aboutsummaryrefslogtreecommitdiff
path: root/src/debug/dwarf/type.go
blob: 627d3a13b75c5b4e98a1c72cf8fde721fb08c437 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

// DWARF type information structures.
// The format is heavily biased toward C, but for simplicity
// the String methods use a pseudo-Go syntax.

package dwarf

import "strconv"

// A Type conventionally represents a pointer to any of the
// specific Type structures ([CharType], [StructType], etc.).
type Type interface {
	Common() *CommonType
	String() string
	Size() int64
}

// A CommonType holds fields common to multiple types.
// If a field is not known or not applicable for a given type,
// the zero value is used.
type CommonType struct {
	ByteSize int64  // size of value of this type, in bytes
	Name     string // name that can be used to refer to type
}

func (c *CommonType) Common() *CommonType { return c }

func (c *CommonType) Size() int64 { return c.ByteSize }

// Basic types

// A BasicType holds fields common to all basic types.
//
// See the documentation for [StructField] for more info on the interpretation of
// the BitSize/BitOffset/DataBitOffset fields.
type BasicType struct {
	CommonType
	BitSize       int64
	BitOffset     int64
	DataBitOffset int64
}

func (b *BasicType) Basic() *BasicType { return b }

func (t *BasicType) String() string {
	if t.Name != "" {
		return t.Name
	}
	return "?"
}

// A CharType represents a signed character type.
type CharType struct {
	BasicType
}

// A UcharType represents an unsigned character type.
type UcharType struct {
	BasicType
}

// An IntType represents a signed integer type.
type IntType struct {
	BasicType
}

// A UintType represents an unsigned integer type.
type UintType struct {
	BasicType
}

// A FloatType represents a floating point type.
type FloatType struct {
	BasicType
}

// A ComplexType represents a complex floating point type.
type ComplexType struct {
	BasicType
}

// A BoolType represents a boolean type.
type BoolType struct {
	BasicType
}

// An AddrType represents a machine address type.
type AddrType struct {
	BasicType
}

// An UnspecifiedType represents an implicit, unknown, ambiguous or nonexistent type.
type UnspecifiedType struct {
	BasicType
}

// qualifiers

// A QualType represents a type that has the C/C++ "const", "restrict", or "volatile" qualifier.
type QualType struct {
	CommonType
	Qual string
	Type Type
}

func (t *QualType) String() string { return t.Qual + " " + t.Type.String() }

func (t *QualType) Size() int64 { return t.Type.Size() }

// An ArrayType represents a fixed size array type.
type ArrayType struct {
	CommonType
	Type          Type
	StrideBitSize int64 // if > 0, number of bits to hold each element
	Count         int64 // if == -1, an incomplete array, like char x[].
}

func (t *ArrayType) String() string {
	return "[" + strconv.FormatInt(t.Count, 10) + "]" + t.Type.String()
}

func (t *ArrayType) Size() int64 {
	if t.Count == -1 {
		return 0
	}
	return t.Count * t.Type.Size()
}

// A VoidType represents the C void type.
type VoidType struct {
	CommonType
}

func (t *VoidType) String() string { return "void" }

// A PtrType represents a pointer type.
type PtrType struct {
	CommonType
	Type Type
}

func (t *PtrType) String() string { return "*" + t.Type.String() }

// A StructType represents a struct, union, or C++ class type.
type StructType struct {
	CommonType
	StructName string
	Kind       string // "struct", "union", or "class".
	Field      []*StructField
	Incomplete bool // if true, struct, union, class is declared but not defined
}

// A StructField represents a field in a struct, union, or C++ class type.
//
// # Bit Fields
//
// The BitSize, BitOffset, and DataBitOffset fields describe the bit
// size and offset of data members declared as bit fields in C/C++
// struct/union/class types.
//
// BitSize is the number of bits in the bit field.
//
// DataBitOffset, if non-zero, is the number of bits from the start of
// the enclosing entity (e.g. containing struct/class/union) to the
// start of the bit field. This corresponds to the DW_AT_data_bit_offset
// DWARF attribute that was introduced in DWARF 4.
//
// BitOffset, if non-zero, is the number of bits between the most
// significant bit of the storage unit holding the bit field to the
// most significant bit of the bit field. Here "storage unit" is the
// type name before the bit field (for a field "unsigned x:17", the
// storage unit is "unsigned"). BitOffset values can vary depending on
// the endianness of the system. BitOffset corresponds to the
// DW_AT_bit_offset DWARF attribute that was deprecated in DWARF 4 and
// removed in DWARF 5.
//
// At most one of DataBitOffset and BitOffset will be non-zero;
// DataBitOffset/BitOffset will only be non-zero if BitSize is
// non-zero. Whether a C compiler uses one or the other
// will depend on compiler vintage and command line options.
//
// Here is an example of C/C++ bit field use, along with what to
// expect in terms of DWARF bit offset info. Consider this code:
//
//	struct S {
//		int q;
//		int j:5;
//		int k:6;
//		int m:5;
//		int n:8;
//	} s;
//
// For the code above, one would expect to see the following for
// DW_AT_bit_offset values (using GCC 8):
//
//	       Little   |     Big
//	       Endian   |    Endian
//	                |
//	"j":     27     |     0
//	"k":     21     |     5
//	"m":     16     |     11
//	"n":     8      |     16
//
// Note that in the above the offsets are purely with respect to the
// containing storage unit for j/k/m/n -- these values won't vary based
// on the size of prior data members in the containing struct.
//
// If the compiler emits DW_AT_data_bit_offset, the expected values
// would be:
//
//	"j":     32
//	"k":     37
//	"m":     43
//	"n":     48
//
// Here the value 32 for "j" reflects the fact that the bit field is
// preceded by other data members (recall that DW_AT_data_bit_offset
// values are relative to the start of the containing struct). Hence
// DW_AT_data_bit_offset values can be quite large for structs with
// many fields.
//
// DWARF also allow for the possibility of base types that have
// non-zero bit size and bit offset, so this information is also
// captured for base types, but it is worth noting that it is not
// possible to trigger this behavior using mainstream languages.
type StructField struct {
	Name          string
	Type          Type
	ByteOffset    int64
	ByteSize      int64 // usually zero; use Type.Size() for normal fields
	BitOffset     int64
	DataBitOffset int64
	BitSize       int64 // zero if not a bit field
}

func (t *StructType) String() string {
	if t.StructName != "" {
		return t.Kind + " " + t.StructName
	}
	return t.Defn()
}

func (f *StructField) bitOffset() int64 {
	if f.BitOffset != 0 {
		return f.BitOffset
	}
	return f.DataBitOffset
}

func (t *StructType) Defn() string {
	s := t.Kind
	if t.StructName != "" {
		s += " " + t.StructName
	}
	if t.Incomplete {
		s += " /*incomplete*/"
		return s
	}
	s += " {"
	for i, f := range t.Field {
		if i > 0 {
			s += "; "
		}
		s += f.Name + " " + f.Type.String()
		s += "@" + strconv.FormatInt(f.ByteOffset, 10)
		if f.BitSize > 0 {
			s += " : " + strconv.FormatInt(f.BitSize, 10)
			s += "@" + strconv.FormatInt(f.bitOffset(), 10)
		}
	}
	s += "}"
	return s
}

// An EnumType represents an enumerated type.
// The only indication of its native integer type is its ByteSize
// (inside [CommonType]).
type EnumType struct {
	CommonType
	EnumName string
	Val      []*EnumValue
}

// An EnumValue represents a single enumeration value.
type EnumValue struct {
	Name string
	Val  int64
}

func (t *EnumType) String() string {
	s := "enum"
	if t.EnumName != "" {
		s += " " + t.EnumName
	}
	s += " {"
	for i, v := range t.Val {
		if i > 0 {
			s += "; "
		}
		s += v.Name + "=" + strconv.FormatInt(v.Val, 10)
	}
	s += "}"
	return s
}

// A FuncType represents a function type.
type FuncType struct {
	CommonType
	ReturnType Type
	ParamType  []Type
}

func (t *FuncType) String() string {
	s := "func("
	for i, t := range t.ParamType {
		if i > 0 {
			s += ", "
		}
		s += t.String()
	}
	s += ")"
	if t.ReturnType != nil {
		s += " " + t.ReturnType.String()
	}
	return s
}

// A DotDotDotType represents the variadic ... function parameter.
type DotDotDotType struct {
	CommonType
}

func (t *DotDotDotType) String() string { return "..." }

// A TypedefType represents a named type.
type TypedefType struct {
	CommonType
	Type Type
}

func (t *TypedefType) String() string { return t.Name }

func (t *TypedefType) Size() int64 { return t.Type.Size() }

// An UnsupportedType is a placeholder returned in situations where we
// encounter a type that isn't supported.
type UnsupportedType struct {
	CommonType
	Tag Tag
}

func (t *UnsupportedType) String() string {
	if t.Name != "" {
		return t.Name
	}
	return t.Name + "(unsupported type " + t.Tag.String() + ")"
}

// typeReader is used to read from either the info section or the
// types section.
type typeReader interface {
	Seek(Offset)
	Next() (*Entry, error)
	clone() typeReader
	offset() Offset
	// AddressSize returns the size in bytes of addresses in the current
	// compilation unit.
	AddressSize() int
}

// Type reads the type at off in the DWARF “info” section.
func (d *Data) Type(off Offset) (Type, error) {
	return d.readType("info", d.Reader(), off, d.typeCache, nil)
}

type typeFixer struct {
	typedefs   []*TypedefType
	arraytypes []*Type
}

func (tf *typeFixer) recordArrayType(t *Type) {
	if t == nil {
		return
	}
	_, ok := (*t).(*ArrayType)
	if ok {
		tf.arraytypes = append(tf.arraytypes, t)
	}
}

func (tf *typeFixer) apply() {
	for _, t := range tf.typedefs {
		t.Common().ByteSize = t.Type.Size()
	}
	for _, t := range tf.arraytypes {
		zeroArray(t)
	}
}

// readType reads a type from r at off of name. It adds types to the
// type cache, appends new typedef types to typedefs, and computes the
// sizes of types. Callers should pass nil for typedefs; this is used
// for internal recursion.
func (d *Data) readType(name string, r typeReader, off Offset, typeCache map[Offset]Type, fixups *typeFixer) (Type, error) {
	if t, ok := typeCache[off]; ok {
		return t, nil
	}
	r.Seek(off)
	e, err := r.Next()
	if err != nil {
		return nil, err
	}
	addressSize := r.AddressSize()
	if e == nil || e.Offset != off {
		return nil, DecodeError{name, off, "no type at offset"}
	}

	// If this is the root of the recursion, prepare to resolve
	// typedef sizes and perform other fixups once the recursion is
	// done. This must be done after the type graph is constructed
	// because it may need to resolve cycles in a different order than
	// readType encounters them.
	if fixups == nil {
		var fixer typeFixer
		defer func() {
			fixer.apply()
		}()
		fixups = &fixer
	}

	// Parse type from Entry.
	// Must always set typeCache[off] before calling
	// d.readType recursively, to handle circular types correctly.
	var typ Type

	nextDepth := 0

	// Get next child; set err if error happens.
	next := func() *Entry {
		if !e.Children {
			return nil
		}
		// Only return direct children.
		// Skip over composite entries that happen to be nested
		// inside this one. Most DWARF generators wouldn't generate
		// such a thing, but clang does.
		// See golang.org/issue/6472.
		for {
			kid, err1 := r.Next()
			if err1 != nil {
				err = err1
				return nil
			}
			if kid == nil {
				err = DecodeError{name, r.offset(), "unexpected end of DWARF entries"}
				return nil
			}
			if kid.Tag == 0 {
				if nextDepth > 0 {
					nextDepth--
					continue
				}
				return nil
			}
			if kid.Children {
				nextDepth++
			}
			if nextDepth > 0 {
				continue
			}
			return kid
		}
	}

	// Get Type referred to by Entry's AttrType field.
	// Set err if error happens. Not having a type is an error.
	typeOf := func(e *Entry) Type {
		tval := e.Val(AttrType)
		var t Type
		switch toff := tval.(type) {
		case Offset:
			if t, err = d.readType(name, r.clone(), toff, typeCache, fixups); err != nil {
				return nil
			}
		case uint64:
			if t, err = d.sigToType(toff); err != nil {
				return nil
			}
		default:
			// It appears that no Type means "void".
			return new(VoidType)
		}
		return t
	}

	switch e.Tag {
	case TagArrayType:
		// Multi-dimensional array.  (DWARF v2 §5.4)
		// Attributes:
		//	AttrType:subtype [required]
		//	AttrStrideSize: size in bits of each element of the array
		//	AttrByteSize: size of entire array
		// Children:
		//	TagSubrangeType or TagEnumerationType giving one dimension.
		//	dimensions are in left to right order.
		t := new(ArrayType)
		typ = t
		typeCache[off] = t
		if t.Type = typeOf(e); err != nil {
			goto Error
		}
		t.StrideBitSize, _ = e.Val(AttrStrideSize).(int64)

		// Accumulate dimensions,
		var dims []int64
		for kid := next(); kid != nil; kid = next() {
			// TODO(rsc): Can also be TagEnumerationType
			// but haven't seen that in the wild yet.
			switch kid.Tag {
			case TagSubrangeType:
				count, ok := kid.Val(AttrCount).(int64)
				if !ok {
					// Old binaries may have an upper bound instead.
					count, ok = kid.Val(AttrUpperBound).(int64)
					if ok {
						count++ // Length is one more than upper bound.
					} else if len(dims) == 0 {
						count = -1 // As in x[].
					}
				}
				dims = append(dims, count)
			case TagEnumerationType:
				err = DecodeError{name, kid.Offset, "cannot handle enumeration type as array bound"}
				goto Error
			}
		}
		if len(dims) == 0 {
			// LLVM generates this for x[].
			dims = []int64{-1}
		}

		t.Count = dims[0]
		for i := len(dims) - 1; i >= 1; i-- {
			t.Type = &ArrayType{Type: t.Type, Count: dims[i]}
		}

	case TagBaseType:
		// Basic type.  (DWARF v2 §5.1)
		// Attributes:
		//	AttrName: name of base type in programming language of the compilation unit [required]
		//	AttrEncoding: encoding value for type (encFloat etc) [required]
		//	AttrByteSize: size of type in bytes [required]
		//	AttrBitOffset: bit offset of value within containing storage unit
		//	AttrDataBitOffset: bit offset of value within containing storage unit
		//	AttrBitSize: size in bits
		//
		// For most languages BitOffset/DataBitOffset/BitSize will not be present
		// for base types.
		name, _ := e.Val(AttrName).(string)
		enc, ok := e.Val(AttrEncoding).(int64)
		if !ok {
			err = DecodeError{name, e.Offset, "missing encoding attribute for " + name}
			goto Error
		}
		switch enc {
		default:
			err = DecodeError{name, e.Offset, "unrecognized encoding attribute value"}
			goto Error

		case encAddress:
			typ = new(AddrType)
		case encBoolean:
			typ = new(BoolType)
		case encComplexFloat:
			typ = new(ComplexType)
			if name == "complex" {
				// clang writes out 'complex' instead of 'complex float' or 'complex double'.
				// clang also writes out a byte size that we can use to distinguish.
				// See issue 8694.
				switch byteSize, _ := e.Val(AttrByteSize).(int64); byteSize {
				case 8:
					name = "complex float"
				case 16:
					name = "complex double"
				}
			}
		case encFloat:
			typ = new(FloatType)
		case encSigned:
			typ = new(IntType)
		case encUnsigned:
			typ = new(UintType)
		case encSignedChar:
			typ = new(CharType)
		case encUnsignedChar:
			typ = new(UcharType)
		}
		typeCache[off] = typ
		t := typ.(interface {
			Basic() *BasicType
		}).Basic()
		t.Name = name
		t.BitSize, _ = e.Val(AttrBitSize).(int64)
		haveBitOffset := false
		haveDataBitOffset := false
		t.BitOffset, haveBitOffset = e.Val(AttrBitOffset).(int64)
		t.DataBitOffset, haveDataBitOffset = e.Val(AttrDataBitOffset).(int64)
		if haveBitOffset && haveDataBitOffset {
			err = DecodeError{name, e.Offset, "duplicate bit offset attributes"}
			goto Error
		}

	case TagClassType, TagStructType, TagUnionType:
		// Structure, union, or class type.  (DWARF v2 §5.5)
		// Attributes:
		//	AttrName: name of struct, union, or class
		//	AttrByteSize: byte size [required]
		//	AttrDeclaration: if true, struct/union/class is incomplete
		// Children:
		//	TagMember to describe one member.
		//		AttrName: name of member [required]
		//		AttrType: type of member [required]
		//		AttrByteSize: size in bytes
		//		AttrBitOffset: bit offset within bytes for bit fields
		//		AttrDataBitOffset: field bit offset relative to struct start
		//		AttrBitSize: bit size for bit fields
		//		AttrDataMemberLoc: location within struct [required for struct, class]
		// There is much more to handle C++, all ignored for now.
		t := new(StructType)
		typ = t
		typeCache[off] = t
		switch e.Tag {
		case TagClassType:
			t.Kind = "class"
		case TagStructType:
			t.Kind = "struct"
		case TagUnionType:
			t.Kind = "union"
		}
		t.StructName, _ = e.Val(AttrName).(string)
		t.Incomplete = e.Val(AttrDeclaration) != nil
		t.Field = make([]*StructField, 0, 8)
		var lastFieldType *Type
		var lastFieldBitSize int64
		var lastFieldByteOffset int64
		for kid := next(); kid != nil; kid = next() {
			if kid.Tag != TagMember {
				continue
			}
			f := new(StructField)
			if f.Type = typeOf(kid); err != nil {
				goto Error
			}
			switch loc := kid.Val(AttrDataMemberLoc).(type) {
			case []byte:
				// TODO: Should have original compilation
				// unit here, not unknownFormat.
				b := makeBuf(d, unknownFormat{}, "location", 0, loc)
				if b.uint8() != opPlusUconst {
					err = DecodeError{name, kid.Offset, "unexpected opcode"}
					goto Error
				}
				f.ByteOffset = int64(b.uint())
				if b.err != nil {
					err = b.err
					goto Error
				}
			case int64:
				f.ByteOffset = loc
			}

			f.Name, _ = kid.Val(AttrName).(string)
			f.ByteSize, _ = kid.Val(AttrByteSize).(int64)
			haveBitOffset := false
			haveDataBitOffset := false
			f.BitOffset, haveBitOffset = kid.Val(AttrBitOffset).(int64)
			f.DataBitOffset, haveDataBitOffset = kid.Val(AttrDataBitOffset).(int64)
			if haveBitOffset && haveDataBitOffset {
				err = DecodeError{name, e.Offset, "duplicate bit offset attributes"}
				goto Error
			}
			f.BitSize, _ = kid.Val(AttrBitSize).(int64)
			t.Field = append(t.Field, f)

			if lastFieldBitSize == 0 && lastFieldByteOffset == f.ByteOffset && t.Kind != "union" {
				// Last field was zero width. Fix array length.
				// (DWARF writes out 0-length arrays as if they were 1-length arrays.)
				fixups.recordArrayType(lastFieldType)
			}
			lastFieldType = &f.Type
			lastFieldByteOffset = f.ByteOffset
			lastFieldBitSize = f.BitSize
		}
		if t.Kind != "union" {
			b, ok := e.Val(AttrByteSize).(int64)
			if ok && b == lastFieldByteOffset {
				// Final field must be zero width. Fix array length.
				fixups.recordArrayType(lastFieldType)
			}
		}

	case TagConstType, TagVolatileType, TagRestrictType:
		// Type modifier (DWARF v2 §5.2)
		// Attributes:
		//	AttrType: subtype
		t := new(QualType)
		typ = t
		typeCache[off] = t
		if t.Type = typeOf(e); err != nil {
			goto Error
		}
		switch e.Tag {
		case TagConstType:
			t.Qual = "const"
		case TagRestrictType:
			t.Qual = "restrict"
		case TagVolatileType:
			t.Qual = "volatile"
		}

	case TagEnumerationType:
		// Enumeration type (DWARF v2 §5.6)
		// Attributes:
		//	AttrName: enum name if any
		//	AttrByteSize: bytes required to represent largest value
		// Children:
		//	TagEnumerator:
		//		AttrName: name of constant
		//		AttrConstValue: value of constant
		t := new(EnumType)
		typ = t
		typeCache[off] = t
		t.EnumName, _ = e.Val(AttrName).(string)
		t.Val = make([]*EnumValue, 0, 8)
		for kid := next(); kid != nil; kid = next() {
			if kid.Tag == TagEnumerator {
				f := new(EnumValue)
				f.Name, _ = kid.Val(AttrName).(string)
				f.Val, _ = kid.Val(AttrConstValue).(int64)
				n := len(t.Val)
				if n >= cap(t.Val) {
					val := make([]*EnumValue, n, n*2)
					copy(val, t.Val)
					t.Val = val
				}
				t.Val = t.Val[0 : n+1]
				t.Val[n] = f
			}
		}

	case TagPointerType:
		// Type modifier (DWARF v2 §5.2)
		// Attributes:
		//	AttrType: subtype [not required!  void* has no AttrType]
		//	AttrAddrClass: address class [ignored]
		t := new(PtrType)
		typ = t
		typeCache[off] = t
		if e.Val(AttrType) == nil {
			t.Type = &VoidType{}
			break
		}
		t.Type = typeOf(e)

	case TagSubroutineType:
		// Subroutine type.  (DWARF v2 §5.7)
		// Attributes:
		//	AttrType: type of return value if any
		//	AttrName: possible name of type [ignored]
		//	AttrPrototyped: whether used ANSI C prototype [ignored]
		// Children:
		//	TagFormalParameter: typed parameter
		//		AttrType: type of parameter
		//	TagUnspecifiedParameter: final ...
		t := new(FuncType)
		typ = t
		typeCache[off] = t
		if t.ReturnType = typeOf(e); err != nil {
			goto Error
		}
		t.ParamType = make([]Type, 0, 8)
		for kid := next(); kid != nil; kid = next() {
			var tkid Type
			switch kid.Tag {
			default:
				continue
			case TagFormalParameter:
				if tkid = typeOf(kid); err != nil {
					goto Error
				}
			case TagUnspecifiedParameters:
				tkid = &DotDotDotType{}
			}
			t.ParamType = append(t.ParamType, tkid)
		}

	case TagTypedef:
		// Typedef (DWARF v2 §5.3)
		// Attributes:
		//	AttrName: name [required]
		//	AttrType: type definition [required]
		t := new(TypedefType)
		typ = t
		typeCache[off] = t
		t.Name, _ = e.Val(AttrName).(string)
		t.Type = typeOf(e)

	case TagUnspecifiedType:
		// Unspecified type (DWARF v3 §5.2)
		// Attributes:
		//	AttrName: name
		t := new(UnspecifiedType)
		typ = t
		typeCache[off] = t
		t.Name, _ = e.Val(AttrName).(string)

	default:
		// This is some other type DIE that we're currently not
		// equipped to handle. Return an abstract "unsupported type"
		// object in such cases.
		t := new(UnsupportedType)
		typ = t
		typeCache[off] = t
		t.Tag = e.Tag
		t.Name, _ = e.Val(AttrName).(string)
	}

	if err != nil {
		goto Error
	}

	{
		b, ok := e.Val(AttrByteSize).(int64)
		if !ok {
			b = -1
			switch t := typ.(type) {
			case *TypedefType:
				// Record that we need to resolve this
				// type's size once the type graph is
				// constructed.
				fixups.typedefs = append(fixups.typedefs, t)
			case *PtrType:
				b = int64(addressSize)
			}
		}
		typ.Common().ByteSize = b
	}
	return typ, nil

Error:
	// If the parse fails, take the type out of the cache
	// so that the next call with this offset doesn't hit
	// the cache and return success.
	delete(typeCache, off)
	return nil, err
}

func zeroArray(t *Type) {
	at := (*t).(*ArrayType)
	if at.Type.Size() == 0 {
		return
	}
	// Make a copy to avoid invalidating typeCache.
	tt := *at
	tt.Count = 0
	*t = &tt
}