push_back(data_provider->ConsumeRandomLengthString(max_str_len));
  }
  return strings;
}

std::unique_ptr<DexFiles> GetDexFiles(FuzzedDataProvider* data_provider,
                                      std::shared_ptr<Memory> memory, uint max_library_length,
                                      uint max_libraries, ArchEnum arch) {
  std::vector<std::string> search_libs =
      GetStringList(data_provider, max_library_length, max_libraries);
  if (search_libs.size() <= 0) {
    return CreateDexFiles(arch, memory);
  }

  return CreateDexFiles(arch, memory, search_libs);
}