aboutsummaryrefslogtreecommitdiff
path: root/src/cmd/compile/internal/typecheck/typecheck.go
blob: 5dac366b10fa35d02226478acbaacff89670574b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

package typecheck

import (
	"fmt"
	"go/constant"
	"go/token"
	"internal/types/errors"
	"strings"

	"cmd/compile/internal/base"
	"cmd/compile/internal/ir"
	"cmd/compile/internal/types"
	"cmd/internal/src"
)

// Function collecting autotmps generated during typechecking,
// to be included in the package-level init function.
var InitTodoFunc = ir.NewFunc(base.Pos)

var inimport bool // set during import

var TypecheckAllowed bool

var (
	NeedRuntimeType = func(*types.Type) {}
)

func AssignExpr(n ir.Node) ir.Node { return typecheck(n, ctxExpr|ctxAssign) }
func Expr(n ir.Node) ir.Node       { return typecheck(n, ctxExpr) }
func Stmt(n ir.Node) ir.Node       { return typecheck(n, ctxStmt) }

func Exprs(exprs []ir.Node) { typecheckslice(exprs, ctxExpr) }
func Stmts(stmts []ir.Node) { typecheckslice(stmts, ctxStmt) }

func Call(pos src.XPos, callee ir.Node, args []ir.Node, dots bool) ir.Node {
	call := ir.NewCallExpr(pos, ir.OCALL, callee, args)
	call.IsDDD = dots
	return typecheck(call, ctxStmt|ctxExpr)
}

func Callee(n ir.Node) ir.Node {
	return typecheck(n, ctxExpr|ctxCallee)
}

var traceIndent []byte

func tracePrint(title string, n ir.Node) func(np *ir.Node) {
	indent := traceIndent

	// guard against nil
	var pos, op string
	var tc uint8
	if n != nil {
		pos = base.FmtPos(n.Pos())
		op = n.Op().String()
		tc = n.Typecheck()
	}

	types.SkipSizeForTracing = true
	defer func() { types.SkipSizeForTracing = false }()
	fmt.Printf("%s: %s%s %p %s %v tc=%d\n", pos, indent, title, n, op, n, tc)
	traceIndent = append(traceIndent, ". "...)

	return func(np *ir.Node) {
		traceIndent = traceIndent[:len(traceIndent)-2]

		// if we have a result, use that
		if np != nil {
			n = *np
		}

		// guard against nil
		// use outer pos, op so we don't get empty pos/op if n == nil (nicer output)
		var tc uint8
		var typ *types.Type
		if n != nil {
			pos = base.FmtPos(n.Pos())
			op = n.Op().String()
			tc = n.Typecheck()
			typ = n.Type()
		}

		types.SkipSizeForTracing = true
		defer func() { types.SkipSizeForTracing = false }()
		fmt.Printf("%s: %s=> %p %s %v tc=%d type=%L\n", pos, indent, n, op, n, tc, typ)
	}
}

const (
	ctxStmt    = 1 << iota // evaluated at statement level
	ctxExpr                // evaluated in value context
	ctxType                // evaluated in type context
	ctxCallee              // call-only expressions are ok
	ctxMultiOK             // multivalue function returns are ok
	ctxAssign              // assigning to expression
)

// type checks the whole tree of an expression.
// calculates expression types.
// evaluates compile time constants.
// marks variables that escape the local frame.
// rewrites n.Op to be more specific in some cases.

// Resolve resolves an ONONAME node to a definition, if any. If n is not an ONONAME node,
// Resolve returns n unchanged. If n is an ONONAME node and not in the same package,
// then n.Sym() is resolved using import data. Otherwise, Resolve returns
// n.Sym().Def. An ONONAME node can be created using ir.NewIdent(), so an imported
// symbol can be resolved via Resolve(ir.NewIdent(src.NoXPos, sym)).
func Resolve(n ir.Node) (res ir.Node) {
	if n == nil || n.Op() != ir.ONONAME {
		return n
	}

	base.Fatalf("unexpected NONAME node: %+v", n)
	panic("unreachable")
}

func typecheckslice(l []ir.Node, top int) {
	for i := range l {
		l[i] = typecheck(l[i], top)
	}
}

var _typekind = []string{
	types.TINT:        "int",
	types.TUINT:       "uint",
	types.TINT8:       "int8",
	types.TUINT8:      "uint8",
	types.TINT16:      "int16",
	types.TUINT16:     "uint16",
	types.TINT32:      "int32",
	types.TUINT32:     "uint32",
	types.TINT64:      "int64",
	types.TUINT64:     "uint64",
	types.TUINTPTR:    "uintptr",
	types.TCOMPLEX64:  "complex64",
	types.TCOMPLEX128: "complex128",
	types.TFLOAT32:    "float32",
	types.TFLOAT64:    "float64",
	types.TBOOL:       "bool",
	types.TSTRING:     "string",
	types.TPTR:        "pointer",
	types.TUNSAFEPTR:  "unsafe.Pointer",
	types.TSTRUCT:     "struct",
	types.TINTER:      "interface",
	types.TCHAN:       "chan",
	types.TMAP:        "map",
	types.TARRAY:      "array",
	types.TSLICE:      "slice",
	types.TFUNC:       "func",
	types.TNIL:        "nil",
	types.TIDEAL:      "untyped number",
}

func typekind(t *types.Type) string {
	if t.IsUntyped() {
		return fmt.Sprintf("%v", t)
	}
	et := t.Kind()
	if int(et) < len(_typekind) {
		s := _typekind[et]
		if s != "" {
			return s
		}
	}
	return fmt.Sprintf("etype=%d", et)
}

func cycleFor(start ir.Node) []ir.Node {
	// Find the start node in typecheck_tcstack.
	// We know that it must exist because each time we mark
	// a node with n.SetTypecheck(2) we push it on the stack,
	// and each time we mark a node with n.SetTypecheck(2) we
	// pop it from the stack. We hit a cycle when we encounter
	// a node marked 2 in which case is must be on the stack.
	i := len(typecheck_tcstack) - 1
	for i > 0 && typecheck_tcstack[i] != start {
		i--
	}

	// collect all nodes with same Op
	var cycle []ir.Node
	for _, n := range typecheck_tcstack[i:] {
		if n.Op() == start.Op() {
			cycle = append(cycle, n)
		}
	}

	return cycle
}

func cycleTrace(cycle []ir.Node) string {
	var s string
	for i, n := range cycle {
		s += fmt.Sprintf("\n\t%v: %v uses %v", ir.Line(n), n, cycle[(i+1)%len(cycle)])
	}
	return s
}

var typecheck_tcstack []ir.Node

func Func(fn *ir.Func) {
	new := Stmt(fn)
	if new != fn {
		base.Fatalf("typecheck changed func")
	}
}

// typecheck type checks node n.
// The result of typecheck MUST be assigned back to n, e.g.
//
//	n.Left = typecheck(n.Left, top)
func typecheck(n ir.Node, top int) (res ir.Node) {
	// cannot type check until all the source has been parsed
	if !TypecheckAllowed {
		base.Fatalf("early typecheck")
	}

	if n == nil {
		return nil
	}

	// only trace if there's work to do
	if base.EnableTrace && base.Flag.LowerT {
		defer tracePrint("typecheck", n)(&res)
	}

	lno := ir.SetPos(n)

	// Skip over parens.
	for n.Op() == ir.OPAREN {
		n = n.(*ir.ParenExpr).X
	}

	// Resolve definition of name and value of iota lazily.
	n = Resolve(n)

	// Skip typecheck if already done.
	// But re-typecheck ONAME/OTYPE/OLITERAL/OPACK node in case context has changed.
	if n.Typecheck() == 1 || n.Typecheck() == 3 {
		switch n.Op() {
		case ir.ONAME, ir.OTYPE, ir.OLITERAL:
			break

		default:
			base.Pos = lno
			return n
		}
	}

	if n.Typecheck() == 2 {
		// Typechecking loop. Trying printing a meaningful message,
		// otherwise a stack trace of typechecking.
		switch n.Op() {
		// We can already diagnose variables used as types.
		case ir.ONAME:
			n := n.(*ir.Name)
			if top&(ctxExpr|ctxType) == ctxType {
				base.Errorf("%v is not a type", n)
			}

		case ir.OTYPE:
			// Only report a type cycle if we are expecting a type.
			// Otherwise let other code report an error.
			if top&ctxType == ctxType {
				// A cycle containing only alias types is an error
				// since it would expand indefinitely when aliases
				// are substituted.
				cycle := cycleFor(n)
				for _, n1 := range cycle {
					if n1.Name() != nil && !n1.Name().Alias() {
						// Cycle is ok. But if n is an alias type and doesn't
						// have a type yet, we have a recursive type declaration
						// with aliases that we can't handle properly yet.
						// Report an error rather than crashing later.
						if n.Name() != nil && n.Name().Alias() && n.Type() == nil {
							base.Pos = n.Pos()
							base.Fatalf("cannot handle alias type declaration (issue #25838): %v", n)
						}
						base.Pos = lno
						return n
					}
				}
				base.ErrorfAt(n.Pos(), errors.InvalidDeclCycle, "invalid recursive type alias %v%s", n, cycleTrace(cycle))
			}

		case ir.OLITERAL:
			if top&(ctxExpr|ctxType) == ctxType {
				base.Errorf("%v is not a type", n)
				break
			}
			base.ErrorfAt(n.Pos(), errors.InvalidInitCycle, "constant definition loop%s", cycleTrace(cycleFor(n)))
		}

		if base.Errors() == 0 {
			var trace string
			for i := len(typecheck_tcstack) - 1; i >= 0; i-- {
				x := typecheck_tcstack[i]
				trace += fmt.Sprintf("\n\t%v %v", ir.Line(x), x)
			}
			base.Errorf("typechecking loop involving %v%s", n, trace)
		}

		base.Pos = lno
		return n
	}

	typecheck_tcstack = append(typecheck_tcstack, n)

	n.SetTypecheck(2)
	n = typecheck1(n, top)
	n.SetTypecheck(1)

	last := len(typecheck_tcstack) - 1
	typecheck_tcstack[last] = nil
	typecheck_tcstack = typecheck_tcstack[:last]

	_, isExpr := n.(ir.Expr)
	_, isStmt := n.(ir.Stmt)
	isMulti := false
	switch n.Op() {
	case ir.OCALLFUNC, ir.OCALLINTER, ir.OCALLMETH:
		n := n.(*ir.CallExpr)
		if t := n.X.Type(); t != nil && t.Kind() == types.TFUNC {
			nr := t.NumResults()
			isMulti = nr > 1
			if nr == 0 {
				isExpr = false
			}
		}
	case ir.OAPPEND, ir.OMIN, ir.OMAX:
		// Must be used.
		isStmt = false
	case ir.OCLEAR, ir.OCLOSE, ir.ODELETE, ir.OPANIC, ir.OPRINT, ir.OPRINTN:
		// Must not be used.
		isExpr = false
		isStmt = true
	case ir.OCOPY, ir.ORECOVER, ir.ORECV:
		// Can be used or not.
		isStmt = true
	}

	t := n.Type()
	if t != nil && !t.IsFuncArgStruct() && n.Op() != ir.OTYPE {
		switch t.Kind() {
		case types.TFUNC, // might have TANY; wait until it's called
			types.TANY, types.TFORW, types.TIDEAL, types.TNIL, types.TBLANK:
			break

		default:
			types.CheckSize(t)
		}
	}

	// TODO(rsc): Lots of the complexity here is because typecheck can
	// see OTYPE, ONAME, and OLITERAL nodes multiple times.
	// Once we make the IR a proper tree, we should be able to simplify
	// this code a bit, especially the final case.
	switch {
	case top&(ctxStmt|ctxExpr) == ctxExpr && !isExpr && n.Op() != ir.OTYPE && !isMulti:
		base.Fatalf("%v used as value", n)

	case top&ctxType == 0 && n.Op() == ir.OTYPE && t != nil:
		base.Fatalf("type %v is not an expression", n.Type())

	case top&(ctxStmt|ctxExpr) == ctxStmt && !isStmt && t != nil:
		base.Fatalf("%v evaluated but not used", n)

	case top&(ctxType|ctxExpr) == ctxType && n.Op() != ir.OTYPE && n.Op() != ir.ONONAME && (t != nil || n.Op() == ir.ONAME):
		base.Fatalf("%v is not a type", n)
	}

	base.Pos = lno
	return n
}

// indexlit implements typechecking of untyped values as
// array/slice indexes. It is almost equivalent to DefaultLit
// but also accepts untyped numeric values representable as
// value of type int (see also checkmake for comparison).
// The result of indexlit MUST be assigned back to n, e.g.
//
//	n.Left = indexlit(n.Left)
func indexlit(n ir.Node) ir.Node {
	if n != nil && n.Type() != nil && n.Type().Kind() == types.TIDEAL {
		return DefaultLit(n, types.Types[types.TINT])
	}
	return n
}

// typecheck1 should ONLY be called from typecheck.
func typecheck1(n ir.Node, top int) ir.Node {
	switch n.Op() {
	default:
		ir.Dump("typecheck", n)
		base.Fatalf("typecheck %v", n.Op())
		panic("unreachable")

	case ir.OLITERAL:
		if n.Sym() == nil && n.Type() == nil {
			base.Fatalf("literal missing type: %v", n)
		}
		return n

	case ir.ONIL:
		return n

	// names
	case ir.ONONAME:
		// Note: adderrorname looks for this string and
		// adds context about the outer expression
		base.FatalfAt(n.Pos(), "undefined: %v", n.Sym())
		panic("unreachable")

	case ir.ONAME:
		n := n.(*ir.Name)
		if n.BuiltinOp != 0 {
			if top&ctxCallee == 0 {
				base.Errorf("use of builtin %v not in function call", n.Sym())
				n.SetType(nil)
				return n
			}
			return n
		}
		if top&ctxAssign == 0 {
			// not a write to the variable
			if ir.IsBlank(n) {
				base.Errorf("cannot use _ as value")
				n.SetType(nil)
				return n
			}
			n.SetUsed(true)
		}
		return n

	case ir.OLINKSYMOFFSET:
		// type already set
		return n

	// types (ODEREF is with exprs)
	case ir.OTYPE:
		return n

	// type or expr
	case ir.ODEREF:
		n := n.(*ir.StarExpr)
		return tcStar(n, top)

	// x op= y
	case ir.OASOP:
		n := n.(*ir.AssignOpStmt)
		n.X, n.Y = Expr(n.X), Expr(n.Y)
		checkassign(n.X)
		if n.IncDec && !okforarith[n.X.Type().Kind()] {
			base.Errorf("invalid operation: %v (non-numeric type %v)", n, n.X.Type())
			return n
		}
		switch n.AsOp {
		case ir.OLSH, ir.ORSH:
			n.X, n.Y, _ = tcShift(n, n.X, n.Y)
		case ir.OADD, ir.OAND, ir.OANDNOT, ir.ODIV, ir.OMOD, ir.OMUL, ir.OOR, ir.OSUB, ir.OXOR:
			n.X, n.Y, _ = tcArith(n, n.AsOp, n.X, n.Y)
		default:
			base.Fatalf("invalid assign op: %v", n.AsOp)
		}
		return n

	// logical operators
	case ir.OANDAND, ir.OOROR:
		n := n.(*ir.LogicalExpr)
		n.X, n.Y = Expr(n.X), Expr(n.Y)
		if n.X.Type() == nil || n.Y.Type() == nil {
			n.SetType(nil)
			return n
		}
		// For "x == x && len(s)", it's better to report that "len(s)" (type int)
		// can't be used with "&&" than to report that "x == x" (type untyped bool)
		// can't be converted to int (see issue #41500).
		if !n.X.Type().IsBoolean() {
			base.Errorf("invalid operation: %v (operator %v not defined on %s)", n, n.Op(), typekind(n.X.Type()))
			n.SetType(nil)
			return n
		}
		if !n.Y.Type().IsBoolean() {
			base.Errorf("invalid operation: %v (operator %v not defined on %s)", n, n.Op(), typekind(n.Y.Type()))
			n.SetType(nil)
			return n
		}
		l, r, t := tcArith(n, n.Op(), n.X, n.Y)
		n.X, n.Y = l, r
		n.SetType(t)
		return n

	// shift operators
	case ir.OLSH, ir.ORSH:
		n := n.(*ir.BinaryExpr)
		n.X, n.Y = Expr(n.X), Expr(n.Y)
		l, r, t := tcShift(n, n.X, n.Y)
		n.X, n.Y = l, r
		n.SetType(t)
		return n

	// comparison operators
	case ir.OEQ, ir.OGE, ir.OGT, ir.OLE, ir.OLT, ir.ONE:
		n := n.(*ir.BinaryExpr)
		n.X, n.Y = Expr(n.X), Expr(n.Y)
		l, r, t := tcArith(n, n.Op(), n.X, n.Y)
		if t != nil {
			n.X, n.Y = l, r
			n.SetType(types.UntypedBool)
			n.X, n.Y = defaultlit2(l, r, true)
		}
		return n

	// binary operators
	case ir.OADD, ir.OAND, ir.OANDNOT, ir.ODIV, ir.OMOD, ir.OMUL, ir.OOR, ir.OSUB, ir.OXOR:
		n := n.(*ir.BinaryExpr)
		n.X, n.Y = Expr(n.X), Expr(n.Y)
		l, r, t := tcArith(n, n.Op(), n.X, n.Y)
		if t != nil && t.Kind() == types.TSTRING && n.Op() == ir.OADD {
			// create or update OADDSTR node with list of strings in x + y + z + (w + v) + ...
			var add *ir.AddStringExpr
			if l.Op() == ir.OADDSTR {
				add = l.(*ir.AddStringExpr)
				add.SetPos(n.Pos())
			} else {
				add = ir.NewAddStringExpr(n.Pos(), []ir.Node{l})
			}
			if r.Op() == ir.OADDSTR {
				r := r.(*ir.AddStringExpr)
				add.List.Append(r.List.Take()...)
			} else {
				add.List.Append(r)
			}
			add.SetType(t)
			return add
		}
		n.X, n.Y = l, r
		n.SetType(t)
		return n

	case ir.OBITNOT, ir.ONEG, ir.ONOT, ir.OPLUS:
		n := n.(*ir.UnaryExpr)
		return tcUnaryArith(n)

	// exprs
	case ir.OADDR:
		n := n.(*ir.AddrExpr)
		return tcAddr(n)

	case ir.OCOMPLIT:
		return tcCompLit(n.(*ir.CompLitExpr))

	case ir.OXDOT, ir.ODOT:
		n := n.(*ir.SelectorExpr)
		return tcDot(n, top)

	case ir.ODOTTYPE:
		n := n.(*ir.TypeAssertExpr)
		return tcDotType(n)

	case ir.OINDEX:
		n := n.(*ir.IndexExpr)
		return tcIndex(n)

	case ir.ORECV:
		n := n.(*ir.UnaryExpr)
		return tcRecv(n)

	case ir.OSEND:
		n := n.(*ir.SendStmt)
		return tcSend(n)

	case ir.OSLICEHEADER:
		n := n.(*ir.SliceHeaderExpr)
		return tcSliceHeader(n)

	case ir.OSTRINGHEADER:
		n := n.(*ir.StringHeaderExpr)
		return tcStringHeader(n)

	case ir.OMAKESLICECOPY:
		n := n.(*ir.MakeExpr)
		return tcMakeSliceCopy(n)

	case ir.OSLICE, ir.OSLICE3:
		n := n.(*ir.SliceExpr)
		return tcSlice(n)

	// call and call like
	case ir.OCALL:
		n := n.(*ir.CallExpr)
		return tcCall(n, top)

	case ir.OALIGNOF, ir.OOFFSETOF, ir.OSIZEOF:
		n := n.(*ir.UnaryExpr)
		n.SetType(types.Types[types.TUINTPTR])
		return OrigInt(n, evalunsafe(n))

	case ir.OCAP, ir.OLEN:
		n := n.(*ir.UnaryExpr)
		return tcLenCap(n)

	case ir.OMIN, ir.OMAX:
		n := n.(*ir.CallExpr)
		return tcMinMax(n)

	case ir.OREAL, ir.OIMAG:
		n := n.(*ir.UnaryExpr)
		return tcRealImag(n)

	case ir.OCOMPLEX:
		n := n.(*ir.BinaryExpr)
		return tcComplex(n)

	case ir.OCLEAR:
		n := n.(*ir.UnaryExpr)
		return tcClear(n)

	case ir.OCLOSE:
		n := n.(*ir.UnaryExpr)
		return tcClose(n)

	case ir.ODELETE:
		n := n.(*ir.CallExpr)
		return tcDelete(n)

	case ir.OAPPEND:
		n := n.(*ir.CallExpr)
		return tcAppend(n)

	case ir.OCOPY:
		n := n.(*ir.BinaryExpr)
		return tcCopy(n)

	case ir.OCONV:
		n := n.(*ir.ConvExpr)
		return tcConv(n)

	case ir.OMAKE:
		n := n.(*ir.CallExpr)
		return tcMake(n)

	case ir.ONEW:
		n := n.(*ir.UnaryExpr)
		return tcNew(n)

	case ir.OPRINT, ir.OPRINTN:
		n := n.(*ir.CallExpr)
		return tcPrint(n)

	case ir.OPANIC:
		n := n.(*ir.UnaryExpr)
		return tcPanic(n)

	case ir.ORECOVER:
		n := n.(*ir.CallExpr)
		return tcRecover(n)

	case ir.OUNSAFEADD:
		n := n.(*ir.BinaryExpr)
		return tcUnsafeAdd(n)

	case ir.OUNSAFESLICE:
		n := n.(*ir.BinaryExpr)
		return tcUnsafeSlice(n)

	case ir.OUNSAFESLICEDATA:
		n := n.(*ir.UnaryExpr)
		return tcUnsafeData(n)

	case ir.OUNSAFESTRING:
		n := n.(*ir.BinaryExpr)
		return tcUnsafeString(n)

	case ir.OUNSAFESTRINGDATA:
		n := n.(*ir.UnaryExpr)
		return tcUnsafeData(n)

	case ir.OCLOSURE:
		n := n.(*ir.ClosureExpr)
		return tcClosure(n, top)

	case ir.OITAB:
		n := n.(*ir.UnaryExpr)
		return tcITab(n)

	case ir.OIDATA:
		// Whoever creates the OIDATA node must know a priori the concrete type at that moment,
		// usually by just having checked the OITAB.
		n := n.(*ir.UnaryExpr)
		base.Fatalf("cannot typecheck interface data %v", n)
		panic("unreachable")

	case ir.OSPTR:
		n := n.(*ir.UnaryExpr)
		return tcSPtr(n)

	case ir.OCFUNC:
		n := n.(*ir.UnaryExpr)
		n.X = Expr(n.X)
		n.SetType(types.Types[types.TUINTPTR])
		return n

	case ir.OGETCALLERPC, ir.OGETCALLERSP:
		n := n.(*ir.CallExpr)
		if len(n.Args) != 0 {
			base.FatalfAt(n.Pos(), "unexpected arguments: %v", n)
		}
		n.SetType(types.Types[types.TUINTPTR])
		return n

	case ir.OCONVNOP:
		n := n.(*ir.ConvExpr)
		n.X = Expr(n.X)
		return n

	// statements
	case ir.OAS:
		n := n.(*ir.AssignStmt)
		tcAssign(n)

		// Code that creates temps does not bother to set defn, so do it here.
		if n.X.Op() == ir.ONAME && ir.IsAutoTmp(n.X) {
			n.X.Name().Defn = n
		}
		return n

	case ir.OAS2:
		tcAssignList(n.(*ir.AssignListStmt))
		return n

	case ir.OBREAK,
		ir.OCONTINUE,
		ir.ODCL,
		ir.OGOTO,
		ir.OFALL:
		return n

	case ir.OBLOCK:
		n := n.(*ir.BlockStmt)
		Stmts(n.List)
		return n

	case ir.OLABEL:
		if n.Sym().IsBlank() {
			// Empty identifier is valid but useless.
			// Eliminate now to simplify life later.
			// See issues 7538, 11589, 11593.
			n = ir.NewBlockStmt(n.Pos(), nil)
		}
		return n

	case ir.ODEFER, ir.OGO:
		n := n.(*ir.GoDeferStmt)
		n.Call = typecheck(n.Call, ctxStmt|ctxExpr)
		tcGoDefer(n)
		return n

	case ir.OFOR:
		n := n.(*ir.ForStmt)
		return tcFor(n)

	case ir.OIF:
		n := n.(*ir.IfStmt)
		return tcIf(n)

	case ir.ORETURN:
		n := n.(*ir.ReturnStmt)
		return tcReturn(n)

	case ir.OTAILCALL:
		n := n.(*ir.TailCallStmt)
		n.Call = typecheck(n.Call, ctxStmt|ctxExpr).(*ir.CallExpr)
		return n

	case ir.OCHECKNIL:
		n := n.(*ir.UnaryExpr)
		return tcCheckNil(n)

	case ir.OSELECT:
		tcSelect(n.(*ir.SelectStmt))
		return n

	case ir.OSWITCH:
		tcSwitch(n.(*ir.SwitchStmt))
		return n

	case ir.ORANGE:
		tcRange(n.(*ir.RangeStmt))
		return n

	case ir.OTYPESW:
		n := n.(*ir.TypeSwitchGuard)
		base.Fatalf("use of .(type) outside type switch")
		return n

	case ir.ODCLFUNC:
		tcFunc(n.(*ir.Func))
		return n

	case ir.ODCLCONST:
		n := n.(*ir.Decl)
		n.X = Expr(n.X).(*ir.Name)
		return n

	case ir.ODCLTYPE:
		n := n.(*ir.Decl)
		n.X = typecheck(n.X, ctxType).(*ir.Name)
		types.CheckSize(n.X.Type())
		return n
	}

	// No return n here!
	// Individual cases can type-assert n, introducing a new one.
	// Each must execute its own return n.
}

func typecheckargs(n ir.InitNode) {
	var list []ir.Node
	switch n := n.(type) {
	default:
		base.Fatalf("typecheckargs %+v", n.Op())
	case *ir.CallExpr:
		list = n.Args
		if n.IsDDD {
			Exprs(list)
			return
		}
	case *ir.ReturnStmt:
		list = n.Results
	}
	if len(list) != 1 {
		Exprs(list)
		return
	}

	typecheckslice(list, ctxExpr|ctxMultiOK)
	t := list[0].Type()
	if t == nil || !t.IsFuncArgStruct() {
		return
	}

	// Save n as n.Orig for fmt.go.
	if ir.Orig(n) == n {
		n.(ir.OrigNode).SetOrig(ir.SepCopy(n))
	}

	// Rewrite f(g()) into t1, t2, ... = g(); f(t1, t2, ...).
	RewriteMultiValueCall(n, list[0])
}

// RewriteNonNameCall replaces non-Name call expressions with temps,
// rewriting f()(...) to t0 := f(); t0(...).
func RewriteNonNameCall(n *ir.CallExpr) {
	np := &n.X
	if inst, ok := (*np).(*ir.InstExpr); ok && inst.Op() == ir.OFUNCINST {
		np = &inst.X
	}
	if dot, ok := (*np).(*ir.SelectorExpr); ok && (dot.Op() == ir.ODOTMETH || dot.Op() == ir.ODOTINTER || dot.Op() == ir.OMETHVALUE) {
		np = &dot.X // peel away method selector
	}

	// Check for side effects in the callee expression.
	// We explicitly special case new(T) though, because it doesn't have
	// observable side effects, and keeping it in place allows better escape analysis.
	if !ir.Any(*np, func(n ir.Node) bool { return n.Op() != ir.ONEW && callOrChan(n) }) {
		return
	}

	// See comment (1) in RewriteMultiValueCall.
	static := ir.CurFunc == nil
	if static {
		ir.CurFunc = InitTodoFunc
	}

	tmp := Temp((*np).Type())
	as := ir.NewAssignStmt(base.Pos, tmp, *np)
	as.PtrInit().Append(Stmt(ir.NewDecl(n.Pos(), ir.ODCL, tmp)))
	*np = tmp

	if static {
		ir.CurFunc = nil
	}

	n.PtrInit().Append(Stmt(as))
}

// RewriteMultiValueCall rewrites multi-valued f() to use temporaries,
// so the backend wouldn't need to worry about tuple-valued expressions.
func RewriteMultiValueCall(n ir.InitNode, call ir.Node) {
	// If we're outside of function context, then this call will
	// be executed during the generated init function. However,
	// init.go hasn't yet created it. Instead, associate the
	// temporary variables with  InitTodoFunc for now, and init.go
	// will reassociate them later when it's appropriate. (1)
	static := ir.CurFunc == nil
	if static {
		ir.CurFunc = InitTodoFunc
	}

	as := ir.NewAssignListStmt(base.Pos, ir.OAS2, nil, []ir.Node{call})
	results := call.Type().FieldSlice()
	list := make([]ir.Node, len(results))
	for i, result := range results {
		tmp := Temp(result.Type)
		as.PtrInit().Append(ir.NewDecl(base.Pos, ir.ODCL, tmp))
		as.Lhs.Append(tmp)
		list[i] = tmp
	}
	if static {
		ir.CurFunc = nil
	}

	n.PtrInit().Append(Stmt(as))

	switch n := n.(type) {
	default:
		base.Fatalf("rewriteMultiValueCall %+v", n.Op())
	case *ir.CallExpr:
		n.Args = list
	case *ir.ReturnStmt:
		n.Results = list
	case *ir.AssignListStmt:
		if n.Op() != ir.OAS2FUNC {
			base.Fatalf("rewriteMultiValueCall: invalid op %v", n.Op())
		}
		as.SetOp(ir.OAS2FUNC)
		n.SetOp(ir.OAS2)
		n.Rhs = make([]ir.Node, len(list))
		for i, tmp := range list {
			n.Rhs[i] = AssignConv(tmp, n.Lhs[i].Type(), "assignment")
		}
	}
}

func checksliceindex(l ir.Node, r ir.Node, tp *types.Type) bool {
	t := r.Type()
	if t == nil {
		return false
	}
	if !t.IsInteger() {
		base.Errorf("invalid slice index %v (type %v)", r, t)
		return false
	}

	if r.Op() == ir.OLITERAL {
		x := r.Val()
		if constant.Sign(x) < 0 {
			base.Errorf("invalid slice index %v (index must be non-negative)", r)
			return false
		} else if tp != nil && tp.NumElem() >= 0 && constant.Compare(x, token.GTR, constant.MakeInt64(tp.NumElem())) {
			base.Errorf("invalid slice index %v (out of bounds for %d-element array)", r, tp.NumElem())
			return false
		} else if ir.IsConst(l, constant.String) && constant.Compare(x, token.GTR, constant.MakeInt64(int64(len(ir.StringVal(l))))) {
			base.Errorf("invalid slice index %v (out of bounds for %d-byte string)", r, len(ir.StringVal(l)))
			return false
		} else if ir.ConstOverflow(x, types.Types[types.TINT]) {
			base.Errorf("invalid slice index %v (index too large)", r)
			return false
		}
	}

	return true
}

func checksliceconst(lo ir.Node, hi ir.Node) bool {
	if lo != nil && hi != nil && lo.Op() == ir.OLITERAL && hi.Op() == ir.OLITERAL && constant.Compare(lo.Val(), token.GTR, hi.Val()) {
		base.Errorf("invalid slice index: %v > %v", lo, hi)
		return false
	}

	return true
}

// The result of implicitstar MUST be assigned back to n, e.g.
//
//	n.Left = implicitstar(n.Left)
func implicitstar(n ir.Node) ir.Node {
	// insert implicit * if needed for fixed array
	t := n.Type()
	if t == nil || !t.IsPtr() {
		return n
	}
	t = t.Elem()
	if t == nil {
		return n
	}
	if !t.IsArray() {
		return n
	}
	star := ir.NewStarExpr(base.Pos, n)
	star.SetImplicit(true)
	return Expr(star)
}

func needOneArg(n *ir.CallExpr, f string, args ...interface{}) (ir.Node, bool) {
	if len(n.Args) == 0 {
		p := fmt.Sprintf(f, args...)
		base.Errorf("missing argument to %s: %v", p, n)
		return nil, false
	}

	if len(n.Args) > 1 {
		p := fmt.Sprintf(f, args...)
		base.Errorf("too many arguments to %s: %v", p, n)
		return n.Args[0], false
	}

	return n.Args[0], true
}

func needTwoArgs(n *ir.CallExpr) (ir.Node, ir.Node, bool) {
	if len(n.Args) != 2 {
		if len(n.Args) < 2 {
			base.Errorf("not enough arguments in call to %v", n)
		} else {
			base.Errorf("too many arguments in call to %v", n)
		}
		return nil, nil, false
	}
	return n.Args[0], n.Args[1], true
}

// Lookdot1 looks up the specified method s in the list fs of methods, returning
// the matching field or nil. If dostrcmp is 0, it matches the symbols. If
// dostrcmp is 1, it matches by name exactly. If dostrcmp is 2, it matches names
// with case folding.
func Lookdot1(errnode ir.Node, s *types.Sym, t *types.Type, fs *types.Fields, dostrcmp int) *types.Field {
	var r *types.Field
	for _, f := range fs.Slice() {
		if dostrcmp != 0 && f.Sym.Name == s.Name {
			return f
		}
		if dostrcmp == 2 && strings.EqualFold(f.Sym.Name, s.Name) {
			return f
		}
		if f.Sym != s {
			continue
		}
		if r != nil {
			if errnode != nil {
				base.Errorf("ambiguous selector %v", errnode)
			} else if t.IsPtr() {
				base.Errorf("ambiguous selector (%v).%v", t, s)
			} else {
				base.Errorf("ambiguous selector %v.%v", t, s)
			}
			break
		}

		r = f
	}

	return r
}

// typecheckMethodExpr checks selector expressions (ODOT) where the
// base expression is a type expression (OTYPE).
func typecheckMethodExpr(n *ir.SelectorExpr) (res ir.Node) {
	if base.EnableTrace && base.Flag.LowerT {
		defer tracePrint("typecheckMethodExpr", n)(&res)
	}

	t := n.X.Type()

	// Compute the method set for t.
	var ms *types.Fields
	if t.IsInterface() {
		ms = t.AllMethods()
	} else {
		mt := types.ReceiverBaseType(t)
		if mt == nil {
			base.Errorf("%v undefined (type %v has no method %v)", n, t, n.Sel)
			n.SetType(nil)
			return n
		}
		CalcMethods(mt)
		ms = mt.AllMethods()

		// The method expression T.m requires a wrapper when T
		// is different from m's declared receiver type. We
		// normally generate these wrappers while writing out
		// runtime type descriptors, which is always done for
		// types declared at package scope. However, we need
		// to make sure to generate wrappers for anonymous
		// receiver types too.
		if mt.Sym() == nil {
			NeedRuntimeType(t)
		}
	}

	s := n.Sel
	m := Lookdot1(n, s, t, ms, 0)
	if m == nil {
		if Lookdot1(n, s, t, ms, 1) != nil {
			base.Errorf("%v undefined (cannot refer to unexported method %v)", n, s)
		} else if _, ambig := dotpath(s, t, nil, false); ambig {
			base.Errorf("%v undefined (ambiguous selector)", n) // method or field
		} else {
			base.Errorf("%v undefined (type %v has no method %v)", n, t, s)
		}
		n.SetType(nil)
		return n
	}

	if !types.IsMethodApplicable(t, m) {
		base.Errorf("invalid method expression %v (needs pointer receiver: (*%v).%S)", n, t, s)
		n.SetType(nil)
		return n
	}

	n.SetOp(ir.OMETHEXPR)
	n.Selection = m
	n.SetType(NewMethodType(m.Type, n.X.Type()))
	return n
}

func derefall(t *types.Type) *types.Type {
	for t != nil && t.IsPtr() {
		t = t.Elem()
	}
	return t
}

// Lookdot looks up field or method n.Sel in the type t and returns the matching
// field. It transforms the op of node n to ODOTINTER or ODOTMETH, if appropriate.
// It also may add a StarExpr node to n.X as needed for access to non-pointer
// methods. If dostrcmp is 0, it matches the field/method with the exact symbol
// as n.Sel (appropriate for exported fields). If dostrcmp is 1, it matches by name
// exactly. If dostrcmp is 2, it matches names with case folding.
func Lookdot(n *ir.SelectorExpr, t *types.Type, dostrcmp int) *types.Field {
	s := n.Sel

	types.CalcSize(t)
	var f1 *types.Field
	if t.IsStruct() {
		f1 = Lookdot1(n, s, t, t.Fields(), dostrcmp)
	} else if t.IsInterface() {
		f1 = Lookdot1(n, s, t, t.AllMethods(), dostrcmp)
	}

	var f2 *types.Field
	if n.X.Type() == t || n.X.Type().Sym() == nil {
		mt := types.ReceiverBaseType(t)
		if mt != nil {
			f2 = Lookdot1(n, s, mt, mt.Methods(), dostrcmp)
		}
	}

	if f1 != nil {
		if dostrcmp > 1 {
			// Already in the process of diagnosing an error.
			return f1
		}
		if f2 != nil {
			base.Errorf("%v is both field and method", n.Sel)
		}
		if f1.Offset == types.BADWIDTH {
			base.Fatalf("Lookdot badwidth t=%v, f1=%v@%p", t, f1, f1)
		}
		n.Selection = f1
		n.SetType(f1.Type)
		if t.IsInterface() {
			if n.X.Type().IsPtr() {
				star := ir.NewStarExpr(base.Pos, n.X)
				star.SetImplicit(true)
				n.X = Expr(star)
			}

			n.SetOp(ir.ODOTINTER)
		}
		return f1
	}

	if f2 != nil {
		if dostrcmp > 1 {
			// Already in the process of diagnosing an error.
			return f2
		}
		orig := n.X
		tt := n.X.Type()
		types.CalcSize(tt)
		rcvr := f2.Type.Recv().Type
		if !types.Identical(rcvr, tt) {
			if rcvr.IsPtr() && types.Identical(rcvr.Elem(), tt) {
				checklvalue(n.X, "call pointer method on")
				addr := NodAddr(n.X)
				addr.SetImplicit(true)
				n.X = typecheck(addr, ctxType|ctxExpr)
			} else if tt.IsPtr() && (!rcvr.IsPtr() || rcvr.IsPtr() && rcvr.Elem().NotInHeap()) && types.Identical(tt.Elem(), rcvr) {
				star := ir.NewStarExpr(base.Pos, n.X)
				star.SetImplicit(true)
				n.X = typecheck(star, ctxType|ctxExpr)
			} else if tt.IsPtr() && tt.Elem().IsPtr() && types.Identical(derefall(tt), derefall(rcvr)) {
				base.Errorf("calling method %v with receiver %L requires explicit dereference", n.Sel, n.X)
				for tt.IsPtr() {
					// Stop one level early for method with pointer receiver.
					if rcvr.IsPtr() && !tt.Elem().IsPtr() {
						break
					}
					star := ir.NewStarExpr(base.Pos, n.X)
					star.SetImplicit(true)
					n.X = typecheck(star, ctxType|ctxExpr)
					tt = tt.Elem()
				}
			} else {
				base.Fatalf("method mismatch: %v for %v", rcvr, tt)
			}
		}

		// Check that we haven't implicitly dereferenced any defined pointer types.
		for x := n.X; ; {
			var inner ir.Node
			implicit := false
			switch x := x.(type) {
			case *ir.AddrExpr:
				inner, implicit = x.X, x.Implicit()
			case *ir.SelectorExpr:
				inner, implicit = x.X, x.Implicit()
			case *ir.StarExpr:
				inner, implicit = x.X, x.Implicit()
			}
			if !implicit {
				break
			}
			if inner.Type().Sym() != nil && (x.Op() == ir.ODEREF || x.Op() == ir.ODOTPTR) {
				// Found an implicit dereference of a defined pointer type.
				// Restore n.X for better error message.
				n.X = orig
				return nil
			}
			x = inner
		}

		n.Selection = f2
		n.SetType(f2.Type)
		n.SetOp(ir.ODOTMETH)

		return f2
	}

	return nil
}

func nokeys(l ir.Nodes) bool {
	for _, n := range l {
		if n.Op() == ir.OKEY || n.Op() == ir.OSTRUCTKEY {
			return false
		}
	}
	return true
}

func hasddd(t *types.Type) bool {
	for _, tl := range t.Fields().Slice() {
		if tl.IsDDD() {
			return true
		}
	}

	return false
}

// typecheck assignment: type list = expression list
func typecheckaste(op ir.Op, call ir.Node, isddd bool, tstruct *types.Type, nl ir.Nodes, desc func() string) {
	var t *types.Type
	var i int

	lno := base.Pos
	defer func() { base.Pos = lno }()

	var n ir.Node
	if len(nl) == 1 {
		n = nl[0]
	}

	n1 := tstruct.NumFields()
	n2 := len(nl)
	if !hasddd(tstruct) {
		if isddd {
			goto invalidddd
		}
		if n2 > n1 {
			goto toomany
		}
		if n2 < n1 {
			goto notenough
		}
	} else {
		if !isddd {
			if n2 < n1-1 {
				goto notenough
			}
		} else {
			if n2 > n1 {
				goto toomany
			}
			if n2 < n1 {
				goto notenough
			}
		}
	}

	i = 0
	for _, tl := range tstruct.Fields().Slice() {
		t = tl.Type
		if tl.IsDDD() {
			if isddd {
				if i >= len(nl) {
					goto notenough
				}
				if len(nl)-i > 1 {
					goto toomany
				}
				n = nl[i]
				ir.SetPos(n)
				if n.Type() != nil {
					nl[i] = assignconvfn(n, t, desc)
				}
				return
			}

			// TODO(mdempsky): Make into ... call with implicit slice.
			for ; i < len(nl); i++ {
				n = nl[i]
				ir.SetPos(n)
				if n.Type() != nil {
					nl[i] = assignconvfn(n, t.Elem(), desc)
				}
			}
			return
		}

		if i >= len(nl) {
			goto notenough
		}
		n = nl[i]
		ir.SetPos(n)
		if n.Type() != nil {
			nl[i] = assignconvfn(n, t, desc)
		}
		i++
	}

	if i < len(nl) {
		goto toomany
	}

invalidddd:
	if isddd {
		if call != nil {
			base.Errorf("invalid use of ... in call to %v", call)
		} else {
			base.Errorf("invalid use of ... in %v", op)
		}
	}
	return

notenough:
	if n == nil || n.Type() != nil {
		details := errorDetails(nl, tstruct, isddd)
		if call != nil {
			// call is the expression being called, not the overall call.
			// Method expressions have the form T.M, and the compiler has
			// rewritten those to ONAME nodes but left T in Left.
			if call.Op() == ir.OMETHEXPR {
				call := call.(*ir.SelectorExpr)
				base.Errorf("not enough arguments in call to method expression %v%s", call, details)
			} else {
				base.Errorf("not enough arguments in call to %v%s", call, details)
			}
		} else {
			base.Errorf("not enough arguments to %v%s", op, details)
		}
		if n != nil {
			base.Fatalf("invalid call")
		}
	}
	return

toomany:
	details := errorDetails(nl, tstruct, isddd)
	if call != nil {
		base.Errorf("too many arguments in call to %v%s", call, details)
	} else {
		base.Errorf("too many arguments to %v%s", op, details)
	}
}

func errorDetails(nl ir.Nodes, tstruct *types.Type, isddd bool) string {
	// Suppress any return message signatures if:
	//
	// (1) We don't know any type at a call site (see #19012).
	// (2) Any node has an unknown type.
	// (3) Invalid type for variadic parameter (see #46957).
	if tstruct == nil {
		return "" // case 1
	}

	if isddd && !nl[len(nl)-1].Type().IsSlice() {
		return "" // case 3
	}

	for _, n := range nl {
		if n.Type() == nil {
			return "" // case 2
		}
	}
	return fmt.Sprintf("\n\thave %s\n\twant %v", fmtSignature(nl, isddd), tstruct)
}

// sigrepr is a type's representation to the outside world,
// in string representations of return signatures
// e.g in error messages about wrong arguments to return.
func sigrepr(t *types.Type, isddd bool) string {
	switch t {
	case types.UntypedString:
		return "string"
	case types.UntypedBool:
		return "bool"
	}

	if t.Kind() == types.TIDEAL {
		// "untyped number" is not commonly used
		// outside of the compiler, so let's use "number".
		// TODO(mdempsky): Revisit this.
		return "number"
	}

	// Turn []T... argument to ...T for clearer error message.
	if isddd {
		if !t.IsSlice() {
			base.Fatalf("bad type for ... argument: %v", t)
		}
		return "..." + t.Elem().String()
	}
	return t.String()
}

// fmtSignature returns the signature of the types at the call or return.
func fmtSignature(nl ir.Nodes, isddd bool) string {
	if len(nl) < 1 {
		return "()"
	}

	var typeStrings []string
	for i, n := range nl {
		isdddArg := isddd && i == len(nl)-1
		typeStrings = append(typeStrings, sigrepr(n.Type(), isdddArg))
	}

	return fmt.Sprintf("(%s)", strings.Join(typeStrings, ", "))
}

// type check composite.
func fielddup(name string, hash map[string]bool) {
	if hash[name] {
		base.Errorf("duplicate field name in struct literal: %s", name)
		return
	}
	hash[name] = true
}

// typecheckarraylit type-checks a sequence of slice/array literal elements.
func typecheckarraylit(elemType *types.Type, bound int64, elts []ir.Node, ctx string) int64 {
	// If there are key/value pairs, create a map to keep seen
	// keys so we can check for duplicate indices.
	var indices map[int64]bool
	for _, elt := range elts {
		if elt.Op() == ir.OKEY {
			indices = make(map[int64]bool)
			break
		}
	}

	var key, length int64
	for i, elt := range elts {
		ir.SetPos(elt)
		r := elts[i]
		var kv *ir.KeyExpr
		if elt.Op() == ir.OKEY {
			elt := elt.(*ir.KeyExpr)
			elt.Key = Expr(elt.Key)
			key = IndexConst(elt.Key)
			if key < 0 {
				base.Fatalf("invalid index: %v", elt.Key)
			}
			kv = elt
			r = elt.Value
		}

		r = Expr(r)
		r = AssignConv(r, elemType, ctx)
		if kv != nil {
			kv.Value = r
		} else {
			elts[i] = r
		}

		if key >= 0 {
			if indices != nil {
				if indices[key] {
					base.Errorf("duplicate index in %s: %d", ctx, key)
				} else {
					indices[key] = true
				}
			}

			if bound >= 0 && key >= bound {
				base.Errorf("array index %d out of bounds [0:%d]", key, bound)
				bound = -1
			}
		}

		key++
		if key > length {
			length = key
		}
	}

	return length
}

// visible reports whether sym is exported or locally defined.
func visible(sym *types.Sym) bool {
	return sym != nil && (types.IsExported(sym.Name) || sym.Pkg == types.LocalPkg)
}

// nonexported reports whether sym is an unexported field.
func nonexported(sym *types.Sym) bool {
	return sym != nil && !types.IsExported(sym.Name)
}

func checklvalue(n ir.Node, verb string) {
	if !ir.IsAddressable(n) {
		base.Errorf("cannot %s %v", verb, n)
	}
}

func checkassign(n ir.Node) {
	// have already complained about n being invalid
	if n.Type() == nil {
		if base.Errors() == 0 {
			base.Fatalf("expected an error about %v", n)
		}
		return
	}

	if ir.IsAddressable(n) {
		return
	}
	if n.Op() == ir.OINDEXMAP {
		n := n.(*ir.IndexExpr)
		n.Assigned = true
		return
	}

	defer n.SetType(nil)

	switch {
	case n.Op() == ir.ODOT && n.(*ir.SelectorExpr).X.Op() == ir.OINDEXMAP:
		base.Errorf("cannot assign to struct field %v in map", n)
	case (n.Op() == ir.OINDEX && n.(*ir.IndexExpr).X.Type().IsString()) || n.Op() == ir.OSLICESTR:
		base.Errorf("cannot assign to %v (strings are immutable)", n)
	case n.Op() == ir.OLITERAL && n.Sym() != nil && ir.IsConstNode(n):
		base.Errorf("cannot assign to %v (declared const)", n)
	default:
		base.Errorf("cannot assign to %v", n)
	}
}

func checkassignto(src *types.Type, dst ir.Node) {
	// TODO(mdempsky): Handle all untyped types correctly.
	if src == types.UntypedBool && dst.Type().IsBoolean() {
		return
	}

	if op, why := Assignop(src, dst.Type()); op == ir.OXXX {
		base.Errorf("cannot assign %v to %L in multiple assignment%s", src, dst, why)
		return
	}
}

// The result of stringtoruneslit MUST be assigned back to n, e.g.
//
//	n.Left = stringtoruneslit(n.Left)
func stringtoruneslit(n *ir.ConvExpr) ir.Node {
	if n.X.Op() != ir.OLITERAL || n.X.Val().Kind() != constant.String {
		base.Fatalf("stringtoarraylit %v", n)
	}

	var l []ir.Node
	i := 0
	for _, r := range ir.StringVal(n.X) {
		l = append(l, ir.NewKeyExpr(base.Pos, ir.NewInt(base.Pos, int64(i)), ir.NewInt(base.Pos, int64(r))))
		i++
	}

	return Expr(ir.NewCompLitExpr(base.Pos, ir.OCOMPLIT, n.Type(), l))
}

func checkmake(t *types.Type, arg string, np *ir.Node) bool {
	n := *np
	if !n.Type().IsInteger() && n.Type().Kind() != types.TIDEAL {
		base.Errorf("non-integer %s argument in make(%v) - %v", arg, t, n.Type())
		return false
	}

	// Do range checks for constants before DefaultLit
	// to avoid redundant "constant NNN overflows int" errors.
	if n.Op() == ir.OLITERAL {
		v := toint(n.Val())
		if constant.Sign(v) < 0 {
			base.Errorf("negative %s argument in make(%v)", arg, t)
			return false
		}
		if ir.ConstOverflow(v, types.Types[types.TINT]) {
			base.Errorf("%s argument too large in make(%v)", arg, t)
			return false
		}
	}

	// DefaultLit is necessary for non-constants too: n might be 1.1<<k.
	// TODO(gri) The length argument requirements for (array/slice) make
	// are the same as for index expressions. Factor the code better;
	// for instance, indexlit might be called here and incorporate some
	// of the bounds checks done for make.
	n = DefaultLit(n, types.Types[types.TINT])
	*np = n

	return true
}

// checkunsafesliceorstring is like checkmake but for unsafe.{Slice,String}.
func checkunsafesliceorstring(op ir.Op, np *ir.Node) bool {
	n := *np
	if !n.Type().IsInteger() && n.Type().Kind() != types.TIDEAL {
		base.Errorf("non-integer len argument in %v - %v", op, n.Type())
		return false
	}

	// Do range checks for constants before DefaultLit
	// to avoid redundant "constant NNN overflows int" errors.
	if n.Op() == ir.OLITERAL {
		v := toint(n.Val())
		if constant.Sign(v) < 0 {
			base.Errorf("negative len argument in %v", op)
			return false
		}
		if ir.ConstOverflow(v, types.Types[types.TINT]) {
			base.Errorf("len argument too large in %v", op)
			return false
		}
	}

	// DefaultLit is necessary for non-constants too: n might be 1.1<<k.
	n = DefaultLit(n, types.Types[types.TINT])
	*np = n

	return true
}

func Conv(n ir.Node, t *types.Type) ir.Node {
	if types.IdenticalStrict(n.Type(), t) {
		return n
	}
	n = ir.NewConvExpr(base.Pos, ir.OCONV, nil, n)
	n.SetType(t)
	n = Expr(n)
	return n
}

// ConvNop converts node n to type t using the OCONVNOP op
// and typechecks the result with ctxExpr.
func ConvNop(n ir.Node, t *types.Type) ir.Node {
	if types.IdenticalStrict(n.Type(), t) {
		return n
	}
	n = ir.NewConvExpr(base.Pos, ir.OCONVNOP, nil, n)
	n.SetType(t)
	n = Expr(n)
	return n
}