summaryrefslogtreecommitdiff
path: root/cloog-0.17.0/isl/isl_convex_hull.c
diff options
context:
space:
mode:
Diffstat (limited to 'cloog-0.17.0/isl/isl_convex_hull.c')
-rw-r--r--cloog-0.17.0/isl/isl_convex_hull.c2432
1 files changed, 0 insertions, 2432 deletions
diff --git a/cloog-0.17.0/isl/isl_convex_hull.c b/cloog-0.17.0/isl/isl_convex_hull.c
deleted file mode 100644
index a6e26b8..0000000
--- a/cloog-0.17.0/isl/isl_convex_hull.c
+++ /dev/null
@@ -1,2432 +0,0 @@
-/*
- * Copyright 2008-2009 Katholieke Universiteit Leuven
- *
- * Use of this software is governed by the GNU LGPLv2.1 license
- *
- * Written by Sven Verdoolaege, K.U.Leuven, Departement
- * Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium
- */
-
-#include <isl_ctx_private.h>
-#include <isl_map_private.h>
-#include <isl/lp.h>
-#include <isl/map.h>
-#include <isl_mat_private.h>
-#include <isl/set.h>
-#include <isl/seq.h>
-#include <isl_options_private.h>
-#include "isl_equalities.h"
-#include "isl_tab.h"
-
-static struct isl_basic_set *uset_convex_hull_wrap_bounded(struct isl_set *set);
-
-/* Return 1 if constraint c is redundant with respect to the constraints
- * in bmap. If c is a lower [upper] bound in some variable and bmap
- * does not have a lower [upper] bound in that variable, then c cannot
- * be redundant and we do not need solve any lp.
- */
-int isl_basic_map_constraint_is_redundant(struct isl_basic_map **bmap,
- isl_int *c, isl_int *opt_n, isl_int *opt_d)
-{
- enum isl_lp_result res;
- unsigned total;
- int i, j;
-
- if (!bmap)
- return -1;
-
- total = isl_basic_map_total_dim(*bmap);
- for (i = 0; i < total; ++i) {
- int sign;
- if (isl_int_is_zero(c[1+i]))
- continue;
- sign = isl_int_sgn(c[1+i]);
- for (j = 0; j < (*bmap)->n_ineq; ++j)
- if (sign == isl_int_sgn((*bmap)->ineq[j][1+i]))
- break;
- if (j == (*bmap)->n_ineq)
- break;
- }
- if (i < total)
- return 0;
-
- res = isl_basic_map_solve_lp(*bmap, 0, c, (*bmap)->ctx->one,
- opt_n, opt_d, NULL);
- if (res == isl_lp_unbounded)
- return 0;
- if (res == isl_lp_error)
- return -1;
- if (res == isl_lp_empty) {
- *bmap = isl_basic_map_set_to_empty(*bmap);
- return 0;
- }
- return !isl_int_is_neg(*opt_n);
-}
-
-int isl_basic_set_constraint_is_redundant(struct isl_basic_set **bset,
- isl_int *c, isl_int *opt_n, isl_int *opt_d)
-{
- return isl_basic_map_constraint_is_redundant(
- (struct isl_basic_map **)bset, c, opt_n, opt_d);
-}
-
-/* Remove redundant
- * constraints. If the minimal value along the normal of a constraint
- * is the same if the constraint is removed, then the constraint is redundant.
- *
- * Alternatively, we could have intersected the basic map with the
- * corresponding equality and the checked if the dimension was that
- * of a facet.
- */
-__isl_give isl_basic_map *isl_basic_map_remove_redundancies(
- __isl_take isl_basic_map *bmap)
-{
- struct isl_tab *tab;
-
- if (!bmap)
- return NULL;
-
- bmap = isl_basic_map_gauss(bmap, NULL);
- if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_EMPTY))
- return bmap;
- if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_NO_REDUNDANT))
- return bmap;
- if (bmap->n_ineq <= 1)
- return bmap;
-
- tab = isl_tab_from_basic_map(bmap);
- if (isl_tab_detect_implicit_equalities(tab) < 0)
- goto error;
- if (isl_tab_detect_redundant(tab) < 0)
- goto error;
- bmap = isl_basic_map_update_from_tab(bmap, tab);
- isl_tab_free(tab);
- ISL_F_SET(bmap, ISL_BASIC_MAP_NO_IMPLICIT);
- ISL_F_SET(bmap, ISL_BASIC_MAP_NO_REDUNDANT);
- return bmap;
-error:
- isl_tab_free(tab);
- isl_basic_map_free(bmap);
- return NULL;
-}
-
-__isl_give isl_basic_set *isl_basic_set_remove_redundancies(
- __isl_take isl_basic_set *bset)
-{
- return (struct isl_basic_set *)
- isl_basic_map_remove_redundancies((struct isl_basic_map *)bset);
-}
-
-/* Remove redundant constraints in each of the basic maps.
- */
-__isl_give isl_map *isl_map_remove_redundancies(__isl_take isl_map *map)
-{
- return isl_map_inline_foreach_basic_map(map,
- &isl_basic_map_remove_redundancies);
-}
-
-__isl_give isl_set *isl_set_remove_redundancies(__isl_take isl_set *set)
-{
- return isl_map_remove_redundancies(set);
-}
-
-/* Check if the set set is bound in the direction of the affine
- * constraint c and if so, set the constant term such that the
- * resulting constraint is a bounding constraint for the set.
- */
-static int uset_is_bound(struct isl_set *set, isl_int *c, unsigned len)
-{
- int first;
- int j;
- isl_int opt;
- isl_int opt_denom;
-
- isl_int_init(opt);
- isl_int_init(opt_denom);
- first = 1;
- for (j = 0; j < set->n; ++j) {
- enum isl_lp_result res;
-
- if (ISL_F_ISSET(set->p[j], ISL_BASIC_SET_EMPTY))
- continue;
-
- res = isl_basic_set_solve_lp(set->p[j],
- 0, c, set->ctx->one, &opt, &opt_denom, NULL);
- if (res == isl_lp_unbounded)
- break;
- if (res == isl_lp_error)
- goto error;
- if (res == isl_lp_empty) {
- set->p[j] = isl_basic_set_set_to_empty(set->p[j]);
- if (!set->p[j])
- goto error;
- continue;
- }
- if (first || isl_int_is_neg(opt)) {
- if (!isl_int_is_one(opt_denom))
- isl_seq_scale(c, c, opt_denom, len);
- isl_int_sub(c[0], c[0], opt);
- }
- first = 0;
- }
- isl_int_clear(opt);
- isl_int_clear(opt_denom);
- return j >= set->n;
-error:
- isl_int_clear(opt);
- isl_int_clear(opt_denom);
- return -1;
-}
-
-__isl_give isl_basic_map *isl_basic_map_set_rational(
- __isl_take isl_basic_set *bmap)
-{
- if (!bmap)
- return NULL;
-
- if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_RATIONAL))
- return bmap;
-
- bmap = isl_basic_map_cow(bmap);
- if (!bmap)
- return NULL;
-
- ISL_F_SET(bmap, ISL_BASIC_MAP_RATIONAL);
-
- return isl_basic_map_finalize(bmap);
-}
-
-__isl_give isl_basic_set *isl_basic_set_set_rational(
- __isl_take isl_basic_set *bset)
-{
- return isl_basic_map_set_rational(bset);
-}
-
-__isl_give isl_map *isl_map_set_rational(__isl_take isl_map *map)
-{
- int i;
-
- map = isl_map_cow(map);
- if (!map)
- return NULL;
- for (i = 0; i < map->n; ++i) {
- map->p[i] = isl_basic_map_set_rational(map->p[i]);
- if (!map->p[i])
- goto error;
- }
- return map;
-error:
- isl_map_free(map);
- return NULL;
-}
-
-__isl_give isl_set *isl_set_set_rational(__isl_take isl_set *set)
-{
- return isl_map_set_rational(set);
-}
-
-static struct isl_basic_set *isl_basic_set_add_equality(
- struct isl_basic_set *bset, isl_int *c)
-{
- int i;
- unsigned dim;
-
- if (!bset)
- return NULL;
-
- if (ISL_F_ISSET(bset, ISL_BASIC_SET_EMPTY))
- return bset;
-
- isl_assert(bset->ctx, isl_basic_set_n_param(bset) == 0, goto error);
- isl_assert(bset->ctx, bset->n_div == 0, goto error);
- dim = isl_basic_set_n_dim(bset);
- bset = isl_basic_set_cow(bset);
- bset = isl_basic_set_extend(bset, 0, dim, 0, 1, 0);
- i = isl_basic_set_alloc_equality(bset);
- if (i < 0)
- goto error;
- isl_seq_cpy(bset->eq[i], c, 1 + dim);
- return bset;
-error:
- isl_basic_set_free(bset);
- return NULL;
-}
-
-static struct isl_set *isl_set_add_basic_set_equality(struct isl_set *set, isl_int *c)
-{
- int i;
-
- set = isl_set_cow(set);
- if (!set)
- return NULL;
- for (i = 0; i < set->n; ++i) {
- set->p[i] = isl_basic_set_add_equality(set->p[i], c);
- if (!set->p[i])
- goto error;
- }
- return set;
-error:
- isl_set_free(set);
- return NULL;
-}
-
-/* Given a union of basic sets, construct the constraints for wrapping
- * a facet around one of its ridges.
- * In particular, if each of n the d-dimensional basic sets i in "set"
- * contains the origin, satisfies the constraints x_1 >= 0 and x_2 >= 0
- * and is defined by the constraints
- * [ 1 ]
- * A_i [ x ] >= 0
- *
- * then the resulting set is of dimension n*(1+d) and has as constraints
- *
- * [ a_i ]
- * A_i [ x_i ] >= 0
- *
- * a_i >= 0
- *
- * \sum_i x_{i,1} = 1
- */
-static struct isl_basic_set *wrap_constraints(struct isl_set *set)
-{
- struct isl_basic_set *lp;
- unsigned n_eq;
- unsigned n_ineq;
- int i, j, k;
- unsigned dim, lp_dim;
-
- if (!set)
- return NULL;
-
- dim = 1 + isl_set_n_dim(set);
- n_eq = 1;
- n_ineq = set->n;
- for (i = 0; i < set->n; ++i) {
- n_eq += set->p[i]->n_eq;
- n_ineq += set->p[i]->n_ineq;
- }
- lp = isl_basic_set_alloc(set->ctx, 0, dim * set->n, 0, n_eq, n_ineq);
- lp = isl_basic_set_set_rational(lp);
- if (!lp)
- return NULL;
- lp_dim = isl_basic_set_n_dim(lp);
- k = isl_basic_set_alloc_equality(lp);
- isl_int_set_si(lp->eq[k][0], -1);
- for (i = 0; i < set->n; ++i) {
- isl_int_set_si(lp->eq[k][1+dim*i], 0);
- isl_int_set_si(lp->eq[k][1+dim*i+1], 1);
- isl_seq_clr(lp->eq[k]+1+dim*i+2, dim-2);
- }
- for (i = 0; i < set->n; ++i) {
- k = isl_basic_set_alloc_inequality(lp);
- isl_seq_clr(lp->ineq[k], 1+lp_dim);
- isl_int_set_si(lp->ineq[k][1+dim*i], 1);
-
- for (j = 0; j < set->p[i]->n_eq; ++j) {
- k = isl_basic_set_alloc_equality(lp);
- isl_seq_clr(lp->eq[k], 1+dim*i);
- isl_seq_cpy(lp->eq[k]+1+dim*i, set->p[i]->eq[j], dim);
- isl_seq_clr(lp->eq[k]+1+dim*(i+1), dim*(set->n-i-1));
- }
-
- for (j = 0; j < set->p[i]->n_ineq; ++j) {
- k = isl_basic_set_alloc_inequality(lp);
- isl_seq_clr(lp->ineq[k], 1+dim*i);
- isl_seq_cpy(lp->ineq[k]+1+dim*i, set->p[i]->ineq[j], dim);
- isl_seq_clr(lp->ineq[k]+1+dim*(i+1), dim*(set->n-i-1));
- }
- }
- return lp;
-}
-
-/* Given a facet "facet" of the convex hull of "set" and a facet "ridge"
- * of that facet, compute the other facet of the convex hull that contains
- * the ridge.
- *
- * We first transform the set such that the facet constraint becomes
- *
- * x_1 >= 0
- *
- * I.e., the facet lies in
- *
- * x_1 = 0
- *
- * and on that facet, the constraint that defines the ridge is
- *
- * x_2 >= 0
- *
- * (This transformation is not strictly needed, all that is needed is
- * that the ridge contains the origin.)
- *
- * Since the ridge contains the origin, the cone of the convex hull
- * will be of the form
- *
- * x_1 >= 0
- * x_2 >= a x_1
- *
- * with this second constraint defining the new facet.
- * The constant a is obtained by settting x_1 in the cone of the
- * convex hull to 1 and minimizing x_2.
- * Now, each element in the cone of the convex hull is the sum
- * of elements in the cones of the basic sets.
- * If a_i is the dilation factor of basic set i, then the problem
- * we need to solve is
- *
- * min \sum_i x_{i,2}
- * st
- * \sum_i x_{i,1} = 1
- * a_i >= 0
- * [ a_i ]
- * A [ x_i ] >= 0
- *
- * with
- * [ 1 ]
- * A_i [ x_i ] >= 0
- *
- * the constraints of each (transformed) basic set.
- * If a = n/d, then the constraint defining the new facet (in the transformed
- * space) is
- *
- * -n x_1 + d x_2 >= 0
- *
- * In the original space, we need to take the same combination of the
- * corresponding constraints "facet" and "ridge".
- *
- * If a = -infty = "-1/0", then we just return the original facet constraint.
- * This means that the facet is unbounded, but has a bounded intersection
- * with the union of sets.
- */
-isl_int *isl_set_wrap_facet(__isl_keep isl_set *set,
- isl_int *facet, isl_int *ridge)
-{
- int i;
- isl_ctx *ctx;
- struct isl_mat *T = NULL;
- struct isl_basic_set *lp = NULL;
- struct isl_vec *obj;
- enum isl_lp_result res;
- isl_int num, den;
- unsigned dim;
-
- if (!set)
- return NULL;
- ctx = set->ctx;
- set = isl_set_copy(set);
- set = isl_set_set_rational(set);
-
- dim = 1 + isl_set_n_dim(set);
- T = isl_mat_alloc(ctx, 3, dim);
- if (!T)
- goto error;
- isl_int_set_si(T->row[0][0], 1);
- isl_seq_clr(T->row[0]+1, dim - 1);
- isl_seq_cpy(T->row[1], facet, dim);
- isl_seq_cpy(T->row[2], ridge, dim);
- T = isl_mat_right_inverse(T);
- set = isl_set_preimage(set, T);
- T = NULL;
- if (!set)
- goto error;
- lp = wrap_constraints(set);
- obj = isl_vec_alloc(ctx, 1 + dim*set->n);
- if (!obj)
- goto error;
- isl_int_set_si(obj->block.data[0], 0);
- for (i = 0; i < set->n; ++i) {
- isl_seq_clr(obj->block.data + 1 + dim*i, 2);
- isl_int_set_si(obj->block.data[1 + dim*i+2], 1);
- isl_seq_clr(obj->block.data + 1 + dim*i+3, dim-3);
- }
- isl_int_init(num);
- isl_int_init(den);
- res = isl_basic_set_solve_lp(lp, 0,
- obj->block.data, ctx->one, &num, &den, NULL);
- if (res == isl_lp_ok) {
- isl_int_neg(num, num);
- isl_seq_combine(facet, num, facet, den, ridge, dim);
- isl_seq_normalize(ctx, facet, dim);
- }
- isl_int_clear(num);
- isl_int_clear(den);
- isl_vec_free(obj);
- isl_basic_set_free(lp);
- isl_set_free(set);
- if (res == isl_lp_error)
- return NULL;
- isl_assert(ctx, res == isl_lp_ok || res == isl_lp_unbounded,
- return NULL);
- return facet;
-error:
- isl_basic_set_free(lp);
- isl_mat_free(T);
- isl_set_free(set);
- return NULL;
-}
-
-/* Compute the constraint of a facet of "set".
- *
- * We first compute the intersection with a bounding constraint
- * that is orthogonal to one of the coordinate axes.
- * If the affine hull of this intersection has only one equality,
- * we have found a facet.
- * Otherwise, we wrap the current bounding constraint around
- * one of the equalities of the face (one that is not equal to
- * the current bounding constraint).
- * This process continues until we have found a facet.
- * The dimension of the intersection increases by at least
- * one on each iteration, so termination is guaranteed.
- */
-static __isl_give isl_mat *initial_facet_constraint(__isl_keep isl_set *set)
-{
- struct isl_set *slice = NULL;
- struct isl_basic_set *face = NULL;
- int i;
- unsigned dim = isl_set_n_dim(set);
- int is_bound;
- isl_mat *bounds;
-
- isl_assert(set->ctx, set->n > 0, goto error);
- bounds = isl_mat_alloc(set->ctx, 1, 1 + dim);
- if (!bounds)
- return NULL;
-
- isl_seq_clr(bounds->row[0], dim);
- isl_int_set_si(bounds->row[0][1 + dim - 1], 1);
- is_bound = uset_is_bound(set, bounds->row[0], 1 + dim);
- if (is_bound < 0)
- goto error;
- isl_assert(set->ctx, is_bound, goto error);
- isl_seq_normalize(set->ctx, bounds->row[0], 1 + dim);
- bounds->n_row = 1;
-
- for (;;) {
- slice = isl_set_copy(set);
- slice = isl_set_add_basic_set_equality(slice, bounds->row[0]);
- face = isl_set_affine_hull(slice);
- if (!face)
- goto error;
- if (face->n_eq == 1) {
- isl_basic_set_free(face);
- break;
- }
- for (i = 0; i < face->n_eq; ++i)
- if (!isl_seq_eq(bounds->row[0], face->eq[i], 1 + dim) &&
- !isl_seq_is_neg(bounds->row[0],
- face->eq[i], 1 + dim))
- break;
- isl_assert(set->ctx, i < face->n_eq, goto error);
- if (!isl_set_wrap_facet(set, bounds->row[0], face->eq[i]))
- goto error;
- isl_seq_normalize(set->ctx, bounds->row[0], bounds->n_col);
- isl_basic_set_free(face);
- }
-
- return bounds;
-error:
- isl_basic_set_free(face);
- isl_mat_free(bounds);
- return NULL;
-}
-
-/* Given the bounding constraint "c" of a facet of the convex hull of "set",
- * compute a hyperplane description of the facet, i.e., compute the facets
- * of the facet.
- *
- * We compute an affine transformation that transforms the constraint
- *
- * [ 1 ]
- * c [ x ] = 0
- *
- * to the constraint
- *
- * z_1 = 0
- *
- * by computing the right inverse U of a matrix that starts with the rows
- *
- * [ 1 0 ]
- * [ c ]
- *
- * Then
- * [ 1 ] [ 1 ]
- * [ x ] = U [ z ]
- * and
- * [ 1 ] [ 1 ]
- * [ z ] = Q [ x ]
- *
- * with Q = U^{-1}
- * Since z_1 is zero, we can drop this variable as well as the corresponding
- * column of U to obtain
- *
- * [ 1 ] [ 1 ]
- * [ x ] = U' [ z' ]
- * and
- * [ 1 ] [ 1 ]
- * [ z' ] = Q' [ x ]
- *
- * with Q' equal to Q, but without the corresponding row.
- * After computing the facets of the facet in the z' space,
- * we convert them back to the x space through Q.
- */
-static struct isl_basic_set *compute_facet(struct isl_set *set, isl_int *c)
-{
- struct isl_mat *m, *U, *Q;
- struct isl_basic_set *facet = NULL;
- struct isl_ctx *ctx;
- unsigned dim;
-
- ctx = set->ctx;
- set = isl_set_copy(set);
- dim = isl_set_n_dim(set);
- m = isl_mat_alloc(set->ctx, 2, 1 + dim);
- if (!m)
- goto error;
- isl_int_set_si(m->row[0][0], 1);
- isl_seq_clr(m->row[0]+1, dim);
- isl_seq_cpy(m->row[1], c, 1+dim);
- U = isl_mat_right_inverse(m);
- Q = isl_mat_right_inverse(isl_mat_copy(U));
- U = isl_mat_drop_cols(U, 1, 1);
- Q = isl_mat_drop_rows(Q, 1, 1);
- set = isl_set_preimage(set, U);
- facet = uset_convex_hull_wrap_bounded(set);
- facet = isl_basic_set_preimage(facet, Q);
- if (facet)
- isl_assert(ctx, facet->n_eq == 0, goto error);
- return facet;
-error:
- isl_basic_set_free(facet);
- isl_set_free(set);
- return NULL;
-}
-
-/* Given an initial facet constraint, compute the remaining facets.
- * We do this by running through all facets found so far and computing
- * the adjacent facets through wrapping, adding those facets that we
- * hadn't already found before.
- *
- * For each facet we have found so far, we first compute its facets
- * in the resulting convex hull. That is, we compute the ridges
- * of the resulting convex hull contained in the facet.
- * We also compute the corresponding facet in the current approximation
- * of the convex hull. There is no need to wrap around the ridges
- * in this facet since that would result in a facet that is already
- * present in the current approximation.
- *
- * This function can still be significantly optimized by checking which of
- * the facets of the basic sets are also facets of the convex hull and
- * using all the facets so far to help in constructing the facets of the
- * facets
- * and/or
- * using the technique in section "3.1 Ridge Generation" of
- * "Extended Convex Hull" by Fukuda et al.
- */
-static struct isl_basic_set *extend(struct isl_basic_set *hull,
- struct isl_set *set)
-{
- int i, j, f;
- int k;
- struct isl_basic_set *facet = NULL;
- struct isl_basic_set *hull_facet = NULL;
- unsigned dim;
-
- if (!hull)
- return NULL;
-
- isl_assert(set->ctx, set->n > 0, goto error);
-
- dim = isl_set_n_dim(set);
-
- for (i = 0; i < hull->n_ineq; ++i) {
- facet = compute_facet(set, hull->ineq[i]);
- facet = isl_basic_set_add_equality(facet, hull->ineq[i]);
- facet = isl_basic_set_gauss(facet, NULL);
- facet = isl_basic_set_normalize_constraints(facet);
- hull_facet = isl_basic_set_copy(hull);
- hull_facet = isl_basic_set_add_equality(hull_facet, hull->ineq[i]);
- hull_facet = isl_basic_set_gauss(hull_facet, NULL);
- hull_facet = isl_basic_set_normalize_constraints(hull_facet);
- if (!facet || !hull_facet)
- goto error;
- hull = isl_basic_set_cow(hull);
- hull = isl_basic_set_extend_space(hull,
- isl_space_copy(hull->dim), 0, 0, facet->n_ineq);
- if (!hull)
- goto error;
- for (j = 0; j < facet->n_ineq; ++j) {
- for (f = 0; f < hull_facet->n_ineq; ++f)
- if (isl_seq_eq(facet->ineq[j],
- hull_facet->ineq[f], 1 + dim))
- break;
- if (f < hull_facet->n_ineq)
- continue;
- k = isl_basic_set_alloc_inequality(hull);
- if (k < 0)
- goto error;
- isl_seq_cpy(hull->ineq[k], hull->ineq[i], 1+dim);
- if (!isl_set_wrap_facet(set, hull->ineq[k], facet->ineq[j]))
- goto error;
- }
- isl_basic_set_free(hull_facet);
- isl_basic_set_free(facet);
- }
- hull = isl_basic_set_simplify(hull);
- hull = isl_basic_set_finalize(hull);
- return hull;
-error:
- isl_basic_set_free(hull_facet);
- isl_basic_set_free(facet);
- isl_basic_set_free(hull);
- return NULL;
-}
-
-/* Special case for computing the convex hull of a one dimensional set.
- * We simply collect the lower and upper bounds of each basic set
- * and the biggest of those.
- */
-static struct isl_basic_set *convex_hull_1d(struct isl_set *set)
-{
- struct isl_mat *c = NULL;
- isl_int *lower = NULL;
- isl_int *upper = NULL;
- int i, j, k;
- isl_int a, b;
- struct isl_basic_set *hull;
-
- for (i = 0; i < set->n; ++i) {
- set->p[i] = isl_basic_set_simplify(set->p[i]);
- if (!set->p[i])
- goto error;
- }
- set = isl_set_remove_empty_parts(set);
- if (!set)
- goto error;
- isl_assert(set->ctx, set->n > 0, goto error);
- c = isl_mat_alloc(set->ctx, 2, 2);
- if (!c)
- goto error;
-
- if (set->p[0]->n_eq > 0) {
- isl_assert(set->ctx, set->p[0]->n_eq == 1, goto error);
- lower = c->row[0];
- upper = c->row[1];
- if (isl_int_is_pos(set->p[0]->eq[0][1])) {
- isl_seq_cpy(lower, set->p[0]->eq[0], 2);
- isl_seq_neg(upper, set->p[0]->eq[0], 2);
- } else {
- isl_seq_neg(lower, set->p[0]->eq[0], 2);
- isl_seq_cpy(upper, set->p[0]->eq[0], 2);
- }
- } else {
- for (j = 0; j < set->p[0]->n_ineq; ++j) {
- if (isl_int_is_pos(set->p[0]->ineq[j][1])) {
- lower = c->row[0];
- isl_seq_cpy(lower, set->p[0]->ineq[j], 2);
- } else {
- upper = c->row[1];
- isl_seq_cpy(upper, set->p[0]->ineq[j], 2);
- }
- }
- }
-
- isl_int_init(a);
- isl_int_init(b);
- for (i = 0; i < set->n; ++i) {
- struct isl_basic_set *bset = set->p[i];
- int has_lower = 0;
- int has_upper = 0;
-
- for (j = 0; j < bset->n_eq; ++j) {
- has_lower = 1;
- has_upper = 1;
- if (lower) {
- isl_int_mul(a, lower[0], bset->eq[j][1]);
- isl_int_mul(b, lower[1], bset->eq[j][0]);
- if (isl_int_lt(a, b) && isl_int_is_pos(bset->eq[j][1]))
- isl_seq_cpy(lower, bset->eq[j], 2);
- if (isl_int_gt(a, b) && isl_int_is_neg(bset->eq[j][1]))
- isl_seq_neg(lower, bset->eq[j], 2);
- }
- if (upper) {
- isl_int_mul(a, upper[0], bset->eq[j][1]);
- isl_int_mul(b, upper[1], bset->eq[j][0]);
- if (isl_int_lt(a, b) && isl_int_is_pos(bset->eq[j][1]))
- isl_seq_neg(upper, bset->eq[j], 2);
- if (isl_int_gt(a, b) && isl_int_is_neg(bset->eq[j][1]))
- isl_seq_cpy(upper, bset->eq[j], 2);
- }
- }
- for (j = 0; j < bset->n_ineq; ++j) {
- if (isl_int_is_pos(bset->ineq[j][1]))
- has_lower = 1;
- if (isl_int_is_neg(bset->ineq[j][1]))
- has_upper = 1;
- if (lower && isl_int_is_pos(bset->ineq[j][1])) {
- isl_int_mul(a, lower[0], bset->ineq[j][1]);
- isl_int_mul(b, lower[1], bset->ineq[j][0]);
- if (isl_int_lt(a, b))
- isl_seq_cpy(lower, bset->ineq[j], 2);
- }
- if (upper && isl_int_is_neg(bset->ineq[j][1])) {
- isl_int_mul(a, upper[0], bset->ineq[j][1]);
- isl_int_mul(b, upper[1], bset->ineq[j][0]);
- if (isl_int_gt(a, b))
- isl_seq_cpy(upper, bset->ineq[j], 2);
- }
- }
- if (!has_lower)
- lower = NULL;
- if (!has_upper)
- upper = NULL;
- }
- isl_int_clear(a);
- isl_int_clear(b);
-
- hull = isl_basic_set_alloc(set->ctx, 0, 1, 0, 0, 2);
- hull = isl_basic_set_set_rational(hull);
- if (!hull)
- goto error;
- if (lower) {
- k = isl_basic_set_alloc_inequality(hull);
- isl_seq_cpy(hull->ineq[k], lower, 2);
- }
- if (upper) {
- k = isl_basic_set_alloc_inequality(hull);
- isl_seq_cpy(hull->ineq[k], upper, 2);
- }
- hull = isl_basic_set_finalize(hull);
- isl_set_free(set);
- isl_mat_free(c);
- return hull;
-error:
- isl_set_free(set);
- isl_mat_free(c);
- return NULL;
-}
-
-static struct isl_basic_set *convex_hull_0d(struct isl_set *set)
-{
- struct isl_basic_set *convex_hull;
-
- if (!set)
- return NULL;
-
- if (isl_set_is_empty(set))
- convex_hull = isl_basic_set_empty(isl_space_copy(set->dim));
- else
- convex_hull = isl_basic_set_universe(isl_space_copy(set->dim));
- isl_set_free(set);
- return convex_hull;
-}
-
-/* Compute the convex hull of a pair of basic sets without any parameters or
- * integer divisions using Fourier-Motzkin elimination.
- * The convex hull is the set of all points that can be written as
- * the sum of points from both basic sets (in homogeneous coordinates).
- * We set up the constraints in a space with dimensions for each of
- * the three sets and then project out the dimensions corresponding
- * to the two original basic sets, retaining only those corresponding
- * to the convex hull.
- */
-static struct isl_basic_set *convex_hull_pair_elim(struct isl_basic_set *bset1,
- struct isl_basic_set *bset2)
-{
- int i, j, k;
- struct isl_basic_set *bset[2];
- struct isl_basic_set *hull = NULL;
- unsigned dim;
-
- if (!bset1 || !bset2)
- goto error;
-
- dim = isl_basic_set_n_dim(bset1);
- hull = isl_basic_set_alloc(bset1->ctx, 0, 2 + 3 * dim, 0,
- 1 + dim + bset1->n_eq + bset2->n_eq,
- 2 + bset1->n_ineq + bset2->n_ineq);
- bset[0] = bset1;
- bset[1] = bset2;
- for (i = 0; i < 2; ++i) {
- for (j = 0; j < bset[i]->n_eq; ++j) {
- k = isl_basic_set_alloc_equality(hull);
- if (k < 0)
- goto error;
- isl_seq_clr(hull->eq[k], (i+1) * (1+dim));
- isl_seq_clr(hull->eq[k]+(i+2)*(1+dim), (1-i)*(1+dim));
- isl_seq_cpy(hull->eq[k]+(i+1)*(1+dim), bset[i]->eq[j],
- 1+dim);
- }
- for (j = 0; j < bset[i]->n_ineq; ++j) {
- k = isl_basic_set_alloc_inequality(hull);
- if (k < 0)
- goto error;
- isl_seq_clr(hull->ineq[k], (i+1) * (1+dim));
- isl_seq_clr(hull->ineq[k]+(i+2)*(1+dim), (1-i)*(1+dim));
- isl_seq_cpy(hull->ineq[k]+(i+1)*(1+dim),
- bset[i]->ineq[j], 1+dim);
- }
- k = isl_basic_set_alloc_inequality(hull);
- if (k < 0)
- goto error;
- isl_seq_clr(hull->ineq[k], 1+2+3*dim);
- isl_int_set_si(hull->ineq[k][(i+1)*(1+dim)], 1);
- }
- for (j = 0; j < 1+dim; ++j) {
- k = isl_basic_set_alloc_equality(hull);
- if (k < 0)
- goto error;
- isl_seq_clr(hull->eq[k], 1+2+3*dim);
- isl_int_set_si(hull->eq[k][j], -1);
- isl_int_set_si(hull->eq[k][1+dim+j], 1);
- isl_int_set_si(hull->eq[k][2*(1+dim)+j], 1);
- }
- hull = isl_basic_set_set_rational(hull);
- hull = isl_basic_set_remove_dims(hull, isl_dim_set, dim, 2*(1+dim));
- hull = isl_basic_set_remove_redundancies(hull);
- isl_basic_set_free(bset1);
- isl_basic_set_free(bset2);
- return hull;
-error:
- isl_basic_set_free(bset1);
- isl_basic_set_free(bset2);
- isl_basic_set_free(hull);
- return NULL;
-}
-
-/* Is the set bounded for each value of the parameters?
- */
-int isl_basic_set_is_bounded(__isl_keep isl_basic_set *bset)
-{
- struct isl_tab *tab;
- int bounded;
-
- if (!bset)
- return -1;
- if (isl_basic_set_plain_is_empty(bset))
- return 1;
-
- tab = isl_tab_from_recession_cone(bset, 1);
- bounded = isl_tab_cone_is_bounded(tab);
- isl_tab_free(tab);
- return bounded;
-}
-
-/* Is the image bounded for each value of the parameters and
- * the domain variables?
- */
-int isl_basic_map_image_is_bounded(__isl_keep isl_basic_map *bmap)
-{
- unsigned nparam = isl_basic_map_dim(bmap, isl_dim_param);
- unsigned n_in = isl_basic_map_dim(bmap, isl_dim_in);
- int bounded;
-
- bmap = isl_basic_map_copy(bmap);
- bmap = isl_basic_map_cow(bmap);
- bmap = isl_basic_map_move_dims(bmap, isl_dim_param, nparam,
- isl_dim_in, 0, n_in);
- bounded = isl_basic_set_is_bounded((isl_basic_set *)bmap);
- isl_basic_map_free(bmap);
-
- return bounded;
-}
-
-/* Is the set bounded for each value of the parameters?
- */
-int isl_set_is_bounded(__isl_keep isl_set *set)
-{
- int i;
-
- if (!set)
- return -1;
-
- for (i = 0; i < set->n; ++i) {
- int bounded = isl_basic_set_is_bounded(set->p[i]);
- if (!bounded || bounded < 0)
- return bounded;
- }
- return 1;
-}
-
-/* Compute the lineality space of the convex hull of bset1 and bset2.
- *
- * We first compute the intersection of the recession cone of bset1
- * with the negative of the recession cone of bset2 and then compute
- * the linear hull of the resulting cone.
- */
-static struct isl_basic_set *induced_lineality_space(
- struct isl_basic_set *bset1, struct isl_basic_set *bset2)
-{
- int i, k;
- struct isl_basic_set *lin = NULL;
- unsigned dim;
-
- if (!bset1 || !bset2)
- goto error;
-
- dim = isl_basic_set_total_dim(bset1);
- lin = isl_basic_set_alloc_space(isl_basic_set_get_space(bset1), 0,
- bset1->n_eq + bset2->n_eq,
- bset1->n_ineq + bset2->n_ineq);
- lin = isl_basic_set_set_rational(lin);
- if (!lin)
- goto error;
- for (i = 0; i < bset1->n_eq; ++i) {
- k = isl_basic_set_alloc_equality(lin);
- if (k < 0)
- goto error;
- isl_int_set_si(lin->eq[k][0], 0);
- isl_seq_cpy(lin->eq[k] + 1, bset1->eq[i] + 1, dim);
- }
- for (i = 0; i < bset1->n_ineq; ++i) {
- k = isl_basic_set_alloc_inequality(lin);
- if (k < 0)
- goto error;
- isl_int_set_si(lin->ineq[k][0], 0);
- isl_seq_cpy(lin->ineq[k] + 1, bset1->ineq[i] + 1, dim);
- }
- for (i = 0; i < bset2->n_eq; ++i) {
- k = isl_basic_set_alloc_equality(lin);
- if (k < 0)
- goto error;
- isl_int_set_si(lin->eq[k][0], 0);
- isl_seq_neg(lin->eq[k] + 1, bset2->eq[i] + 1, dim);
- }
- for (i = 0; i < bset2->n_ineq; ++i) {
- k = isl_basic_set_alloc_inequality(lin);
- if (k < 0)
- goto error;
- isl_int_set_si(lin->ineq[k][0], 0);
- isl_seq_neg(lin->ineq[k] + 1, bset2->ineq[i] + 1, dim);
- }
-
- isl_basic_set_free(bset1);
- isl_basic_set_free(bset2);
- return isl_basic_set_affine_hull(lin);
-error:
- isl_basic_set_free(lin);
- isl_basic_set_free(bset1);
- isl_basic_set_free(bset2);
- return NULL;
-}
-
-static struct isl_basic_set *uset_convex_hull(struct isl_set *set);
-
-/* Given a set and a linear space "lin" of dimension n > 0,
- * project the linear space from the set, compute the convex hull
- * and then map the set back to the original space.
- *
- * Let
- *
- * M x = 0
- *
- * describe the linear space. We first compute the Hermite normal
- * form H = M U of M = H Q, to obtain
- *
- * H Q x = 0
- *
- * The last n rows of H will be zero, so the last n variables of x' = Q x
- * are the one we want to project out. We do this by transforming each
- * basic set A x >= b to A U x' >= b and then removing the last n dimensions.
- * After computing the convex hull in x'_1, i.e., A' x'_1 >= b',
- * we transform the hull back to the original space as A' Q_1 x >= b',
- * with Q_1 all but the last n rows of Q.
- */
-static struct isl_basic_set *modulo_lineality(struct isl_set *set,
- struct isl_basic_set *lin)
-{
- unsigned total = isl_basic_set_total_dim(lin);
- unsigned lin_dim;
- struct isl_basic_set *hull;
- struct isl_mat *M, *U, *Q;
-
- if (!set || !lin)
- goto error;
- lin_dim = total - lin->n_eq;
- M = isl_mat_sub_alloc6(set->ctx, lin->eq, 0, lin->n_eq, 1, total);
- M = isl_mat_left_hermite(M, 0, &U, &Q);
- if (!M)
- goto error;
- isl_mat_free(M);
- isl_basic_set_free(lin);
-
- Q = isl_mat_drop_rows(Q, Q->n_row - lin_dim, lin_dim);
-
- U = isl_mat_lin_to_aff(U);
- Q = isl_mat_lin_to_aff(Q);
-
- set = isl_set_preimage(set, U);
- set = isl_set_remove_dims(set, isl_dim_set, total - lin_dim, lin_dim);
- hull = uset_convex_hull(set);
- hull = isl_basic_set_preimage(hull, Q);
-
- return hull;
-error:
- isl_basic_set_free(lin);
- isl_set_free(set);
- return NULL;
-}
-
-/* Given two polyhedra with as constraints h_{ij} x >= 0 in homegeneous space,
- * set up an LP for solving
- *
- * \sum_j \alpha_{1j} h_{1j} = \sum_j \alpha_{2j} h_{2j}
- *
- * \alpha{i0} corresponds to the (implicit) positivity constraint 1 >= 0
- * The next \alpha{ij} correspond to the equalities and come in pairs.
- * The final \alpha{ij} correspond to the inequalities.
- */
-static struct isl_basic_set *valid_direction_lp(
- struct isl_basic_set *bset1, struct isl_basic_set *bset2)
-{
- isl_space *dim;
- struct isl_basic_set *lp;
- unsigned d;
- int n;
- int i, j, k;
-
- if (!bset1 || !bset2)
- goto error;
- d = 1 + isl_basic_set_total_dim(bset1);
- n = 2 +
- 2 * bset1->n_eq + bset1->n_ineq + 2 * bset2->n_eq + bset2->n_ineq;
- dim = isl_space_set_alloc(bset1->ctx, 0, n);
- lp = isl_basic_set_alloc_space(dim, 0, d, n);
- if (!lp)
- goto error;
- for (i = 0; i < n; ++i) {
- k = isl_basic_set_alloc_inequality(lp);
- if (k < 0)
- goto error;
- isl_seq_clr(lp->ineq[k] + 1, n);
- isl_int_set_si(lp->ineq[k][0], -1);
- isl_int_set_si(lp->ineq[k][1 + i], 1);
- }
- for (i = 0; i < d; ++i) {
- k = isl_basic_set_alloc_equality(lp);
- if (k < 0)
- goto error;
- n = 0;
- isl_int_set_si(lp->eq[k][n], 0); n++;
- /* positivity constraint 1 >= 0 */
- isl_int_set_si(lp->eq[k][n], i == 0); n++;
- for (j = 0; j < bset1->n_eq; ++j) {
- isl_int_set(lp->eq[k][n], bset1->eq[j][i]); n++;
- isl_int_neg(lp->eq[k][n], bset1->eq[j][i]); n++;
- }
- for (j = 0; j < bset1->n_ineq; ++j) {
- isl_int_set(lp->eq[k][n], bset1->ineq[j][i]); n++;
- }
- /* positivity constraint 1 >= 0 */
- isl_int_set_si(lp->eq[k][n], -(i == 0)); n++;
- for (j = 0; j < bset2->n_eq; ++j) {
- isl_int_neg(lp->eq[k][n], bset2->eq[j][i]); n++;
- isl_int_set(lp->eq[k][n], bset2->eq[j][i]); n++;
- }
- for (j = 0; j < bset2->n_ineq; ++j) {
- isl_int_neg(lp->eq[k][n], bset2->ineq[j][i]); n++;
- }
- }
- lp = isl_basic_set_gauss(lp, NULL);
- isl_basic_set_free(bset1);
- isl_basic_set_free(bset2);
- return lp;
-error:
- isl_basic_set_free(bset1);
- isl_basic_set_free(bset2);
- return NULL;
-}
-
-/* Compute a vector s in the homogeneous space such that <s, r> > 0
- * for all rays in the homogeneous space of the two cones that correspond
- * to the input polyhedra bset1 and bset2.
- *
- * We compute s as a vector that satisfies
- *
- * s = \sum_j \alpha_{ij} h_{ij} for i = 1,2 (*)
- *
- * with h_{ij} the normals of the facets of polyhedron i
- * (including the "positivity constraint" 1 >= 0) and \alpha_{ij}
- * strictly positive numbers. For simplicity we impose \alpha_{ij} >= 1.
- * We first set up an LP with as variables the \alpha{ij}.
- * In this formulation, for each polyhedron i,
- * the first constraint is the positivity constraint, followed by pairs
- * of variables for the equalities, followed by variables for the inequalities.
- * We then simply pick a feasible solution and compute s using (*).
- *
- * Note that we simply pick any valid direction and make no attempt
- * to pick a "good" or even the "best" valid direction.
- */
-static struct isl_vec *valid_direction(
- struct isl_basic_set *bset1, struct isl_basic_set *bset2)
-{
- struct isl_basic_set *lp;
- struct isl_tab *tab;
- struct isl_vec *sample = NULL;
- struct isl_vec *dir;
- unsigned d;
- int i;
- int n;
-
- if (!bset1 || !bset2)
- goto error;
- lp = valid_direction_lp(isl_basic_set_copy(bset1),
- isl_basic_set_copy(bset2));
- tab = isl_tab_from_basic_set(lp);
- sample = isl_tab_get_sample_value(tab);
- isl_tab_free(tab);
- isl_basic_set_free(lp);
- if (!sample)
- goto error;
- d = isl_basic_set_total_dim(bset1);
- dir = isl_vec_alloc(bset1->ctx, 1 + d);
- if (!dir)
- goto error;
- isl_seq_clr(dir->block.data + 1, dir->size - 1);
- n = 1;
- /* positivity constraint 1 >= 0 */
- isl_int_set(dir->block.data[0], sample->block.data[n]); n++;
- for (i = 0; i < bset1->n_eq; ++i) {
- isl_int_sub(sample->block.data[n],
- sample->block.data[n], sample->block.data[n+1]);
- isl_seq_combine(dir->block.data,
- bset1->ctx->one, dir->block.data,
- sample->block.data[n], bset1->eq[i], 1 + d);
-
- n += 2;
- }
- for (i = 0; i < bset1->n_ineq; ++i)
- isl_seq_combine(dir->block.data,
- bset1->ctx->one, dir->block.data,
- sample->block.data[n++], bset1->ineq[i], 1 + d);
- isl_vec_free(sample);
- isl_seq_normalize(bset1->ctx, dir->el, dir->size);
- isl_basic_set_free(bset1);
- isl_basic_set_free(bset2);
- return dir;
-error:
- isl_vec_free(sample);
- isl_basic_set_free(bset1);
- isl_basic_set_free(bset2);
- return NULL;
-}
-
-/* Given a polyhedron b_i + A_i x >= 0 and a map T = S^{-1},
- * compute b_i' + A_i' x' >= 0, with
- *
- * [ b_i A_i ] [ y' ] [ y' ]
- * [ 1 0 ] S^{-1} [ x' ] >= 0 or [ b_i' A_i' ] [ x' ] >= 0
- *
- * In particular, add the "positivity constraint" and then perform
- * the mapping.
- */
-static struct isl_basic_set *homogeneous_map(struct isl_basic_set *bset,
- struct isl_mat *T)
-{
- int k;
-
- if (!bset)
- goto error;
- bset = isl_basic_set_extend_constraints(bset, 0, 1);
- k = isl_basic_set_alloc_inequality(bset);
- if (k < 0)
- goto error;
- isl_seq_clr(bset->ineq[k] + 1, isl_basic_set_total_dim(bset));
- isl_int_set_si(bset->ineq[k][0], 1);
- bset = isl_basic_set_preimage(bset, T);
- return bset;
-error:
- isl_mat_free(T);
- isl_basic_set_free(bset);
- return NULL;
-}
-
-/* Compute the convex hull of a pair of basic sets without any parameters or
- * integer divisions, where the convex hull is known to be pointed,
- * but the basic sets may be unbounded.
- *
- * We turn this problem into the computation of a convex hull of a pair
- * _bounded_ polyhedra by "changing the direction of the homogeneous
- * dimension". This idea is due to Matthias Koeppe.
- *
- * Consider the cones in homogeneous space that correspond to the
- * input polyhedra. The rays of these cones are also rays of the
- * polyhedra if the coordinate that corresponds to the homogeneous
- * dimension is zero. That is, if the inner product of the rays
- * with the homogeneous direction is zero.
- * The cones in the homogeneous space can also be considered to
- * correspond to other pairs of polyhedra by chosing a different
- * homogeneous direction. To ensure that both of these polyhedra
- * are bounded, we need to make sure that all rays of the cones
- * correspond to vertices and not to rays.
- * Let s be a direction such that <s, r> > 0 for all rays r of both cones.
- * Then using s as a homogeneous direction, we obtain a pair of polytopes.
- * The vector s is computed in valid_direction.
- *
- * Note that we need to consider _all_ rays of the cones and not just
- * the rays that correspond to rays in the polyhedra. If we were to
- * only consider those rays and turn them into vertices, then we
- * may inadvertently turn some vertices into rays.
- *
- * The standard homogeneous direction is the unit vector in the 0th coordinate.
- * We therefore transform the two polyhedra such that the selected
- * direction is mapped onto this standard direction and then proceed
- * with the normal computation.
- * Let S be a non-singular square matrix with s as its first row,
- * then we want to map the polyhedra to the space
- *
- * [ y' ] [ y ] [ y ] [ y' ]
- * [ x' ] = S [ x ] i.e., [ x ] = S^{-1} [ x' ]
- *
- * We take S to be the unimodular completion of s to limit the growth
- * of the coefficients in the following computations.
- *
- * Let b_i + A_i x >= 0 be the constraints of polyhedron i.
- * We first move to the homogeneous dimension
- *
- * b_i y + A_i x >= 0 [ b_i A_i ] [ y ] [ 0 ]
- * y >= 0 or [ 1 0 ] [ x ] >= [ 0 ]
- *
- * Then we change directoin
- *
- * [ b_i A_i ] [ y' ] [ y' ]
- * [ 1 0 ] S^{-1} [ x' ] >= 0 or [ b_i' A_i' ] [ x' ] >= 0
- *
- * Then we compute the convex hull of the polytopes b_i' + A_i' x' >= 0
- * resulting in b' + A' x' >= 0, which we then convert back
- *
- * [ y ] [ y ]
- * [ b' A' ] S [ x ] >= 0 or [ b A ] [ x ] >= 0
- *
- * The polyhedron b + A x >= 0 is then the convex hull of the input polyhedra.
- */
-static struct isl_basic_set *convex_hull_pair_pointed(
- struct isl_basic_set *bset1, struct isl_basic_set *bset2)
-{
- struct isl_ctx *ctx = NULL;
- struct isl_vec *dir = NULL;
- struct isl_mat *T = NULL;
- struct isl_mat *T2 = NULL;
- struct isl_basic_set *hull;
- struct isl_set *set;
-
- if (!bset1 || !bset2)
- goto error;
- ctx = bset1->ctx;
- dir = valid_direction(isl_basic_set_copy(bset1),
- isl_basic_set_copy(bset2));
- if (!dir)
- goto error;
- T = isl_mat_alloc(bset1->ctx, dir->size, dir->size);
- if (!T)
- goto error;
- isl_seq_cpy(T->row[0], dir->block.data, dir->size);
- T = isl_mat_unimodular_complete(T, 1);
- T2 = isl_mat_right_inverse(isl_mat_copy(T));
-
- bset1 = homogeneous_map(bset1, isl_mat_copy(T2));
- bset2 = homogeneous_map(bset2, T2);
- set = isl_set_alloc_space(isl_basic_set_get_space(bset1), 2, 0);
- set = isl_set_add_basic_set(set, bset1);
- set = isl_set_add_basic_set(set, bset2);
- hull = uset_convex_hull(set);
- hull = isl_basic_set_preimage(hull, T);
-
- isl_vec_free(dir);
-
- return hull;
-error:
- isl_vec_free(dir);
- isl_basic_set_free(bset1);
- isl_basic_set_free(bset2);
- return NULL;
-}
-
-static struct isl_basic_set *uset_convex_hull_wrap(struct isl_set *set);
-static struct isl_basic_set *modulo_affine_hull(
- struct isl_set *set, struct isl_basic_set *affine_hull);
-
-/* Compute the convex hull of a pair of basic sets without any parameters or
- * integer divisions.
- *
- * This function is called from uset_convex_hull_unbounded, which
- * means that the complete convex hull is unbounded. Some pairs
- * of basic sets may still be bounded, though.
- * They may even lie inside a lower dimensional space, in which
- * case they need to be handled inside their affine hull since
- * the main algorithm assumes that the result is full-dimensional.
- *
- * If the convex hull of the two basic sets would have a non-trivial
- * lineality space, we first project out this lineality space.
- */
-static struct isl_basic_set *convex_hull_pair(struct isl_basic_set *bset1,
- struct isl_basic_set *bset2)
-{
- isl_basic_set *lin, *aff;
- int bounded1, bounded2;
-
- if (bset1->ctx->opt->convex == ISL_CONVEX_HULL_FM)
- return convex_hull_pair_elim(bset1, bset2);
-
- aff = isl_set_affine_hull(isl_basic_set_union(isl_basic_set_copy(bset1),
- isl_basic_set_copy(bset2)));
- if (!aff)
- goto error;
- if (aff->n_eq != 0)
- return modulo_affine_hull(isl_basic_set_union(bset1, bset2), aff);
- isl_basic_set_free(aff);
-
- bounded1 = isl_basic_set_is_bounded(bset1);
- bounded2 = isl_basic_set_is_bounded(bset2);
-
- if (bounded1 < 0 || bounded2 < 0)
- goto error;
-
- if (bounded1 && bounded2)
- uset_convex_hull_wrap(isl_basic_set_union(bset1, bset2));
-
- if (bounded1 || bounded2)
- return convex_hull_pair_pointed(bset1, bset2);
-
- lin = induced_lineality_space(isl_basic_set_copy(bset1),
- isl_basic_set_copy(bset2));
- if (!lin)
- goto error;
- if (isl_basic_set_is_universe(lin)) {
- isl_basic_set_free(bset1);
- isl_basic_set_free(bset2);
- return lin;
- }
- if (lin->n_eq < isl_basic_set_total_dim(lin)) {
- struct isl_set *set;
- set = isl_set_alloc_space(isl_basic_set_get_space(bset1), 2, 0);
- set = isl_set_add_basic_set(set, bset1);
- set = isl_set_add_basic_set(set, bset2);
- return modulo_lineality(set, lin);
- }
- isl_basic_set_free(lin);
-
- return convex_hull_pair_pointed(bset1, bset2);
-error:
- isl_basic_set_free(bset1);
- isl_basic_set_free(bset2);
- return NULL;
-}
-
-/* Compute the lineality space of a basic set.
- * We currently do not allow the basic set to have any divs.
- * We basically just drop the constants and turn every inequality
- * into an equality.
- */
-struct isl_basic_set *isl_basic_set_lineality_space(struct isl_basic_set *bset)
-{
- int i, k;
- struct isl_basic_set *lin = NULL;
- unsigned dim;
-
- if (!bset)
- goto error;
- isl_assert(bset->ctx, bset->n_div == 0, goto error);
- dim = isl_basic_set_total_dim(bset);
-
- lin = isl_basic_set_alloc_space(isl_basic_set_get_space(bset), 0, dim, 0);
- if (!lin)
- goto error;
- for (i = 0; i < bset->n_eq; ++i) {
- k = isl_basic_set_alloc_equality(lin);
- if (k < 0)
- goto error;
- isl_int_set_si(lin->eq[k][0], 0);
- isl_seq_cpy(lin->eq[k] + 1, bset->eq[i] + 1, dim);
- }
- lin = isl_basic_set_gauss(lin, NULL);
- if (!lin)
- goto error;
- for (i = 0; i < bset->n_ineq && lin->n_eq < dim; ++i) {
- k = isl_basic_set_alloc_equality(lin);
- if (k < 0)
- goto error;
- isl_int_set_si(lin->eq[k][0], 0);
- isl_seq_cpy(lin->eq[k] + 1, bset->ineq[i] + 1, dim);
- lin = isl_basic_set_gauss(lin, NULL);
- if (!lin)
- goto error;
- }
- isl_basic_set_free(bset);
- return lin;
-error:
- isl_basic_set_free(lin);
- isl_basic_set_free(bset);
- return NULL;
-}
-
-/* Compute the (linear) hull of the lineality spaces of the basic sets in the
- * "underlying" set "set".
- */
-static struct isl_basic_set *uset_combined_lineality_space(struct isl_set *set)
-{
- int i;
- struct isl_set *lin = NULL;
-
- if (!set)
- return NULL;
- if (set->n == 0) {
- isl_space *dim = isl_set_get_space(set);
- isl_set_free(set);
- return isl_basic_set_empty(dim);
- }
-
- lin = isl_set_alloc_space(isl_set_get_space(set), set->n, 0);
- for (i = 0; i < set->n; ++i)
- lin = isl_set_add_basic_set(lin,
- isl_basic_set_lineality_space(isl_basic_set_copy(set->p[i])));
- isl_set_free(set);
- return isl_set_affine_hull(lin);
-}
-
-/* Compute the convex hull of a set without any parameters or
- * integer divisions.
- * In each step, we combined two basic sets until only one
- * basic set is left.
- * The input basic sets are assumed not to have a non-trivial
- * lineality space. If any of the intermediate results has
- * a non-trivial lineality space, it is projected out.
- */
-static struct isl_basic_set *uset_convex_hull_unbounded(struct isl_set *set)
-{
- struct isl_basic_set *convex_hull = NULL;
-
- convex_hull = isl_set_copy_basic_set(set);
- set = isl_set_drop_basic_set(set, convex_hull);
- if (!set)
- goto error;
- while (set->n > 0) {
- struct isl_basic_set *t;
- t = isl_set_copy_basic_set(set);
- if (!t)
- goto error;
- set = isl_set_drop_basic_set(set, t);
- if (!set)
- goto error;
- convex_hull = convex_hull_pair(convex_hull, t);
- if (set->n == 0)
- break;
- t = isl_basic_set_lineality_space(isl_basic_set_copy(convex_hull));
- if (!t)
- goto error;
- if (isl_basic_set_is_universe(t)) {
- isl_basic_set_free(convex_hull);
- convex_hull = t;
- break;
- }
- if (t->n_eq < isl_basic_set_total_dim(t)) {
- set = isl_set_add_basic_set(set, convex_hull);
- return modulo_lineality(set, t);
- }
- isl_basic_set_free(t);
- }
- isl_set_free(set);
- return convex_hull;
-error:
- isl_set_free(set);
- isl_basic_set_free(convex_hull);
- return NULL;
-}
-
-/* Compute an initial hull for wrapping containing a single initial
- * facet.
- * This function assumes that the given set is bounded.
- */
-static struct isl_basic_set *initial_hull(struct isl_basic_set *hull,
- struct isl_set *set)
-{
- struct isl_mat *bounds = NULL;
- unsigned dim;
- int k;
-
- if (!hull)
- goto error;
- bounds = initial_facet_constraint(set);
- if (!bounds)
- goto error;
- k = isl_basic_set_alloc_inequality(hull);
- if (k < 0)
- goto error;
- dim = isl_set_n_dim(set);
- isl_assert(set->ctx, 1 + dim == bounds->n_col, goto error);
- isl_seq_cpy(hull->ineq[k], bounds->row[0], bounds->n_col);
- isl_mat_free(bounds);
-
- return hull;
-error:
- isl_basic_set_free(hull);
- isl_mat_free(bounds);
- return NULL;
-}
-
-struct max_constraint {
- struct isl_mat *c;
- int count;
- int ineq;
-};
-
-static int max_constraint_equal(const void *entry, const void *val)
-{
- struct max_constraint *a = (struct max_constraint *)entry;
- isl_int *b = (isl_int *)val;
-
- return isl_seq_eq(a->c->row[0] + 1, b, a->c->n_col - 1);
-}
-
-static void update_constraint(struct isl_ctx *ctx, struct isl_hash_table *table,
- isl_int *con, unsigned len, int n, int ineq)
-{
- struct isl_hash_table_entry *entry;
- struct max_constraint *c;
- uint32_t c_hash;
-
- c_hash = isl_seq_get_hash(con + 1, len);
- entry = isl_hash_table_find(ctx, table, c_hash, max_constraint_equal,
- con + 1, 0);
- if (!entry)
- return;
- c = entry->data;
- if (c->count < n) {
- isl_hash_table_remove(ctx, table, entry);
- return;
- }
- c->count++;
- if (isl_int_gt(c->c->row[0][0], con[0]))
- return;
- if (isl_int_eq(c->c->row[0][0], con[0])) {
- if (ineq)
- c->ineq = ineq;
- return;
- }
- c->c = isl_mat_cow(c->c);
- isl_int_set(c->c->row[0][0], con[0]);
- c->ineq = ineq;
-}
-
-/* Check whether the constraint hash table "table" constains the constraint
- * "con".
- */
-static int has_constraint(struct isl_ctx *ctx, struct isl_hash_table *table,
- isl_int *con, unsigned len, int n)
-{
- struct isl_hash_table_entry *entry;
- struct max_constraint *c;
- uint32_t c_hash;
-
- c_hash = isl_seq_get_hash(con + 1, len);
- entry = isl_hash_table_find(ctx, table, c_hash, max_constraint_equal,
- con + 1, 0);
- if (!entry)
- return 0;
- c = entry->data;
- if (c->count < n)
- return 0;
- return isl_int_eq(c->c->row[0][0], con[0]);
-}
-
-/* Check for inequality constraints of a basic set without equalities
- * such that the same or more stringent copies of the constraint appear
- * in all of the basic sets. Such constraints are necessarily facet
- * constraints of the convex hull.
- *
- * If the resulting basic set is by chance identical to one of
- * the basic sets in "set", then we know that this basic set contains
- * all other basic sets and is therefore the convex hull of set.
- * In this case we set *is_hull to 1.
- */
-static struct isl_basic_set *common_constraints(struct isl_basic_set *hull,
- struct isl_set *set, int *is_hull)
-{
- int i, j, s, n;
- int min_constraints;
- int best;
- struct max_constraint *constraints = NULL;
- struct isl_hash_table *table = NULL;
- unsigned total;
-
- *is_hull = 0;
-
- for (i = 0; i < set->n; ++i)
- if (set->p[i]->n_eq == 0)
- break;
- if (i >= set->n)
- return hull;
- min_constraints = set->p[i]->n_ineq;
- best = i;
- for (i = best + 1; i < set->n; ++i) {
- if (set->p[i]->n_eq != 0)
- continue;
- if (set->p[i]->n_ineq >= min_constraints)
- continue;
- min_constraints = set->p[i]->n_ineq;
- best = i;
- }
- constraints = isl_calloc_array(hull->ctx, struct max_constraint,
- min_constraints);
- if (!constraints)
- return hull;
- table = isl_alloc_type(hull->ctx, struct isl_hash_table);
- if (isl_hash_table_init(hull->ctx, table, min_constraints))
- goto error;
-
- total = isl_space_dim(set->dim, isl_dim_all);
- for (i = 0; i < set->p[best]->n_ineq; ++i) {
- constraints[i].c = isl_mat_sub_alloc6(hull->ctx,
- set->p[best]->ineq + i, 0, 1, 0, 1 + total);
- if (!constraints[i].c)
- goto error;
- constraints[i].ineq = 1;
- }
- for (i = 0; i < min_constraints; ++i) {
- struct isl_hash_table_entry *entry;
- uint32_t c_hash;
- c_hash = isl_seq_get_hash(constraints[i].c->row[0] + 1, total);
- entry = isl_hash_table_find(hull->ctx, table, c_hash,
- max_constraint_equal, constraints[i].c->row[0] + 1, 1);
- if (!entry)
- goto error;
- isl_assert(hull->ctx, !entry->data, goto error);
- entry->data = &constraints[i];
- }
-
- n = 0;
- for (s = 0; s < set->n; ++s) {
- if (s == best)
- continue;
-
- for (i = 0; i < set->p[s]->n_eq; ++i) {
- isl_int *eq = set->p[s]->eq[i];
- for (j = 0; j < 2; ++j) {
- isl_seq_neg(eq, eq, 1 + total);
- update_constraint(hull->ctx, table,
- eq, total, n, 0);
- }
- }
- for (i = 0; i < set->p[s]->n_ineq; ++i) {
- isl_int *ineq = set->p[s]->ineq[i];
- update_constraint(hull->ctx, table, ineq, total, n,
- set->p[s]->n_eq == 0);
- }
- ++n;
- }
-
- for (i = 0; i < min_constraints; ++i) {
- if (constraints[i].count < n)
- continue;
- if (!constraints[i].ineq)
- continue;
- j = isl_basic_set_alloc_inequality(hull);
- if (j < 0)
- goto error;
- isl_seq_cpy(hull->ineq[j], constraints[i].c->row[0], 1 + total);
- }
-
- for (s = 0; s < set->n; ++s) {
- if (set->p[s]->n_eq)
- continue;
- if (set->p[s]->n_ineq != hull->n_ineq)
- continue;
- for (i = 0; i < set->p[s]->n_ineq; ++i) {
- isl_int *ineq = set->p[s]->ineq[i];
- if (!has_constraint(hull->ctx, table, ineq, total, n))
- break;
- }
- if (i == set->p[s]->n_ineq)
- *is_hull = 1;
- }
-
- isl_hash_table_clear(table);
- for (i = 0; i < min_constraints; ++i)
- isl_mat_free(constraints[i].c);
- free(constraints);
- free(table);
- return hull;
-error:
- isl_hash_table_clear(table);
- free(table);
- if (constraints)
- for (i = 0; i < min_constraints; ++i)
- isl_mat_free(constraints[i].c);
- free(constraints);
- return hull;
-}
-
-/* Create a template for the convex hull of "set" and fill it up
- * obvious facet constraints, if any. If the result happens to
- * be the convex hull of "set" then *is_hull is set to 1.
- */
-static struct isl_basic_set *proto_hull(struct isl_set *set, int *is_hull)
-{
- struct isl_basic_set *hull;
- unsigned n_ineq;
- int i;
-
- n_ineq = 1;
- for (i = 0; i < set->n; ++i) {
- n_ineq += set->p[i]->n_eq;
- n_ineq += set->p[i]->n_ineq;
- }
- hull = isl_basic_set_alloc_space(isl_space_copy(set->dim), 0, 0, n_ineq);
- hull = isl_basic_set_set_rational(hull);
- if (!hull)
- return NULL;
- return common_constraints(hull, set, is_hull);
-}
-
-static struct isl_basic_set *uset_convex_hull_wrap(struct isl_set *set)
-{
- struct isl_basic_set *hull;
- int is_hull;
-
- hull = proto_hull(set, &is_hull);
- if (hull && !is_hull) {
- if (hull->n_ineq == 0)
- hull = initial_hull(hull, set);
- hull = extend(hull, set);
- }
- isl_set_free(set);
-
- return hull;
-}
-
-/* Compute the convex hull of a set without any parameters or
- * integer divisions. Depending on whether the set is bounded,
- * we pass control to the wrapping based convex hull or
- * the Fourier-Motzkin elimination based convex hull.
- * We also handle a few special cases before checking the boundedness.
- */
-static struct isl_basic_set *uset_convex_hull(struct isl_set *set)
-{
- struct isl_basic_set *convex_hull = NULL;
- struct isl_basic_set *lin;
-
- if (isl_set_n_dim(set) == 0)
- return convex_hull_0d(set);
-
- set = isl_set_coalesce(set);
- set = isl_set_set_rational(set);
-
- if (!set)
- goto error;
- if (!set)
- return NULL;
- if (set->n == 1) {
- convex_hull = isl_basic_set_copy(set->p[0]);
- isl_set_free(set);
- return convex_hull;
- }
- if (isl_set_n_dim(set) == 1)
- return convex_hull_1d(set);
-
- if (isl_set_is_bounded(set) &&
- set->ctx->opt->convex == ISL_CONVEX_HULL_WRAP)
- return uset_convex_hull_wrap(set);
-
- lin = uset_combined_lineality_space(isl_set_copy(set));
- if (!lin)
- goto error;
- if (isl_basic_set_is_universe(lin)) {
- isl_set_free(set);
- return lin;
- }
- if (lin->n_eq < isl_basic_set_total_dim(lin))
- return modulo_lineality(set, lin);
- isl_basic_set_free(lin);
-
- return uset_convex_hull_unbounded(set);
-error:
- isl_set_free(set);
- isl_basic_set_free(convex_hull);
- return NULL;
-}
-
-/* This is the core procedure, where "set" is a "pure" set, i.e.,
- * without parameters or divs and where the convex hull of set is
- * known to be full-dimensional.
- */
-static struct isl_basic_set *uset_convex_hull_wrap_bounded(struct isl_set *set)
-{
- struct isl_basic_set *convex_hull = NULL;
-
- if (!set)
- goto error;
-
- if (isl_set_n_dim(set) == 0) {
- convex_hull = isl_basic_set_universe(isl_space_copy(set->dim));
- isl_set_free(set);
- convex_hull = isl_basic_set_set_rational(convex_hull);
- return convex_hull;
- }
-
- set = isl_set_set_rational(set);
- set = isl_set_coalesce(set);
- if (!set)
- goto error;
- if (set->n == 1) {
- convex_hull = isl_basic_set_copy(set->p[0]);
- isl_set_free(set);
- return convex_hull;
- }
- if (isl_set_n_dim(set) == 1)
- return convex_hull_1d(set);
-
- return uset_convex_hull_wrap(set);
-error:
- isl_set_free(set);
- return NULL;
-}
-
-/* Compute the convex hull of set "set" with affine hull "affine_hull",
- * We first remove the equalities (transforming the set), compute the
- * convex hull of the transformed set and then add the equalities back
- * (after performing the inverse transformation.
- */
-static struct isl_basic_set *modulo_affine_hull(
- struct isl_set *set, struct isl_basic_set *affine_hull)
-{
- struct isl_mat *T;
- struct isl_mat *T2;
- struct isl_basic_set *dummy;
- struct isl_basic_set *convex_hull;
-
- dummy = isl_basic_set_remove_equalities(
- isl_basic_set_copy(affine_hull), &T, &T2);
- if (!dummy)
- goto error;
- isl_basic_set_free(dummy);
- set = isl_set_preimage(set, T);
- convex_hull = uset_convex_hull(set);
- convex_hull = isl_basic_set_preimage(convex_hull, T2);
- convex_hull = isl_basic_set_intersect(convex_hull, affine_hull);
- return convex_hull;
-error:
- isl_basic_set_free(affine_hull);
- isl_set_free(set);
- return NULL;
-}
-
-/* Compute the convex hull of a map.
- *
- * The implementation was inspired by "Extended Convex Hull" by Fukuda et al.,
- * specifically, the wrapping of facets to obtain new facets.
- */
-struct isl_basic_map *isl_map_convex_hull(struct isl_map *map)
-{
- struct isl_basic_set *bset;
- struct isl_basic_map *model = NULL;
- struct isl_basic_set *affine_hull = NULL;
- struct isl_basic_map *convex_hull = NULL;
- struct isl_set *set = NULL;
- struct isl_ctx *ctx;
-
- if (!map)
- goto error;
-
- ctx = map->ctx;
- if (map->n == 0) {
- convex_hull = isl_basic_map_empty_like_map(map);
- isl_map_free(map);
- return convex_hull;
- }
-
- map = isl_map_detect_equalities(map);
- map = isl_map_align_divs(map);
- if (!map)
- goto error;
- model = isl_basic_map_copy(map->p[0]);
- set = isl_map_underlying_set(map);
- if (!set)
- goto error;
-
- affine_hull = isl_set_affine_hull(isl_set_copy(set));
- if (!affine_hull)
- goto error;
- if (affine_hull->n_eq != 0)
- bset = modulo_affine_hull(set, affine_hull);
- else {
- isl_basic_set_free(affine_hull);
- bset = uset_convex_hull(set);
- }
-
- convex_hull = isl_basic_map_overlying_set(bset, model);
- if (!convex_hull)
- return NULL;
-
- ISL_F_SET(convex_hull, ISL_BASIC_MAP_NO_IMPLICIT);
- ISL_F_SET(convex_hull, ISL_BASIC_MAP_ALL_EQUALITIES);
- ISL_F_CLR(convex_hull, ISL_BASIC_MAP_RATIONAL);
- return convex_hull;
-error:
- isl_set_free(set);
- isl_basic_map_free(model);
- return NULL;
-}
-
-struct isl_basic_set *isl_set_convex_hull(struct isl_set *set)
-{
- return (struct isl_basic_set *)
- isl_map_convex_hull((struct isl_map *)set);
-}
-
-__isl_give isl_basic_map *isl_map_polyhedral_hull(__isl_take isl_map *map)
-{
- isl_basic_map *hull;
-
- hull = isl_map_convex_hull(map);
- return isl_basic_map_remove_divs(hull);
-}
-
-__isl_give isl_basic_set *isl_set_polyhedral_hull(__isl_take isl_set *set)
-{
- return (isl_basic_set *)isl_map_polyhedral_hull((isl_map *)set);
-}
-
-struct sh_data_entry {
- struct isl_hash_table *table;
- struct isl_tab *tab;
-};
-
-/* Holds the data needed during the simple hull computation.
- * In particular,
- * n the number of basic sets in the original set
- * hull_table a hash table of already computed constraints
- * in the simple hull
- * p for each basic set,
- * table a hash table of the constraints
- * tab the tableau corresponding to the basic set
- */
-struct sh_data {
- struct isl_ctx *ctx;
- unsigned n;
- struct isl_hash_table *hull_table;
- struct sh_data_entry p[1];
-};
-
-static void sh_data_free(struct sh_data *data)
-{
- int i;
-
- if (!data)
- return;
- isl_hash_table_free(data->ctx, data->hull_table);
- for (i = 0; i < data->n; ++i) {
- isl_hash_table_free(data->ctx, data->p[i].table);
- isl_tab_free(data->p[i].tab);
- }
- free(data);
-}
-
-struct ineq_cmp_data {
- unsigned len;
- isl_int *p;
-};
-
-static int has_ineq(const void *entry, const void *val)
-{
- isl_int *row = (isl_int *)entry;
- struct ineq_cmp_data *v = (struct ineq_cmp_data *)val;
-
- return isl_seq_eq(row + 1, v->p + 1, v->len) ||
- isl_seq_is_neg(row + 1, v->p + 1, v->len);
-}
-
-static int hash_ineq(struct isl_ctx *ctx, struct isl_hash_table *table,
- isl_int *ineq, unsigned len)
-{
- uint32_t c_hash;
- struct ineq_cmp_data v;
- struct isl_hash_table_entry *entry;
-
- v.len = len;
- v.p = ineq;
- c_hash = isl_seq_get_hash(ineq + 1, len);
- entry = isl_hash_table_find(ctx, table, c_hash, has_ineq, &v, 1);
- if (!entry)
- return - 1;
- entry->data = ineq;
- return 0;
-}
-
-/* Fill hash table "table" with the constraints of "bset".
- * Equalities are added as two inequalities.
- * The value in the hash table is a pointer to the (in)equality of "bset".
- */
-static int hash_basic_set(struct isl_hash_table *table,
- struct isl_basic_set *bset)
-{
- int i, j;
- unsigned dim = isl_basic_set_total_dim(bset);
-
- for (i = 0; i < bset->n_eq; ++i) {
- for (j = 0; j < 2; ++j) {
- isl_seq_neg(bset->eq[i], bset->eq[i], 1 + dim);
- if (hash_ineq(bset->ctx, table, bset->eq[i], dim) < 0)
- return -1;
- }
- }
- for (i = 0; i < bset->n_ineq; ++i) {
- if (hash_ineq(bset->ctx, table, bset->ineq[i], dim) < 0)
- return -1;
- }
- return 0;
-}
-
-static struct sh_data *sh_data_alloc(struct isl_set *set, unsigned n_ineq)
-{
- struct sh_data *data;
- int i;
-
- data = isl_calloc(set->ctx, struct sh_data,
- sizeof(struct sh_data) +
- (set->n - 1) * sizeof(struct sh_data_entry));
- if (!data)
- return NULL;
- data->ctx = set->ctx;
- data->n = set->n;
- data->hull_table = isl_hash_table_alloc(set->ctx, n_ineq);
- if (!data->hull_table)
- goto error;
- for (i = 0; i < set->n; ++i) {
- data->p[i].table = isl_hash_table_alloc(set->ctx,
- 2 * set->p[i]->n_eq + set->p[i]->n_ineq);
- if (!data->p[i].table)
- goto error;
- if (hash_basic_set(data->p[i].table, set->p[i]) < 0)
- goto error;
- }
- return data;
-error:
- sh_data_free(data);
- return NULL;
-}
-
-/* Check if inequality "ineq" is a bound for basic set "j" or if
- * it can be relaxed (by increasing the constant term) to become
- * a bound for that basic set. In the latter case, the constant
- * term is updated.
- * Return 1 if "ineq" is a bound
- * 0 if "ineq" may attain arbitrarily small values on basic set "j"
- * -1 if some error occurred
- */
-static int is_bound(struct sh_data *data, struct isl_set *set, int j,
- isl_int *ineq)
-{
- enum isl_lp_result res;
- isl_int opt;
-
- if (!data->p[j].tab) {
- data->p[j].tab = isl_tab_from_basic_set(set->p[j]);
- if (!data->p[j].tab)
- return -1;
- }
-
- isl_int_init(opt);
-
- res = isl_tab_min(data->p[j].tab, ineq, data->ctx->one,
- &opt, NULL, 0);
- if (res == isl_lp_ok && isl_int_is_neg(opt))
- isl_int_sub(ineq[0], ineq[0], opt);
-
- isl_int_clear(opt);
-
- return (res == isl_lp_ok || res == isl_lp_empty) ? 1 :
- res == isl_lp_unbounded ? 0 : -1;
-}
-
-/* Check if inequality "ineq" from basic set "i" can be relaxed to
- * become a bound on the whole set. If so, add the (relaxed) inequality
- * to "hull".
- *
- * We first check if "hull" already contains a translate of the inequality.
- * If so, we are done.
- * Then, we check if any of the previous basic sets contains a translate
- * of the inequality. If so, then we have already considered this
- * inequality and we are done.
- * Otherwise, for each basic set other than "i", we check if the inequality
- * is a bound on the basic set.
- * For previous basic sets, we know that they do not contain a translate
- * of the inequality, so we directly call is_bound.
- * For following basic sets, we first check if a translate of the
- * inequality appears in its description and if so directly update
- * the inequality accordingly.
- */
-static struct isl_basic_set *add_bound(struct isl_basic_set *hull,
- struct sh_data *data, struct isl_set *set, int i, isl_int *ineq)
-{
- uint32_t c_hash;
- struct ineq_cmp_data v;
- struct isl_hash_table_entry *entry;
- int j, k;
-
- if (!hull)
- return NULL;
-
- v.len = isl_basic_set_total_dim(hull);
- v.p = ineq;
- c_hash = isl_seq_get_hash(ineq + 1, v.len);
-
- entry = isl_hash_table_find(hull->ctx, data->hull_table, c_hash,
- has_ineq, &v, 0);
- if (entry)
- return hull;
-
- for (j = 0; j < i; ++j) {
- entry = isl_hash_table_find(hull->ctx, data->p[j].table,
- c_hash, has_ineq, &v, 0);
- if (entry)
- break;
- }
- if (j < i)
- return hull;
-
- k = isl_basic_set_alloc_inequality(hull);
- isl_seq_cpy(hull->ineq[k], ineq, 1 + v.len);
- if (k < 0)
- goto error;
-
- for (j = 0; j < i; ++j) {
- int bound;
- bound = is_bound(data, set, j, hull->ineq[k]);
- if (bound < 0)
- goto error;
- if (!bound)
- break;
- }
- if (j < i) {
- isl_basic_set_free_inequality(hull, 1);
- return hull;
- }
-
- for (j = i + 1; j < set->n; ++j) {
- int bound, neg;
- isl_int *ineq_j;
- entry = isl_hash_table_find(hull->ctx, data->p[j].table,
- c_hash, has_ineq, &v, 0);
- if (entry) {
- ineq_j = entry->data;
- neg = isl_seq_is_neg(ineq_j + 1,
- hull->ineq[k] + 1, v.len);
- if (neg)
- isl_int_neg(ineq_j[0], ineq_j[0]);
- if (isl_int_gt(ineq_j[0], hull->ineq[k][0]))
- isl_int_set(hull->ineq[k][0], ineq_j[0]);
- if (neg)
- isl_int_neg(ineq_j[0], ineq_j[0]);
- continue;
- }
- bound = is_bound(data, set, j, hull->ineq[k]);
- if (bound < 0)
- goto error;
- if (!bound)
- break;
- }
- if (j < set->n) {
- isl_basic_set_free_inequality(hull, 1);
- return hull;
- }
-
- entry = isl_hash_table_find(hull->ctx, data->hull_table, c_hash,
- has_ineq, &v, 1);
- if (!entry)
- goto error;
- entry->data = hull->ineq[k];
-
- return hull;
-error:
- isl_basic_set_free(hull);
- return NULL;
-}
-
-/* Check if any inequality from basic set "i" can be relaxed to
- * become a bound on the whole set. If so, add the (relaxed) inequality
- * to "hull".
- */
-static struct isl_basic_set *add_bounds(struct isl_basic_set *bset,
- struct sh_data *data, struct isl_set *set, int i)
-{
- int j, k;
- unsigned dim = isl_basic_set_total_dim(bset);
-
- for (j = 0; j < set->p[i]->n_eq; ++j) {
- for (k = 0; k < 2; ++k) {
- isl_seq_neg(set->p[i]->eq[j], set->p[i]->eq[j], 1+dim);
- bset = add_bound(bset, data, set, i, set->p[i]->eq[j]);
- }
- }
- for (j = 0; j < set->p[i]->n_ineq; ++j)
- bset = add_bound(bset, data, set, i, set->p[i]->ineq[j]);
- return bset;
-}
-
-/* Compute a superset of the convex hull of set that is described
- * by only translates of the constraints in the constituents of set.
- */
-static struct isl_basic_set *uset_simple_hull(struct isl_set *set)
-{
- struct sh_data *data = NULL;
- struct isl_basic_set *hull = NULL;
- unsigned n_ineq;
- int i;
-
- if (!set)
- return NULL;
-
- n_ineq = 0;
- for (i = 0; i < set->n; ++i) {
- if (!set->p[i])
- goto error;
- n_ineq += 2 * set->p[i]->n_eq + set->p[i]->n_ineq;
- }
-
- hull = isl_basic_set_alloc_space(isl_space_copy(set->dim), 0, 0, n_ineq);
- if (!hull)
- goto error;
-
- data = sh_data_alloc(set, n_ineq);
- if (!data)
- goto error;
-
- for (i = 0; i < set->n; ++i)
- hull = add_bounds(hull, data, set, i);
-
- sh_data_free(data);
- isl_set_free(set);
-
- return hull;
-error:
- sh_data_free(data);
- isl_basic_set_free(hull);
- isl_set_free(set);
- return NULL;
-}
-
-/* Compute a superset of the convex hull of map that is described
- * by only translates of the constraints in the constituents of map.
- */
-struct isl_basic_map *isl_map_simple_hull(struct isl_map *map)
-{
- struct isl_set *set = NULL;
- struct isl_basic_map *model = NULL;
- struct isl_basic_map *hull;
- struct isl_basic_map *affine_hull;
- struct isl_basic_set *bset = NULL;
-
- if (!map)
- return NULL;
- if (map->n == 0) {
- hull = isl_basic_map_empty_like_map(map);
- isl_map_free(map);
- return hull;
- }
- if (map->n == 1) {
- hull = isl_basic_map_copy(map->p[0]);
- isl_map_free(map);
- return hull;
- }
-
- map = isl_map_detect_equalities(map);
- affine_hull = isl_map_affine_hull(isl_map_copy(map));
- map = isl_map_align_divs(map);
- model = isl_basic_map_copy(map->p[0]);
-
- set = isl_map_underlying_set(map);
-
- bset = uset_simple_hull(set);
-
- hull = isl_basic_map_overlying_set(bset, model);
-
- hull = isl_basic_map_intersect(hull, affine_hull);
- hull = isl_basic_map_remove_redundancies(hull);
- ISL_F_SET(hull, ISL_BASIC_MAP_NO_IMPLICIT);
- ISL_F_SET(hull, ISL_BASIC_MAP_ALL_EQUALITIES);
-
- return hull;
-}
-
-struct isl_basic_set *isl_set_simple_hull(struct isl_set *set)
-{
- return (struct isl_basic_set *)
- isl_map_simple_hull((struct isl_map *)set);
-}
-
-/* Given a set "set", return parametric bounds on the dimension "dim".
- */
-static struct isl_basic_set *set_bounds(struct isl_set *set, int dim)
-{
- unsigned set_dim = isl_set_dim(set, isl_dim_set);
- set = isl_set_copy(set);
- set = isl_set_eliminate_dims(set, dim + 1, set_dim - (dim + 1));
- set = isl_set_eliminate_dims(set, 0, dim);
- return isl_set_convex_hull(set);
-}
-
-/* Computes a "simple hull" and then check if each dimension in the
- * resulting hull is bounded by a symbolic constant. If not, the
- * hull is intersected with the corresponding bounds on the whole set.
- */
-struct isl_basic_set *isl_set_bounded_simple_hull(struct isl_set *set)
-{
- int i, j;
- struct isl_basic_set *hull;
- unsigned nparam, left;
- int removed_divs = 0;
-
- hull = isl_set_simple_hull(isl_set_copy(set));
- if (!hull)
- goto error;
-
- nparam = isl_basic_set_dim(hull, isl_dim_param);
- for (i = 0; i < isl_basic_set_dim(hull, isl_dim_set); ++i) {
- int lower = 0, upper = 0;
- struct isl_basic_set *bounds;
-
- left = isl_basic_set_total_dim(hull) - nparam - i - 1;
- for (j = 0; j < hull->n_eq; ++j) {
- if (isl_int_is_zero(hull->eq[j][1 + nparam + i]))
- continue;
- if (isl_seq_first_non_zero(hull->eq[j]+1+nparam+i+1,
- left) == -1)
- break;
- }
- if (j < hull->n_eq)
- continue;
-
- for (j = 0; j < hull->n_ineq; ++j) {
- if (isl_int_is_zero(hull->ineq[j][1 + nparam + i]))
- continue;
- if (isl_seq_first_non_zero(hull->ineq[j]+1+nparam+i+1,
- left) != -1 ||
- isl_seq_first_non_zero(hull->ineq[j]+1+nparam,
- i) != -1)
- continue;
- if (isl_int_is_pos(hull->ineq[j][1 + nparam + i]))
- lower = 1;
- else
- upper = 1;
- if (lower && upper)
- break;
- }
-
- if (lower && upper)
- continue;
-
- if (!removed_divs) {
- set = isl_set_remove_divs(set);
- if (!set)
- goto error;
- removed_divs = 1;
- }
- bounds = set_bounds(set, i);
- hull = isl_basic_set_intersect(hull, bounds);
- if (!hull)
- goto error;
- }
-
- isl_set_free(set);
- return hull;
-error:
- isl_set_free(set);
- return NULL;
-}