aboutsummaryrefslogtreecommitdiff
path: root/ELF/Writer.cpp
blob: 42c1c0bac5f40b8a35dbb148038bc24b4553e557 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
//===- Writer.cpp ---------------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "Writer.h"
#include "AArch64ErrataFix.h"
#include "CallGraphSort.h"
#include "Config.h"
#include "Filesystem.h"
#include "LinkerScript.h"
#include "MapFile.h"
#include "OutputSections.h"
#include "Relocations.h"
#include "SymbolTable.h"
#include "Symbols.h"
#include "SyntheticSections.h"
#include "Target.h"
#include "lld/Common/Memory.h"
#include "lld/Common/Strings.h"
#include "lld/Common/Threads.h"
#include "llvm/ADT/StringMap.h"
#include "llvm/ADT/StringSwitch.h"
#include <climits>

using namespace llvm;
using namespace llvm::ELF;
using namespace llvm::object;
using namespace llvm::support;
using namespace llvm::support::endian;

using namespace lld;
using namespace lld::elf;

namespace {
// The writer writes a SymbolTable result to a file.
template <class ELFT> class Writer {
public:
  Writer() : Buffer(errorHandler().OutputBuffer) {}
  typedef typename ELFT::Shdr Elf_Shdr;
  typedef typename ELFT::Ehdr Elf_Ehdr;
  typedef typename ELFT::Phdr Elf_Phdr;

  void run();

private:
  void copyLocalSymbols();
  void addSectionSymbols();
  void forEachRelSec(llvm::function_ref<void(InputSectionBase &)> Fn);
  void sortSections();
  void resolveShfLinkOrder();
  void maybeAddThunks();
  void sortInputSections();
  void finalizeSections();
  void checkExecuteOnly();
  void setReservedSymbolSections();

  std::vector<PhdrEntry *> createPhdrs();
  void removeEmptyPTLoad();
  void addPtArmExid(std::vector<PhdrEntry *> &Phdrs);
  void assignFileOffsets();
  void assignFileOffsetsBinary();
  void setPhdrs();
  void checkSections();
  void fixSectionAlignments();
  void openFile();
  void writeTrapInstr();
  void writeHeader();
  void writeSections();
  void writeSectionsBinary();
  void writeBuildId();

  std::unique_ptr<FileOutputBuffer> &Buffer;

  void addRelIpltSymbols();
  void addStartEndSymbols();
  void addStartStopSymbols(OutputSection *Sec);

  std::vector<PhdrEntry *> Phdrs;

  uint64_t FileSize;
  uint64_t SectionHeaderOff;
};
} // anonymous namespace

static bool isSectionPrefix(StringRef Prefix, StringRef Name) {
  return Name.startswith(Prefix) || Name == Prefix.drop_back();
}

StringRef elf::getOutputSectionName(const InputSectionBase *S) {
  if (Config->Relocatable)
    return S->Name;

  // This is for --emit-relocs. If .text.foo is emitted as .text.bar, we want
  // to emit .rela.text.foo as .rela.text.bar for consistency (this is not
  // technically required, but not doing it is odd). This code guarantees that.
  if (auto *IS = dyn_cast<InputSection>(S)) {
    if (InputSectionBase *Rel = IS->getRelocatedSection()) {
      OutputSection *Out = Rel->getOutputSection();
      if (S->Type == SHT_RELA)
        return Saver.save(".rela" + Out->Name);
      return Saver.save(".rel" + Out->Name);
    }
  }

  // This check is for -z keep-text-section-prefix.  This option separates text
  // sections with prefix ".text.hot", ".text.unlikely", ".text.startup" or
  // ".text.exit".
  // When enabled, this allows identifying the hot code region (.text.hot) in
  // the final binary which can be selectively mapped to huge pages or mlocked,
  // for instance.
  if (Config->ZKeepTextSectionPrefix)
    for (StringRef V :
         {".text.hot.", ".text.unlikely.", ".text.startup.", ".text.exit."})
      if (isSectionPrefix(V, S->Name))
        return V.drop_back();

  for (StringRef V :
       {".text.", ".rodata.", ".data.rel.ro.", ".data.", ".bss.rel.ro.",
        ".bss.", ".init_array.", ".fini_array.", ".ctors.", ".dtors.", ".tbss.",
        ".gcc_except_table.", ".tdata.", ".ARM.exidx.", ".ARM.extab."})
    if (isSectionPrefix(V, S->Name))
      return V.drop_back();

  // CommonSection is identified as "COMMON" in linker scripts.
  // By default, it should go to .bss section.
  if (S->Name == "COMMON")
    return ".bss";

  return S->Name;
}

static bool needsInterpSection() {
  return !SharedFiles.empty() && !Config->DynamicLinker.empty() &&
         Script->needsInterpSection();
}

template <class ELFT> void elf::writeResult() { Writer<ELFT>().run(); }

template <class ELFT> void Writer<ELFT>::removeEmptyPTLoad() {
  llvm::erase_if(Phdrs, [&](const PhdrEntry *P) {
    if (P->p_type != PT_LOAD)
      return false;
    if (!P->FirstSec)
      return true;
    uint64_t Size = P->LastSec->Addr + P->LastSec->Size - P->FirstSec->Addr;
    return Size == 0;
  });
}

template <class ELFT> static void combineEhFrameSections() {
  for (InputSectionBase *&S : InputSections) {
    EhInputSection *ES = dyn_cast<EhInputSection>(S);
    if (!ES || !ES->Live)
      continue;

    In.EhFrame->addSection<ELFT>(ES);
    S = nullptr;
  }

  std::vector<InputSectionBase *> &V = InputSections;
  V.erase(std::remove(V.begin(), V.end(), nullptr), V.end());
}

static Defined *addOptionalRegular(StringRef Name, SectionBase *Sec,
                                   uint64_t Val, uint8_t StOther = STV_HIDDEN,
                                   uint8_t Binding = STB_GLOBAL) {
  Symbol *S = Symtab->find(Name);
  if (!S || S->isDefined())
    return nullptr;
  return Symtab->addDefined(Name, StOther, STT_NOTYPE, Val,
                            /*Size=*/0, Binding, Sec,
                            /*File=*/nullptr);
}

static Defined *addAbsolute(StringRef Name) {
  return Symtab->addDefined(Name, STV_HIDDEN, STT_NOTYPE, 0, 0, STB_GLOBAL,
                            nullptr, nullptr);
}

// The linker is expected to define some symbols depending on
// the linking result. This function defines such symbols.
void elf::addReservedSymbols() {
  if (Config->EMachine == EM_MIPS) {
    // Define _gp for MIPS. st_value of _gp symbol will be updated by Writer
    // so that it points to an absolute address which by default is relative
    // to GOT. Default offset is 0x7ff0.
    // See "Global Data Symbols" in Chapter 6 in the following document:
    // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf
    ElfSym::MipsGp = addAbsolute("_gp");

    // On MIPS O32 ABI, _gp_disp is a magic symbol designates offset between
    // start of function and 'gp' pointer into GOT.
    if (Symtab->find("_gp_disp"))
      ElfSym::MipsGpDisp = addAbsolute("_gp_disp");

    // The __gnu_local_gp is a magic symbol equal to the current value of 'gp'
    // pointer. This symbol is used in the code generated by .cpload pseudo-op
    // in case of using -mno-shared option.
    // https://sourceware.org/ml/binutils/2004-12/msg00094.html
    if (Symtab->find("__gnu_local_gp"))
      ElfSym::MipsLocalGp = addAbsolute("__gnu_local_gp");
  }

  // The Power Architecture 64-bit v2 ABI defines a TableOfContents (TOC) which
  // combines the typical ELF GOT with the small data sections. It commonly
  // includes .got .toc .sdata .sbss. The .TOC. symbol replaces both
  // _GLOBAL_OFFSET_TABLE_ and _SDA_BASE_ from the 32-bit ABI. It is used to
  // represent the TOC base which is offset by 0x8000 bytes from the start of
  // the .got section.
  // We do not allow _GLOBAL_OFFSET_TABLE_ to be defined by input objects as the
  // correctness of some relocations depends on its value.
  StringRef GotTableSymName =
      (Config->EMachine == EM_PPC64) ? ".TOC." : "_GLOBAL_OFFSET_TABLE_";
  if (Symbol *S = Symtab->find(GotTableSymName)) {
    if (S->isDefined())
      error(toString(S->File) + " cannot redefine linker defined symbol '" +
            GotTableSymName + "'");
    else
      ElfSym::GlobalOffsetTable = Symtab->addDefined(
          GotTableSymName, STV_HIDDEN, STT_NOTYPE, Target->GotBaseSymOff,
          /*Size=*/0, STB_GLOBAL, Out::ElfHeader,
          /*File=*/nullptr);
  }

  // __ehdr_start is the location of ELF file headers. Note that we define
  // this symbol unconditionally even when using a linker script, which
  // differs from the behavior implemented by GNU linker which only define
  // this symbol if ELF headers are in the memory mapped segment.
  addOptionalRegular("__ehdr_start", Out::ElfHeader, 0, STV_HIDDEN);

  // __executable_start is not documented, but the expectation of at
  // least the Android libc is that it points to the ELF header.
  addOptionalRegular("__executable_start", Out::ElfHeader, 0, STV_HIDDEN);

  // __dso_handle symbol is passed to cxa_finalize as a marker to identify
  // each DSO. The address of the symbol doesn't matter as long as they are
  // different in different DSOs, so we chose the start address of the DSO.
  addOptionalRegular("__dso_handle", Out::ElfHeader, 0, STV_HIDDEN);

  // If linker script do layout we do not need to create any standart symbols.
  if (Script->HasSectionsCommand)
    return;

  auto Add = [](StringRef S, int64_t Pos) {
    return addOptionalRegular(S, Out::ElfHeader, Pos, STV_DEFAULT);
  };

  ElfSym::Bss = Add("__bss_start", 0);
  ElfSym::End1 = Add("end", -1);
  ElfSym::End2 = Add("_end", -1);
  ElfSym::Etext1 = Add("etext", -1);
  ElfSym::Etext2 = Add("_etext", -1);
  ElfSym::Edata1 = Add("edata", -1);
  ElfSym::Edata2 = Add("_edata", -1);
}

static OutputSection *findSection(StringRef Name) {
  for (BaseCommand *Base : Script->SectionCommands)
    if (auto *Sec = dyn_cast<OutputSection>(Base))
      if (Sec->Name == Name)
        return Sec;
  return nullptr;
}

// Initialize Out members.
template <class ELFT> static void createSyntheticSections() {
  // Initialize all pointers with NULL. This is needed because
  // you can call lld::elf::main more than once as a library.
  memset(&Out::First, 0, sizeof(Out));

  auto Add = [](InputSectionBase *Sec) { InputSections.push_back(Sec); };

  In.DynStrTab = make<StringTableSection>(".dynstr", true);
  In.Dynamic = make<DynamicSection<ELFT>>();
  if (Config->AndroidPackDynRelocs) {
    In.RelaDyn = make<AndroidPackedRelocationSection<ELFT>>(
        Config->IsRela ? ".rela.dyn" : ".rel.dyn");
  } else {
    In.RelaDyn = make<RelocationSection<ELFT>>(
        Config->IsRela ? ".rela.dyn" : ".rel.dyn", Config->ZCombreloc);
  }
  In.ShStrTab = make<StringTableSection>(".shstrtab", false);

  Out::ProgramHeaders = make<OutputSection>("", 0, SHF_ALLOC);
  Out::ProgramHeaders->Alignment = Config->Wordsize;

  if (needsInterpSection()) {
    In.Interp = createInterpSection();
    Add(In.Interp);
  }

  if (Config->Strip != StripPolicy::All) {
    In.StrTab = make<StringTableSection>(".strtab", false);
    In.SymTab = make<SymbolTableSection<ELFT>>(*In.StrTab);
    In.SymTabShndx = make<SymtabShndxSection>();
  }

  if (Config->BuildId != BuildIdKind::None) {
    In.BuildId = make<BuildIdSection>();
    Add(In.BuildId);
  }

  In.Bss = make<BssSection>(".bss", 0, 1);
  Add(In.Bss);

  // If there is a SECTIONS command and a .data.rel.ro section name use name
  // .data.rel.ro.bss so that we match in the .data.rel.ro output section.
  // This makes sure our relro is contiguous.
  bool HasDataRelRo = Script->HasSectionsCommand && findSection(".data.rel.ro");
  In.BssRelRo =
      make<BssSection>(HasDataRelRo ? ".data.rel.ro.bss" : ".bss.rel.ro", 0, 1);
  Add(In.BssRelRo);

  // Add MIPS-specific sections.
  if (Config->EMachine == EM_MIPS) {
    if (!Config->Shared && Config->HasDynSymTab) {
      In.MipsRldMap = make<MipsRldMapSection>();
      Add(In.MipsRldMap);
    }
    if (auto *Sec = MipsAbiFlagsSection<ELFT>::create())
      Add(Sec);
    if (auto *Sec = MipsOptionsSection<ELFT>::create())
      Add(Sec);
    if (auto *Sec = MipsReginfoSection<ELFT>::create())
      Add(Sec);
  }

  if (Config->HasDynSymTab) {
    In.DynSymTab = make<SymbolTableSection<ELFT>>(*In.DynStrTab);
    Add(In.DynSymTab);

    InX<ELFT>::VerSym = make<VersionTableSection<ELFT>>();
    Add(InX<ELFT>::VerSym);

    if (!Config->VersionDefinitions.empty()) {
      In.VerDef = make<VersionDefinitionSection>();
      Add(In.VerDef);
    }

    InX<ELFT>::VerNeed = make<VersionNeedSection<ELFT>>();
    Add(InX<ELFT>::VerNeed);

    if (Config->GnuHash) {
      In.GnuHashTab = make<GnuHashTableSection>();
      Add(In.GnuHashTab);
    }

    if (Config->SysvHash) {
      In.HashTab = make<HashTableSection>();
      Add(In.HashTab);
    }

    Add(In.Dynamic);
    Add(In.DynStrTab);
    Add(In.RelaDyn);
  }

  if (Config->RelrPackDynRelocs) {
    In.RelrDyn = make<RelrSection<ELFT>>();
    Add(In.RelrDyn);
  }

  // Add .got. MIPS' .got is so different from the other archs,
  // it has its own class.
  if (Config->EMachine == EM_MIPS) {
    In.MipsGot = make<MipsGotSection>();
    Add(In.MipsGot);
  } else {
    In.Got = make<GotSection>();
    Add(In.Got);
  }

  if (Config->EMachine == EM_PPC64) {
    In.PPC64LongBranchTarget = make<PPC64LongBranchTargetSection>();
    Add(In.PPC64LongBranchTarget);
  }

  In.GotPlt = make<GotPltSection>();
  Add(In.GotPlt);
  In.IgotPlt = make<IgotPltSection>();
  Add(In.IgotPlt);

  if (Config->GdbIndex) {
    In.GdbIndex = GdbIndexSection::create<ELFT>();
    Add(In.GdbIndex);
  }

  // We always need to add rel[a].plt to output if it has entries.
  // Even for static linking it can contain R_[*]_IRELATIVE relocations.
  In.RelaPlt = make<RelocationSection<ELFT>>(
      Config->IsRela ? ".rela.plt" : ".rel.plt", false /*Sort*/);
  Add(In.RelaPlt);

  // The RelaIplt immediately follows .rel.plt (.rel.dyn for ARM) to ensure
  // that the IRelative relocations are processed last by the dynamic loader.
  // We cannot place the iplt section in .rel.dyn when Android relocation
  // packing is enabled because that would cause a section type mismatch.
  // However, because the Android dynamic loader reads .rel.plt after .rel.dyn,
  // we can get the desired behaviour by placing the iplt section in .rel.plt.
  In.RelaIplt = make<RelocationSection<ELFT>>(
      (Config->EMachine == EM_ARM && !Config->AndroidPackDynRelocs)
          ? ".rel.dyn"
          : In.RelaPlt->Name,
      false /*Sort*/);
  Add(In.RelaIplt);

  In.Plt = make<PltSection>(false);
  Add(In.Plt);
  In.Iplt = make<PltSection>(true);
  Add(In.Iplt);

  // .note.GNU-stack is always added when we are creating a re-linkable
  // object file. Other linkers are using the presence of this marker
  // section to control the executable-ness of the stack area, but that
  // is irrelevant these days. Stack area should always be non-executable
  // by default. So we emit this section unconditionally.
  if (Config->Relocatable)
    Add(make<GnuStackSection>());

  if (!Config->Relocatable) {
    if (Config->EhFrameHdr) {
      In.EhFrameHdr = make<EhFrameHeader>();
      Add(In.EhFrameHdr);
    }
    In.EhFrame = make<EhFrameSection>();
    Add(In.EhFrame);
  }

  if (In.SymTab)
    Add(In.SymTab);
  if (In.SymTabShndx)
    Add(In.SymTabShndx);
  Add(In.ShStrTab);
  if (In.StrTab)
    Add(In.StrTab);

  if (Config->EMachine == EM_ARM && !Config->Relocatable)
    // Add a sentinel to terminate .ARM.exidx. It helps an unwinder
    // to find the exact address range of the last entry.
    Add(make<ARMExidxSentinelSection>());
}

// The main function of the writer.
template <class ELFT> void Writer<ELFT>::run() {
  // Create linker-synthesized sections such as .got or .plt.
  // Such sections are of type input section.
  createSyntheticSections<ELFT>();

  if (!Config->Relocatable)
    combineEhFrameSections<ELFT>();

  // We want to process linker script commands. When SECTIONS command
  // is given we let it create sections.
  Script->processSectionCommands();

  // Linker scripts controls how input sections are assigned to output sections.
  // Input sections that were not handled by scripts are called "orphans", and
  // they are assigned to output sections by the default rule. Process that.
  Script->addOrphanSections();

  if (Config->Discard != DiscardPolicy::All)
    copyLocalSymbols();

  if (Config->CopyRelocs)
    addSectionSymbols();

  // Now that we have a complete set of output sections. This function
  // completes section contents. For example, we need to add strings
  // to the string table, and add entries to .got and .plt.
  // finalizeSections does that.
  finalizeSections();
  checkExecuteOnly();
  if (errorCount())
    return;

  Script->assignAddresses();

  // If -compressed-debug-sections is specified, we need to compress
  // .debug_* sections. Do it right now because it changes the size of
  // output sections.
  for (OutputSection *Sec : OutputSections)
    Sec->maybeCompress<ELFT>();

  Script->allocateHeaders(Phdrs);

  // Remove empty PT_LOAD to avoid causing the dynamic linker to try to mmap a
  // 0 sized region. This has to be done late since only after assignAddresses
  // we know the size of the sections.
  removeEmptyPTLoad();

  if (!Config->OFormatBinary)
    assignFileOffsets();
  else
    assignFileOffsetsBinary();

  setPhdrs();

  if (Config->Relocatable)
    for (OutputSection *Sec : OutputSections)
      Sec->Addr = 0;

  if (Config->CheckSections)
    checkSections();

  // It does not make sense try to open the file if we have error already.
  if (errorCount())
    return;
  // Write the result down to a file.
  openFile();
  if (errorCount())
    return;

  if (!Config->OFormatBinary) {
    writeTrapInstr();
    writeHeader();
    writeSections();
  } else {
    writeSectionsBinary();
  }

  // Backfill .note.gnu.build-id section content. This is done at last
  // because the content is usually a hash value of the entire output file.
  writeBuildId();
  if (errorCount())
    return;

  // Handle -Map and -cref options.
  writeMapFile();
  writeCrossReferenceTable();
  if (errorCount())
    return;

  if (auto E = Buffer->commit())
    error("failed to write to the output file: " + toString(std::move(E)));
}

static bool shouldKeepInSymtab(SectionBase *Sec, StringRef SymName,
                               const Symbol &B) {
  if (B.isSection())
    return false;

  if (Config->Discard == DiscardPolicy::None)
    return true;

  // In ELF assembly .L symbols are normally discarded by the assembler.
  // If the assembler fails to do so, the linker discards them if
  // * --discard-locals is used.
  // * The symbol is in a SHF_MERGE section, which is normally the reason for
  //   the assembler keeping the .L symbol.
  if (!SymName.startswith(".L") && !SymName.empty())
    return true;

  if (Config->Discard == DiscardPolicy::Locals)
    return false;

  return !Sec || !(Sec->Flags & SHF_MERGE);
}

static bool includeInSymtab(const Symbol &B) {
  if (!B.isLocal() && !B.IsUsedInRegularObj)
    return false;

  if (auto *D = dyn_cast<Defined>(&B)) {
    // Always include absolute symbols.
    SectionBase *Sec = D->Section;
    if (!Sec)
      return true;
    Sec = Sec->Repl;

    // Exclude symbols pointing to garbage-collected sections.
    if (isa<InputSectionBase>(Sec) && !Sec->Live)
      return false;

    if (auto *S = dyn_cast<MergeInputSection>(Sec))
      if (!S->getSectionPiece(D->Value)->Live)
        return false;
    return true;
  }
  return B.Used;
}

// Local symbols are not in the linker's symbol table. This function scans
// each object file's symbol table to copy local symbols to the output.
template <class ELFT> void Writer<ELFT>::copyLocalSymbols() {
  if (!In.SymTab)
    return;
  for (InputFile *File : ObjectFiles) {
    ObjFile<ELFT> *F = cast<ObjFile<ELFT>>(File);
    for (Symbol *B : F->getLocalSymbols()) {
      if (!B->isLocal())
        fatal(toString(F) +
              ": broken object: getLocalSymbols returns a non-local symbol");
      auto *DR = dyn_cast<Defined>(B);

      // No reason to keep local undefined symbol in symtab.
      if (!DR)
        continue;
      if (!includeInSymtab(*B))
        continue;

      SectionBase *Sec = DR->Section;
      if (!shouldKeepInSymtab(Sec, B->getName(), *B))
        continue;
      In.SymTab->addSymbol(B);
    }
  }
}

// Create a section symbol for each output section so that we can represent
// relocations that point to the section. If we know that no relocation is
// referring to a section (that happens if the section is a synthetic one), we
// don't create a section symbol for that section.
template <class ELFT> void Writer<ELFT>::addSectionSymbols() {
  for (BaseCommand *Base : Script->SectionCommands) {
    auto *Sec = dyn_cast<OutputSection>(Base);
    if (!Sec)
      continue;
    auto I = llvm::find_if(Sec->SectionCommands, [](BaseCommand *Base) {
      if (auto *ISD = dyn_cast<InputSectionDescription>(Base))
        return !ISD->Sections.empty();
      return false;
    });
    if (I == Sec->SectionCommands.end())
      continue;
    InputSection *IS = cast<InputSectionDescription>(*I)->Sections[0];

    // Relocations are not using REL[A] section symbols.
    if (IS->Type == SHT_REL || IS->Type == SHT_RELA)
      continue;

    // Unlike other synthetic sections, mergeable output sections contain data
    // copied from input sections, and there may be a relocation pointing to its
    // contents if -r or -emit-reloc are given.
    if (isa<SyntheticSection>(IS) && !(IS->Flags & SHF_MERGE))
      continue;

    auto *Sym =
        make<Defined>(IS->File, "", STB_LOCAL, /*StOther=*/0, STT_SECTION,
                      /*Value=*/0, /*Size=*/0, IS);
    In.SymTab->addSymbol(Sym);
  }
}

// Today's loaders have a feature to make segments read-only after
// processing dynamic relocations to enhance security. PT_GNU_RELRO
// is defined for that.
//
// This function returns true if a section needs to be put into a
// PT_GNU_RELRO segment.
static bool isRelroSection(const OutputSection *Sec) {
  if (!Config->ZRelro)
    return false;

  uint64_t Flags = Sec->Flags;

  // Non-allocatable or non-writable sections don't need RELRO because
  // they are not writable or not even mapped to memory in the first place.
  // RELRO is for sections that are essentially read-only but need to
  // be writable only at process startup to allow dynamic linker to
  // apply relocations.
  if (!(Flags & SHF_ALLOC) || !(Flags & SHF_WRITE))
    return false;

  // Once initialized, TLS data segments are used as data templates
  // for a thread-local storage. For each new thread, runtime
  // allocates memory for a TLS and copy templates there. No thread
  // are supposed to use templates directly. Thus, it can be in RELRO.
  if (Flags & SHF_TLS)
    return true;

  // .init_array, .preinit_array and .fini_array contain pointers to
  // functions that are executed on process startup or exit. These
  // pointers are set by the static linker, and they are not expected
  // to change at runtime. But if you are an attacker, you could do
  // interesting things by manipulating pointers in .fini_array, for
  // example. So they are put into RELRO.
  uint32_t Type = Sec->Type;
  if (Type == SHT_INIT_ARRAY || Type == SHT_FINI_ARRAY ||
      Type == SHT_PREINIT_ARRAY)
    return true;

  // .got contains pointers to external symbols. They are resolved by
  // the dynamic linker when a module is loaded into memory, and after
  // that they are not expected to change. So, it can be in RELRO.
  if (In.Got && Sec == In.Got->getParent())
    return true;

  // .toc is a GOT-ish section for PowerPC64. Their contents are accessed
  // through r2 register, which is reserved for that purpose. Since r2 is used
  // for accessing .got as well, .got and .toc need to be close enough in the
  // virtual address space. Usually, .toc comes just after .got. Since we place
  // .got into RELRO, .toc needs to be placed into RELRO too.
  if (Sec->Name.equals(".toc"))
    return true;

  // .got.plt contains pointers to external function symbols. They are
  // by default resolved lazily, so we usually cannot put it into RELRO.
  // However, if "-z now" is given, the lazy symbol resolution is
  // disabled, which enables us to put it into RELRO.
  if (Sec == In.GotPlt->getParent())
    return Config->ZNow;

  // .dynamic section contains data for the dynamic linker, and
  // there's no need to write to it at runtime, so it's better to put
  // it into RELRO.
  if (Sec == In.Dynamic->getParent())
    return true;

  // Sections with some special names are put into RELRO. This is a
  // bit unfortunate because section names shouldn't be significant in
  // ELF in spirit. But in reality many linker features depend on
  // magic section names.
  StringRef S = Sec->Name;
  return S == ".data.rel.ro" || S == ".bss.rel.ro" || S == ".ctors" ||
         S == ".dtors" || S == ".jcr" || S == ".eh_frame" ||
         S == ".openbsd.randomdata";
}

// We compute a rank for each section. The rank indicates where the
// section should be placed in the file.  Instead of using simple
// numbers (0,1,2...), we use a series of flags. One for each decision
// point when placing the section.
// Using flags has two key properties:
// * It is easy to check if a give branch was taken.
// * It is easy two see how similar two ranks are (see getRankProximity).
enum RankFlags {
  RF_NOT_ADDR_SET = 1 << 18,
  RF_NOT_ALLOC = 1 << 17,
  RF_NOT_INTERP = 1 << 16,
  RF_NOT_NOTE = 1 << 15,
  RF_WRITE = 1 << 14,
  RF_EXEC_WRITE = 1 << 13,
  RF_EXEC = 1 << 12,
  RF_RODATA = 1 << 11,
  RF_NON_TLS_BSS = 1 << 10,
  RF_NON_TLS_BSS_RO = 1 << 9,
  RF_NOT_TLS = 1 << 8,
  RF_BSS = 1 << 7,
  RF_PPC_NOT_TOCBSS = 1 << 6,
  RF_PPC_TOCL = 1 << 5,
  RF_PPC_TOC = 1 << 4,
  RF_PPC_GOT = 1 << 3,
  RF_PPC_BRANCH_LT = 1 << 2,
  RF_MIPS_GPREL = 1 << 1,
  RF_MIPS_NOT_GOT = 1 << 0
};

static unsigned getSectionRank(const OutputSection *Sec) {
  unsigned Rank = 0;

  // We want to put section specified by -T option first, so we
  // can start assigning VA starting from them later.
  if (Config->SectionStartMap.count(Sec->Name))
    return Rank;
  Rank |= RF_NOT_ADDR_SET;

  // Allocatable sections go first to reduce the total PT_LOAD size and
  // so debug info doesn't change addresses in actual code.
  if (!(Sec->Flags & SHF_ALLOC))
    return Rank | RF_NOT_ALLOC;

  // Put .interp first because some loaders want to see that section
  // on the first page of the executable file when loaded into memory.
  if (Sec->Name == ".interp")
    return Rank;
  Rank |= RF_NOT_INTERP;

  // Put .note sections (which make up one PT_NOTE) at the beginning so that
  // they are likely to be included in a core file even if core file size is
  // limited. In particular, we want a .note.gnu.build-id and a .note.tag to be
  // included in a core to match core files with executables.
  if (Sec->Type == SHT_NOTE)
    return Rank;
  Rank |= RF_NOT_NOTE;

  // Sort sections based on their access permission in the following
  // order: R, RX, RWX, RW.  This order is based on the following
  // considerations:
  // * Read-only sections come first such that they go in the
  //   PT_LOAD covering the program headers at the start of the file.
  // * Read-only, executable sections come next.
  // * Writable, executable sections follow such that .plt on
  //   architectures where it needs to be writable will be placed
  //   between .text and .data.
  // * Writable sections come last, such that .bss lands at the very
  //   end of the last PT_LOAD.
  bool IsExec = Sec->Flags & SHF_EXECINSTR;
  bool IsWrite = Sec->Flags & SHF_WRITE;

  if (IsExec) {
    if (IsWrite)
      Rank |= RF_EXEC_WRITE;
    else
      Rank |= RF_EXEC;
  } else if (IsWrite) {
    Rank |= RF_WRITE;
  } else if (Sec->Type == SHT_PROGBITS) {
    // Make non-executable and non-writable PROGBITS sections (e.g .rodata
    // .eh_frame) closer to .text. They likely contain PC or GOT relative
    // relocations and there could be relocation overflow if other huge sections
    // (.dynstr .dynsym) were placed in between.
    Rank |= RF_RODATA;
  }

  // If we got here we know that both A and B are in the same PT_LOAD.

  bool IsTls = Sec->Flags & SHF_TLS;
  bool IsNoBits = Sec->Type == SHT_NOBITS;

  // The first requirement we have is to put (non-TLS) nobits sections last. The
  // reason is that the only thing the dynamic linker will see about them is a
  // p_memsz that is larger than p_filesz. Seeing that it zeros the end of the
  // PT_LOAD, so that has to correspond to the nobits sections.
  bool IsNonTlsNoBits = IsNoBits && !IsTls;
  if (IsNonTlsNoBits)
    Rank |= RF_NON_TLS_BSS;

  // We place nobits RelRo sections before plain r/w ones, and non-nobits RelRo
  // sections after r/w ones, so that the RelRo sections are contiguous.
  bool IsRelRo = isRelroSection(Sec);
  if (IsNonTlsNoBits && !IsRelRo)
    Rank |= RF_NON_TLS_BSS_RO;
  if (!IsNonTlsNoBits && IsRelRo)
    Rank |= RF_NON_TLS_BSS_RO;

  // The TLS initialization block needs to be a single contiguous block in a R/W
  // PT_LOAD, so stick TLS sections directly before the other RelRo R/W
  // sections. The TLS NOBITS sections are placed here as they don't take up
  // virtual address space in the PT_LOAD.
  if (!IsTls)
    Rank |= RF_NOT_TLS;

  // Within the TLS initialization block, the non-nobits sections need to appear
  // first.
  if (IsNoBits)
    Rank |= RF_BSS;

  // Some architectures have additional ordering restrictions for sections
  // within the same PT_LOAD.
  if (Config->EMachine == EM_PPC64) {
    // PPC64 has a number of special SHT_PROGBITS+SHF_ALLOC+SHF_WRITE sections
    // that we would like to make sure appear is a specific order to maximize
    // their coverage by a single signed 16-bit offset from the TOC base
    // pointer. Conversely, the special .tocbss section should be first among
    // all SHT_NOBITS sections. This will put it next to the loaded special
    // PPC64 sections (and, thus, within reach of the TOC base pointer).
    StringRef Name = Sec->Name;
    if (Name != ".tocbss")
      Rank |= RF_PPC_NOT_TOCBSS;

    if (Name == ".toc1")
      Rank |= RF_PPC_TOCL;

    if (Name == ".toc")
      Rank |= RF_PPC_TOC;

    if (Name == ".got")
      Rank |= RF_PPC_GOT;

    if (Name == ".branch_lt")
      Rank |= RF_PPC_BRANCH_LT;
  }

  if (Config->EMachine == EM_MIPS) {
    // All sections with SHF_MIPS_GPREL flag should be grouped together
    // because data in these sections is addressable with a gp relative address.
    if (Sec->Flags & SHF_MIPS_GPREL)
      Rank |= RF_MIPS_GPREL;

    if (Sec->Name != ".got")
      Rank |= RF_MIPS_NOT_GOT;
  }

  return Rank;
}

static bool compareSections(const BaseCommand *ACmd, const BaseCommand *BCmd) {
  const OutputSection *A = cast<OutputSection>(ACmd);
  const OutputSection *B = cast<OutputSection>(BCmd);

  if (A->SortRank != B->SortRank)
    return A->SortRank < B->SortRank;

  if (!(A->SortRank & RF_NOT_ADDR_SET))
    return Config->SectionStartMap.lookup(A->Name) <
           Config->SectionStartMap.lookup(B->Name);
  return false;
}

void PhdrEntry::add(OutputSection *Sec) {
  LastSec = Sec;
  if (!FirstSec)
    FirstSec = Sec;
  p_align = std::max(p_align, Sec->Alignment);
  if (p_type == PT_LOAD)
    Sec->PtLoad = this;
}

// The beginning and the ending of .rel[a].plt section are marked
// with __rel[a]_iplt_{start,end} symbols if it is a statically linked
// executable. The runtime needs these symbols in order to resolve
// all IRELATIVE relocs on startup. For dynamic executables, we don't
// need these symbols, since IRELATIVE relocs are resolved through GOT
// and PLT. For details, see http://www.airs.com/blog/archives/403.
template <class ELFT> void Writer<ELFT>::addRelIpltSymbols() {
  if (Config->Relocatable || needsInterpSection())
    return;

  // By default, __rela_iplt_{start,end} belong to a dummy section 0
  // because .rela.plt might be empty and thus removed from output.
  // We'll override Out::ElfHeader with In.RelaIplt later when we are
  // sure that .rela.plt exists in output.
  ElfSym::RelaIpltStart = addOptionalRegular(
      Config->IsRela ? "__rela_iplt_start" : "__rel_iplt_start",
      Out::ElfHeader, 0, STV_HIDDEN, STB_WEAK);

  ElfSym::RelaIpltEnd = addOptionalRegular(
      Config->IsRela ? "__rela_iplt_end" : "__rel_iplt_end",
      Out::ElfHeader, 0, STV_HIDDEN, STB_WEAK);
}

template <class ELFT>
void Writer<ELFT>::forEachRelSec(
    llvm::function_ref<void(InputSectionBase &)> Fn) {
  // Scan all relocations. Each relocation goes through a series
  // of tests to determine if it needs special treatment, such as
  // creating GOT, PLT, copy relocations, etc.
  // Note that relocations for non-alloc sections are directly
  // processed by InputSection::relocateNonAlloc.
  for (InputSectionBase *IS : InputSections)
    if (IS->Live && isa<InputSection>(IS) && (IS->Flags & SHF_ALLOC))
      Fn(*IS);
  for (EhInputSection *ES : In.EhFrame->Sections)
    Fn(*ES);
}

// This function generates assignments for predefined symbols (e.g. _end or
// _etext) and inserts them into the commands sequence to be processed at the
// appropriate time. This ensures that the value is going to be correct by the
// time any references to these symbols are processed and is equivalent to
// defining these symbols explicitly in the linker script.
template <class ELFT> void Writer<ELFT>::setReservedSymbolSections() {
  if (ElfSym::GlobalOffsetTable) {
    // The _GLOBAL_OFFSET_TABLE_ symbol is defined by target convention usually
    // to the start of the .got or .got.plt section.
    InputSection *GotSection = In.GotPlt;
    if (!Target->GotBaseSymInGotPlt)
      GotSection = In.MipsGot ? cast<InputSection>(In.MipsGot)
                              : cast<InputSection>(In.Got);
    ElfSym::GlobalOffsetTable->Section = GotSection;
  }

  // .rela_iplt_{start,end} mark the start and the end of .rela.plt section.
  if (ElfSym::RelaIpltStart && !In.RelaIplt->empty()) {
    ElfSym::RelaIpltStart->Section = In.RelaIplt;
    ElfSym::RelaIpltEnd->Section = In.RelaIplt;
    ElfSym::RelaIpltEnd->Value = In.RelaIplt->getSize();
  }

  PhdrEntry *Last = nullptr;
  PhdrEntry *LastRO = nullptr;

  for (PhdrEntry *P : Phdrs) {
    if (P->p_type != PT_LOAD)
      continue;
    Last = P;
    if (!(P->p_flags & PF_W))
      LastRO = P;
  }

  if (LastRO) {
    // _etext is the first location after the last read-only loadable segment.
    if (ElfSym::Etext1)
      ElfSym::Etext1->Section = LastRO->LastSec;
    if (ElfSym::Etext2)
      ElfSym::Etext2->Section = LastRO->LastSec;
  }

  if (Last) {
    // _edata points to the end of the last mapped initialized section.
    OutputSection *Edata = nullptr;
    for (OutputSection *OS : OutputSections) {
      if (OS->Type != SHT_NOBITS)
        Edata = OS;
      if (OS == Last->LastSec)
        break;
    }

    if (ElfSym::Edata1)
      ElfSym::Edata1->Section = Edata;
    if (ElfSym::Edata2)
      ElfSym::Edata2->Section = Edata;

    // _end is the first location after the uninitialized data region.
    if (ElfSym::End1)
      ElfSym::End1->Section = Last->LastSec;
    if (ElfSym::End2)
      ElfSym::End2->Section = Last->LastSec;
  }

  if (ElfSym::Bss)
    ElfSym::Bss->Section = findSection(".bss");

  // Setup MIPS _gp_disp/__gnu_local_gp symbols which should
  // be equal to the _gp symbol's value.
  if (ElfSym::MipsGp) {
    // Find GP-relative section with the lowest address
    // and use this address to calculate default _gp value.
    for (OutputSection *OS : OutputSections) {
      if (OS->Flags & SHF_MIPS_GPREL) {
        ElfSym::MipsGp->Section = OS;
        ElfSym::MipsGp->Value = 0x7ff0;
        break;
      }
    }
  }
}

// We want to find how similar two ranks are.
// The more branches in getSectionRank that match, the more similar they are.
// Since each branch corresponds to a bit flag, we can just use
// countLeadingZeros.
static int getRankProximityAux(OutputSection *A, OutputSection *B) {
  return countLeadingZeros(A->SortRank ^ B->SortRank);
}

static int getRankProximity(OutputSection *A, BaseCommand *B) {
  if (auto *Sec = dyn_cast<OutputSection>(B))
    return getRankProximityAux(A, Sec);
  return -1;
}

// When placing orphan sections, we want to place them after symbol assignments
// so that an orphan after
//   begin_foo = .;
//   foo : { *(foo) }
//   end_foo = .;
// doesn't break the intended meaning of the begin/end symbols.
// We don't want to go over sections since findOrphanPos is the
// one in charge of deciding the order of the sections.
// We don't want to go over changes to '.', since doing so in
//  rx_sec : { *(rx_sec) }
//  . = ALIGN(0x1000);
//  /* The RW PT_LOAD starts here*/
//  rw_sec : { *(rw_sec) }
// would mean that the RW PT_LOAD would become unaligned.
static bool shouldSkip(BaseCommand *Cmd) {
  if (auto *Assign = dyn_cast<SymbolAssignment>(Cmd))
    return Assign->Name != ".";
  return false;
}

// We want to place orphan sections so that they share as much
// characteristics with their neighbors as possible. For example, if
// both are rw, or both are tls.
template <typename ELFT>
static std::vector<BaseCommand *>::iterator
findOrphanPos(std::vector<BaseCommand *>::iterator B,
              std::vector<BaseCommand *>::iterator E) {
  OutputSection *Sec = cast<OutputSection>(*E);

  // Find the first element that has as close a rank as possible.
  auto I = std::max_element(B, E, [=](BaseCommand *A, BaseCommand *B) {
    return getRankProximity(Sec, A) < getRankProximity(Sec, B);
  });
  if (I == E)
    return E;

  // Consider all existing sections with the same proximity.
  int Proximity = getRankProximity(Sec, *I);
  for (; I != E; ++I) {
    auto *CurSec = dyn_cast<OutputSection>(*I);
    if (!CurSec)
      continue;
    if (getRankProximity(Sec, CurSec) != Proximity ||
        Sec->SortRank < CurSec->SortRank)
      break;
  }

  auto IsOutputSec = [](BaseCommand *Cmd) { return isa<OutputSection>(Cmd); };
  auto J = std::find_if(llvm::make_reverse_iterator(I),
                        llvm::make_reverse_iterator(B), IsOutputSec);
  I = J.base();

  // As a special case, if the orphan section is the last section, put
  // it at the very end, past any other commands.
  // This matches bfd's behavior and is convenient when the linker script fully
  // specifies the start of the file, but doesn't care about the end (the non
  // alloc sections for example).
  auto NextSec = std::find_if(I, E, IsOutputSec);
  if (NextSec == E)
    return E;

  while (I != E && shouldSkip(*I))
    ++I;
  return I;
}

// Builds section order for handling --symbol-ordering-file.
static DenseMap<const InputSectionBase *, int> buildSectionOrder() {
  DenseMap<const InputSectionBase *, int> SectionOrder;
  // Use the rarely used option -call-graph-ordering-file to sort sections.
  if (!Config->CallGraphProfile.empty())
    return computeCallGraphProfileOrder();

  if (Config->SymbolOrderingFile.empty())
    return SectionOrder;

  struct SymbolOrderEntry {
    int Priority;
    bool Present;
  };

  // Build a map from symbols to their priorities. Symbols that didn't
  // appear in the symbol ordering file have the lowest priority 0.
  // All explicitly mentioned symbols have negative (higher) priorities.
  DenseMap<StringRef, SymbolOrderEntry> SymbolOrder;
  int Priority = -Config->SymbolOrderingFile.size();
  for (StringRef S : Config->SymbolOrderingFile)
    SymbolOrder.insert({S, {Priority++, false}});

  // Build a map from sections to their priorities.
  auto AddSym = [&](Symbol &Sym) {
    auto It = SymbolOrder.find(Sym.getName());
    if (It == SymbolOrder.end())
      return;
    SymbolOrderEntry &Ent = It->second;
    Ent.Present = true;

    maybeWarnUnorderableSymbol(&Sym);

    if (auto *D = dyn_cast<Defined>(&Sym)) {
      if (auto *Sec = dyn_cast_or_null<InputSectionBase>(D->Section)) {
        int &Priority = SectionOrder[cast<InputSectionBase>(Sec->Repl)];
        Priority = std::min(Priority, Ent.Priority);
      }
    }
  };

  // We want both global and local symbols. We get the global ones from the
  // symbol table and iterate the object files for the local ones.
  for (Symbol *Sym : Symtab->getSymbols())
    if (!Sym->isLazy())
      AddSym(*Sym);
  for (InputFile *File : ObjectFiles)
    for (Symbol *Sym : File->getSymbols())
      if (Sym->isLocal())
        AddSym(*Sym);

  if (Config->WarnSymbolOrdering)
    for (auto OrderEntry : SymbolOrder)
      if (!OrderEntry.second.Present)
        warn("symbol ordering file: no such symbol: " + OrderEntry.first);

  return SectionOrder;
}

// Sorts the sections in ISD according to the provided section order.
static void
sortISDBySectionOrder(InputSectionDescription *ISD,
                      const DenseMap<const InputSectionBase *, int> &Order) {
  std::vector<InputSection *> UnorderedSections;
  std::vector<std::pair<InputSection *, int>> OrderedSections;
  uint64_t UnorderedSize = 0;

  for (InputSection *IS : ISD->Sections) {
    auto I = Order.find(IS);
    if (I == Order.end()) {
      UnorderedSections.push_back(IS);
      UnorderedSize += IS->getSize();
      continue;
    }
    OrderedSections.push_back({IS, I->second});
  }
  llvm::sort(OrderedSections, [&](std::pair<InputSection *, int> A,
                                  std::pair<InputSection *, int> B) {
    return A.second < B.second;
  });

  // Find an insertion point for the ordered section list in the unordered
  // section list. On targets with limited-range branches, this is the mid-point
  // of the unordered section list. This decreases the likelihood that a range
  // extension thunk will be needed to enter or exit the ordered region. If the
  // ordered section list is a list of hot functions, we can generally expect
  // the ordered functions to be called more often than the unordered functions,
  // making it more likely that any particular call will be within range, and
  // therefore reducing the number of thunks required.
  //
  // For example, imagine that you have 8MB of hot code and 32MB of cold code.
  // If the layout is:
  //
  // 8MB hot
  // 32MB cold
  //
  // only the first 8-16MB of the cold code (depending on which hot function it
  // is actually calling) can call the hot code without a range extension thunk.
  // However, if we use this layout:
  //
  // 16MB cold
  // 8MB hot
  // 16MB cold
  //
  // both the last 8-16MB of the first block of cold code and the first 8-16MB
  // of the second block of cold code can call the hot code without a thunk. So
  // we effectively double the amount of code that could potentially call into
  // the hot code without a thunk.
  size_t InsPt = 0;
  if (Target->getThunkSectionSpacing() && !OrderedSections.empty()) {
    uint64_t UnorderedPos = 0;
    for (; InsPt != UnorderedSections.size(); ++InsPt) {
      UnorderedPos += UnorderedSections[InsPt]->getSize();
      if (UnorderedPos > UnorderedSize / 2)
        break;
    }
  }

  ISD->Sections.clear();
  for (InputSection *IS : makeArrayRef(UnorderedSections).slice(0, InsPt))
    ISD->Sections.push_back(IS);
  for (std::pair<InputSection *, int> P : OrderedSections)
    ISD->Sections.push_back(P.first);
  for (InputSection *IS : makeArrayRef(UnorderedSections).slice(InsPt))
    ISD->Sections.push_back(IS);
}

static void sortSection(OutputSection *Sec,
                        const DenseMap<const InputSectionBase *, int> &Order) {
  StringRef Name = Sec->Name;

  // Sort input sections by section name suffixes for
  // __attribute__((init_priority(N))).
  if (Name == ".init_array" || Name == ".fini_array") {
    if (!Script->HasSectionsCommand)
      Sec->sortInitFini();
    return;
  }

  // Sort input sections by the special rule for .ctors and .dtors.
  if (Name == ".ctors" || Name == ".dtors") {
    if (!Script->HasSectionsCommand)
      Sec->sortCtorsDtors();
    return;
  }

  // Never sort these.
  if (Name == ".init" || Name == ".fini")
    return;

  // .toc is allocated just after .got and is accessed using GOT-relative
  // relocations. Object files compiled with small code model have an
  // addressable range of [.got, .got + 0xFFFC] for GOT-relative relocations.
  // To reduce the risk of relocation overflow, .toc contents are sorted so that
  // sections having smaller relocation offsets are at beginning of .toc
  if (Config->EMachine == EM_PPC64 && Name == ".toc") {
    if (Script->HasSectionsCommand)
      return;
    assert(Sec->SectionCommands.size() == 1);
    auto *ISD = cast<InputSectionDescription>(Sec->SectionCommands[0]);
    std::stable_sort(ISD->Sections.begin(), ISD->Sections.end(),
                     [](const InputSection *A, const InputSection *B) -> bool {
                       return A->File->PPC64SmallCodeModelTocRelocs &&
                              !B->File->PPC64SmallCodeModelTocRelocs;
                     });
    return;
  }

  // Sort input sections by priority using the list provided
  // by --symbol-ordering-file.
  if (!Order.empty())
    for (BaseCommand *B : Sec->SectionCommands)
      if (auto *ISD = dyn_cast<InputSectionDescription>(B))
        sortISDBySectionOrder(ISD, Order);
}

// If no layout was provided by linker script, we want to apply default
// sorting for special input sections. This also handles --symbol-ordering-file.
template <class ELFT> void Writer<ELFT>::sortInputSections() {
  // Build the order once since it is expensive.
  DenseMap<const InputSectionBase *, int> Order = buildSectionOrder();
  for (BaseCommand *Base : Script->SectionCommands)
    if (auto *Sec = dyn_cast<OutputSection>(Base))
      sortSection(Sec, Order);
}

template <class ELFT> void Writer<ELFT>::sortSections() {
  Script->adjustSectionsBeforeSorting();

  // Don't sort if using -r. It is not necessary and we want to preserve the
  // relative order for SHF_LINK_ORDER sections.
  if (Config->Relocatable)
    return;

  sortInputSections();

  for (BaseCommand *Base : Script->SectionCommands) {
    auto *OS = dyn_cast<OutputSection>(Base);
    if (!OS)
      continue;
    OS->SortRank = getSectionRank(OS);

    // We want to assign rude approximation values to OutSecOff fields
    // to know the relative order of the input sections. We use it for
    // sorting SHF_LINK_ORDER sections. See resolveShfLinkOrder().
    uint64_t I = 0;
    for (InputSection *Sec : getInputSections(OS))
      Sec->OutSecOff = I++;
  }

  if (!Script->HasSectionsCommand) {
    // We know that all the OutputSections are contiguous in this case.
    auto IsSection = [](BaseCommand *Base) { return isa<OutputSection>(Base); };
    std::stable_sort(
        llvm::find_if(Script->SectionCommands, IsSection),
        llvm::find_if(llvm::reverse(Script->SectionCommands), IsSection).base(),
        compareSections);
    return;
  }

  // Orphan sections are sections present in the input files which are
  // not explicitly placed into the output file by the linker script.
  //
  // The sections in the linker script are already in the correct
  // order. We have to figuere out where to insert the orphan
  // sections.
  //
  // The order of the sections in the script is arbitrary and may not agree with
  // compareSections. This means that we cannot easily define a strict weak
  // ordering. To see why, consider a comparison of a section in the script and
  // one not in the script. We have a two simple options:
  // * Make them equivalent (a is not less than b, and b is not less than a).
  //   The problem is then that equivalence has to be transitive and we can
  //   have sections a, b and c with only b in a script and a less than c
  //   which breaks this property.
  // * Use compareSectionsNonScript. Given that the script order doesn't have
  //   to match, we can end up with sections a, b, c, d where b and c are in the
  //   script and c is compareSectionsNonScript less than b. In which case d
  //   can be equivalent to c, a to b and d < a. As a concrete example:
  //   .a (rx) # not in script
  //   .b (rx) # in script
  //   .c (ro) # in script
  //   .d (ro) # not in script
  //
  // The way we define an order then is:
  // *  Sort only the orphan sections. They are in the end right now.
  // *  Move each orphan section to its preferred position. We try
  //    to put each section in the last position where it can share
  //    a PT_LOAD.
  //
  // There is some ambiguity as to where exactly a new entry should be
  // inserted, because Commands contains not only output section
  // commands but also other types of commands such as symbol assignment
  // expressions. There's no correct answer here due to the lack of the
  // formal specification of the linker script. We use heuristics to
  // determine whether a new output command should be added before or
  // after another commands. For the details, look at shouldSkip
  // function.

  auto I = Script->SectionCommands.begin();
  auto E = Script->SectionCommands.end();
  auto NonScriptI = std::find_if(I, E, [](BaseCommand *Base) {
    if (auto *Sec = dyn_cast<OutputSection>(Base))
      return Sec->SectionIndex == UINT32_MAX;
    return false;
  });

  // Sort the orphan sections.
  std::stable_sort(NonScriptI, E, compareSections);

  // As a horrible special case, skip the first . assignment if it is before any
  // section. We do this because it is common to set a load address by starting
  // the script with ". = 0xabcd" and the expectation is that every section is
  // after that.
  auto FirstSectionOrDotAssignment =
      std::find_if(I, E, [](BaseCommand *Cmd) { return !shouldSkip(Cmd); });
  if (FirstSectionOrDotAssignment != E &&
      isa<SymbolAssignment>(**FirstSectionOrDotAssignment))
    ++FirstSectionOrDotAssignment;
  I = FirstSectionOrDotAssignment;

  while (NonScriptI != E) {
    auto Pos = findOrphanPos<ELFT>(I, NonScriptI);
    OutputSection *Orphan = cast<OutputSection>(*NonScriptI);

    // As an optimization, find all sections with the same sort rank
    // and insert them with one rotate.
    unsigned Rank = Orphan->SortRank;
    auto End = std::find_if(NonScriptI + 1, E, [=](BaseCommand *Cmd) {
      return cast<OutputSection>(Cmd)->SortRank != Rank;
    });
    std::rotate(Pos, NonScriptI, End);
    NonScriptI = End;
  }

  Script->adjustSectionsAfterSorting();
}

static bool compareByFilePosition(InputSection *A, InputSection *B) {
  // Synthetic, i. e. a sentinel section, should go last.
  if (A->kind() == InputSectionBase::Synthetic ||
      B->kind() == InputSectionBase::Synthetic)
    return A->kind() != InputSectionBase::Synthetic;

  InputSection *LA = A->getLinkOrderDep();
  InputSection *LB = B->getLinkOrderDep();
  OutputSection *AOut = LA->getParent();
  OutputSection *BOut = LB->getParent();

  if (AOut != BOut)
    return AOut->SectionIndex < BOut->SectionIndex;
  return LA->OutSecOff < LB->OutSecOff;
}

// This function is used by the --merge-exidx-entries to detect duplicate
// .ARM.exidx sections. It is Arm only.
//
// The .ARM.exidx section is of the form:
// | PREL31 offset to function | Unwind instructions for function |
// where the unwind instructions are either a small number of unwind
// instructions inlined into the table entry, the special CANT_UNWIND value of
// 0x1 or a PREL31 offset into a .ARM.extab Section that contains unwind
// instructions.
//
// We return true if all the unwind instructions in the .ARM.exidx entries of
// Cur can be merged into the last entry of Prev.
static bool isDuplicateArmExidxSec(InputSection *Prev, InputSection *Cur) {

  // References to .ARM.Extab Sections have bit 31 clear and are not the
  // special EXIDX_CANTUNWIND bit-pattern.
  auto IsExtabRef = [](uint32_t Unwind) {
    return (Unwind & 0x80000000) == 0 && Unwind != 0x1;
  };

  struct ExidxEntry {
    ulittle32_t Fn;
    ulittle32_t Unwind;
  };

  // Get the last table Entry from the previous .ARM.exidx section.
  const ExidxEntry &PrevEntry = Prev->getDataAs<ExidxEntry>().back();
  if (IsExtabRef(PrevEntry.Unwind))
    return false;

  // We consider the unwind instructions of an .ARM.exidx table entry
  // a duplicate if the previous unwind instructions if:
  // - Both are the special EXIDX_CANTUNWIND.
  // - Both are the same inline unwind instructions.
  // We do not attempt to follow and check links into .ARM.extab tables as
  // consecutive identical entries are rare and the effort to check that they
  // are identical is high.

  for (const ExidxEntry Entry : Cur->getDataAs<ExidxEntry>())
    if (IsExtabRef(Entry.Unwind) || Entry.Unwind != PrevEntry.Unwind)
      return false;

  // All table entries in this .ARM.exidx Section can be merged into the
  // previous Section.
  return true;
}

template <class ELFT> void Writer<ELFT>::resolveShfLinkOrder() {
  for (OutputSection *Sec : OutputSections) {
    if (!(Sec->Flags & SHF_LINK_ORDER))
      continue;

    // Link order may be distributed across several InputSectionDescriptions
    // but sort must consider them all at once.
    std::vector<InputSection **> ScriptSections;
    std::vector<InputSection *> Sections;
    for (BaseCommand *Base : Sec->SectionCommands) {
      if (auto *ISD = dyn_cast<InputSectionDescription>(Base)) {
        for (InputSection *&IS : ISD->Sections) {
          ScriptSections.push_back(&IS);
          Sections.push_back(IS);
        }
      }
    }
    std::stable_sort(Sections.begin(), Sections.end(), compareByFilePosition);

    if (!Config->Relocatable && Config->EMachine == EM_ARM &&
        Sec->Type == SHT_ARM_EXIDX) {

      if (auto *Sentinel = dyn_cast<ARMExidxSentinelSection>(Sections.back())) {
        assert(Sections.size() >= 2 &&
               "We should create a sentinel section only if there are "
               "alive regular exidx sections.");

        // The last executable section is required to fill the sentinel.
        // Remember it here so that we don't have to find it again.
        Sentinel->Highest = Sections[Sections.size() - 2]->getLinkOrderDep();
      }

      // The EHABI for the Arm Architecture permits consecutive identical
      // table entries to be merged. We use a simple implementation that
      // removes a .ARM.exidx Input Section if it can be merged into the
      // previous one. This does not require any rewriting of InputSection
      // contents but misses opportunities for fine grained deduplication
      // where only a subset of the InputSection contents can be merged.
      if (Config->MergeArmExidx) {
        size_t Prev = 0;
        // The last one is a sentinel entry which should not be removed.
        for (size_t I = 1; I < Sections.size() - 1; ++I) {
          if (isDuplicateArmExidxSec(Sections[Prev], Sections[I]))
            Sections[I] = nullptr;
          else
            Prev = I;
        }
      }
    }

    for (int I = 0, N = Sections.size(); I < N; ++I)
      *ScriptSections[I] = Sections[I];

    // Remove the Sections we marked as duplicate earlier.
    for (BaseCommand *Base : Sec->SectionCommands)
      if (auto *ISD = dyn_cast<InputSectionDescription>(Base))
        llvm::erase_if(ISD->Sections, [](InputSection *IS) { return !IS; });
  }
}

// For most RISC ISAs, we need to generate content that depends on the address
// of InputSections. For example some architectures such as AArch64 use small
// displacements for jump instructions that is the linker's responsibility for
// creating range extension thunks for. As the generation of the content may
// also alter InputSection addresses we must converge to a fixed point.
template <class ELFT> void Writer<ELFT>::maybeAddThunks() {
  if (!Target->NeedsThunks && !Config->AndroidPackDynRelocs &&
      !Config->RelrPackDynRelocs)
    return;

  ThunkCreator TC;
  AArch64Err843419Patcher A64P;

  for (;;) {
    bool Changed = false;

    Script->assignAddresses();

    if (Target->NeedsThunks)
      Changed |= TC.createThunks(OutputSections);

    if (Config->FixCortexA53Errata843419) {
      if (Changed)
        Script->assignAddresses();
      Changed |= A64P.createFixes();
    }

    if (In.MipsGot)
      In.MipsGot->updateAllocSize();

    Changed |= In.RelaDyn->updateAllocSize();

    if (In.RelrDyn)
      Changed |= In.RelrDyn->updateAllocSize();

    if (!Changed)
      return;
  }
}

static void finalizeSynthetic(SyntheticSection *Sec) {
  if (Sec && !Sec->empty() && Sec->getParent())
    Sec->finalizeContents();
}

// In order to allow users to manipulate linker-synthesized sections,
// we had to add synthetic sections to the input section list early,
// even before we make decisions whether they are needed. This allows
// users to write scripts like this: ".mygot : { .got }".
//
// Doing it has an unintended side effects. If it turns out that we
// don't need a .got (for example) at all because there's no
// relocation that needs a .got, we don't want to emit .got.
//
// To deal with the above problem, this function is called after
// scanRelocations is called to remove synthetic sections that turn
// out to be empty.
static void removeUnusedSyntheticSections() {
  // All input synthetic sections that can be empty are placed after
  // all regular ones. We iterate over them all and exit at first
  // non-synthetic.
  for (InputSectionBase *S : llvm::reverse(InputSections)) {
    SyntheticSection *SS = dyn_cast<SyntheticSection>(S);
    if (!SS)
      return;
    OutputSection *OS = SS->getParent();
    if (!OS || !SS->empty())
      continue;

    // If we reach here, then SS is an unused synthetic section and we want to
    // remove it from corresponding input section description of output section.
    for (BaseCommand *B : OS->SectionCommands)
      if (auto *ISD = dyn_cast<InputSectionDescription>(B))
        llvm::erase_if(ISD->Sections,
                       [=](InputSection *IS) { return IS == SS; });
  }
}

// Returns true if a symbol can be replaced at load-time by a symbol
// with the same name defined in other ELF executable or DSO.
static bool computeIsPreemptible(const Symbol &B) {
  assert(!B.isLocal());

  // Only symbols that appear in dynsym can be preempted.
  if (!B.includeInDynsym())
    return false;

  // Only default visibility symbols can be preempted.
  if (B.Visibility != STV_DEFAULT)
    return false;

  // At this point copy relocations have not been created yet, so any
  // symbol that is not defined locally is preemptible.
  if (!B.isDefined())
    return true;

  // If we have a dynamic list it specifies which local symbols are preemptible.
  if (Config->HasDynamicList)
    return false;

  if (!Config->Shared)
    return false;

  // -Bsymbolic means that definitions are not preempted.
  if (Config->Bsymbolic || (Config->BsymbolicFunctions && B.isFunc()))
    return false;
  return true;
}

// Create output section objects and add them to OutputSections.
template <class ELFT> void Writer<ELFT>::finalizeSections() {
  Out::PreinitArray = findSection(".preinit_array");
  Out::InitArray = findSection(".init_array");
  Out::FiniArray = findSection(".fini_array");

  // The linker needs to define SECNAME_start, SECNAME_end and SECNAME_stop
  // symbols for sections, so that the runtime can get the start and end
  // addresses of each section by section name. Add such symbols.
  if (!Config->Relocatable) {
    addStartEndSymbols();
    for (BaseCommand *Base : Script->SectionCommands)
      if (auto *Sec = dyn_cast<OutputSection>(Base))
        addStartStopSymbols(Sec);
  }

  // Add _DYNAMIC symbol. Unlike GNU gold, our _DYNAMIC symbol has no type.
  // It should be okay as no one seems to care about the type.
  // Even the author of gold doesn't remember why gold behaves that way.
  // https://sourceware.org/ml/binutils/2002-03/msg00360.html
  if (In.Dynamic->Parent)
    Symtab->addDefined("_DYNAMIC", STV_HIDDEN, STT_NOTYPE, 0 /*Value*/,
                       /*Size=*/0, STB_WEAK, In.Dynamic,
                       /*File=*/nullptr);

  // Define __rel[a]_iplt_{start,end} symbols if needed.
  addRelIpltSymbols();

  // RISC-V's gp can address +/- 2 KiB, set it to .sdata + 0x800 if not defined.
  if (Config->EMachine == EM_RISCV)
    if (!dyn_cast_or_null<Defined>(Symtab->find("__global_pointer$")))
      addOptionalRegular("__global_pointer$", findSection(".sdata"), 0x800);

  // This responsible for splitting up .eh_frame section into
  // pieces. The relocation scan uses those pieces, so this has to be
  // earlier.
  finalizeSynthetic(In.EhFrame);

  for (Symbol *S : Symtab->getSymbols())
    if (!S->IsPreemptible)
      S->IsPreemptible = computeIsPreemptible(*S);

  // Scan relocations. This must be done after every symbol is declared so that
  // we can correctly decide if a dynamic relocation is needed.
  if (!Config->Relocatable)
    forEachRelSec(scanRelocations<ELFT>);

  addIRelativeRelocs();

  if (In.Plt && !In.Plt->empty())
    In.Plt->addSymbols();
  if (In.Iplt && !In.Iplt->empty())
    In.Iplt->addSymbols();

  if (!Config->AllowShlibUndefined) {
    // Error on undefined symbols in a shared object, if all of its DT_NEEDED
    // entires are seen. These cases would otherwise lead to runtime errors
    // reported by the dynamic linker.
    //
    // ld.bfd traces all DT_NEEDED to emulate the logic of the dynamic linker to
    // catch more cases. That is too much for us. Our approach resembles the one
    // used in ld.gold, achieves a good balance to be useful but not too smart.
    for (InputFile *File : SharedFiles) {
      SharedFile<ELFT> *F = cast<SharedFile<ELFT>>(File);
      F->AllNeededIsKnown = llvm::all_of(F->DtNeeded, [&](StringRef Needed) {
        return Symtab->SoNames.count(Needed);
      });
    }
    for (Symbol *Sym : Symtab->getSymbols())
      if (Sym->isUndefined() && !Sym->isWeak())
        if (auto *F = dyn_cast_or_null<SharedFile<ELFT>>(Sym->File))
          if (F->AllNeededIsKnown)
            error(toString(F) + ": undefined reference to " + toString(*Sym));
  }

  // Now that we have defined all possible global symbols including linker-
  // synthesized ones. Visit all symbols to give the finishing touches.
  for (Symbol *Sym : Symtab->getSymbols()) {
    if (!includeInSymtab(*Sym))
      continue;
    if (In.SymTab)
      In.SymTab->addSymbol(Sym);

    if (Sym->includeInDynsym()) {
      In.DynSymTab->addSymbol(Sym);
      if (auto *File = dyn_cast_or_null<SharedFile<ELFT>>(Sym->File))
        if (File->IsNeeded && !Sym->isUndefined())
          InX<ELFT>::VerNeed->addSymbol(Sym);
    }
  }

  // Do not proceed if there was an undefined symbol.
  if (errorCount())
    return;

  if (In.MipsGot)
    In.MipsGot->build<ELFT>();

  removeUnusedSyntheticSections();

  sortSections();

  // Now that we have the final list, create a list of all the
  // OutputSections for convenience.
  for (BaseCommand *Base : Script->SectionCommands)
    if (auto *Sec = dyn_cast<OutputSection>(Base))
      OutputSections.push_back(Sec);

  // Prefer command line supplied address over other constraints.
  for (OutputSection *Sec : OutputSections) {
    auto I = Config->SectionStartMap.find(Sec->Name);
    if (I != Config->SectionStartMap.end())
      Sec->AddrExpr = [=] { return I->second; };
  }

  // This is a bit of a hack. A value of 0 means undef, so we set it
  // to 1 to make __ehdr_start defined. The section number is not
  // particularly relevant.
  Out::ElfHeader->SectionIndex = 1;

  for (size_t I = 0, E = OutputSections.size(); I != E; ++I) {
    OutputSection *Sec = OutputSections[I];
    Sec->SectionIndex = I + 1;
    Sec->ShName = In.ShStrTab->addString(Sec->Name);
  }

  // Binary and relocatable output does not have PHDRS.
  // The headers have to be created before finalize as that can influence the
  // image base and the dynamic section on mips includes the image base.
  if (!Config->Relocatable && !Config->OFormatBinary) {
    Phdrs = Script->hasPhdrsCommands() ? Script->createPhdrs() : createPhdrs();
    addPtArmExid(Phdrs);
    Out::ProgramHeaders->Size = sizeof(Elf_Phdr) * Phdrs.size();

    // Find the TLS segment. This happens before the section layout loop so that
    // Android relocation packing can look up TLS symbol addresses.
    for (PhdrEntry *P : Phdrs)
      if (P->p_type == PT_TLS)
        Out::TlsPhdr = P;
  }

  // Some symbols are defined in term of program headers. Now that we
  // have the headers, we can find out which sections they point to.
  setReservedSymbolSections();

  // Dynamic section must be the last one in this list and dynamic
  // symbol table section (DynSymTab) must be the first one.
  finalizeSynthetic(In.DynSymTab);
  finalizeSynthetic(In.Bss);
  finalizeSynthetic(In.BssRelRo);
  finalizeSynthetic(In.GnuHashTab);
  finalizeSynthetic(In.HashTab);
  finalizeSynthetic(In.SymTabShndx);
  finalizeSynthetic(In.ShStrTab);
  finalizeSynthetic(In.StrTab);
  finalizeSynthetic(In.VerDef);
  finalizeSynthetic(In.DynStrTab);
  finalizeSynthetic(In.Got);
  finalizeSynthetic(In.MipsGot);
  finalizeSynthetic(In.IgotPlt);
  finalizeSynthetic(In.GotPlt);
  finalizeSynthetic(In.RelaDyn);
  finalizeSynthetic(In.RelrDyn);
  finalizeSynthetic(In.RelaIplt);
  finalizeSynthetic(In.RelaPlt);
  finalizeSynthetic(In.Plt);
  finalizeSynthetic(In.Iplt);
  finalizeSynthetic(In.EhFrameHdr);
  finalizeSynthetic(InX<ELFT>::VerSym);
  finalizeSynthetic(InX<ELFT>::VerNeed);
  finalizeSynthetic(In.Dynamic);

  if (!Script->HasSectionsCommand && !Config->Relocatable)
    fixSectionAlignments();

  // After link order processing .ARM.exidx sections can be deduplicated, which
  // needs to be resolved before any other address dependent operation.
  resolveShfLinkOrder();

  // Jump instructions in many ISAs have small displacements, and therefore they
  // cannot jump to arbitrary addresses in memory. For example, RISC-V JAL
  // instruction can target only +-1 MiB from PC. It is a linker's
  // responsibility to create and insert small pieces of code between sections
  // to extend the ranges if jump targets are out of range. Such code pieces are
  // called "thunks".
  //
  // We add thunks at this stage. We couldn't do this before this point because
  // this is the earliest point where we know sizes of sections and their
  // layouts (that are needed to determine if jump targets are in range).
  maybeAddThunks();

  // maybeAddThunks may have added local symbols to the static symbol table.
  finalizeSynthetic(In.SymTab);
  finalizeSynthetic(In.PPC64LongBranchTarget);

  // Fill other section headers. The dynamic table is finalized
  // at the end because some tags like RELSZ depend on result
  // of finalizing other sections.
  for (OutputSection *Sec : OutputSections)
    Sec->finalize<ELFT>();
}

// Ensure data sections are not mixed with executable sections when
// -execute-only is used. -execute-only is a feature to make pages executable
// but not readable, and the feature is currently supported only on AArch64.
template <class ELFT> void Writer<ELFT>::checkExecuteOnly() {
  if (!Config->ExecuteOnly)
    return;

  for (OutputSection *OS : OutputSections)
    if (OS->Flags & SHF_EXECINSTR)
      for (InputSection *IS : getInputSections(OS))
        if (!(IS->Flags & SHF_EXECINSTR))
          error("cannot place " + toString(IS) + " into " + toString(OS->Name) +
                ": -execute-only does not support intermingling data and code");
}

// The linker is expected to define SECNAME_start and SECNAME_end
// symbols for a few sections. This function defines them.
template <class ELFT> void Writer<ELFT>::addStartEndSymbols() {
  // If a section does not exist, there's ambiguity as to how we
  // define _start and _end symbols for an init/fini section. Since
  // the loader assume that the symbols are always defined, we need to
  // always define them. But what value? The loader iterates over all
  // pointers between _start and _end to run global ctors/dtors, so if
  // the section is empty, their symbol values don't actually matter
  // as long as _start and _end point to the same location.
  //
  // That said, we don't want to set the symbols to 0 (which is
  // probably the simplest value) because that could cause some
  // program to fail to link due to relocation overflow, if their
  // program text is above 2 GiB. We use the address of the .text
  // section instead to prevent that failure.
  //
  // In a rare sitaution, .text section may not exist. If that's the
  // case, use the image base address as a last resort.
  OutputSection *Default = findSection(".text");
  if (!Default)
    Default = Out::ElfHeader;

  auto Define = [=](StringRef Start, StringRef End, OutputSection *OS) {
    if (OS) {
      addOptionalRegular(Start, OS, 0);
      addOptionalRegular(End, OS, -1);
    } else {
      addOptionalRegular(Start, Default, 0);
      addOptionalRegular(End, Default, 0);
    }
  };

  Define("__preinit_array_start", "__preinit_array_end", Out::PreinitArray);
  Define("__init_array_start", "__init_array_end", Out::InitArray);
  Define("__fini_array_start", "__fini_array_end", Out::FiniArray);

  if (OutputSection *Sec = findSection(".ARM.exidx"))
    Define("__exidx_start", "__exidx_end", Sec);
}

// If a section name is valid as a C identifier (which is rare because of
// the leading '.'), linkers are expected to define __start_<secname> and
// __stop_<secname> symbols. They are at beginning and end of the section,
// respectively. This is not requested by the ELF standard, but GNU ld and
// gold provide the feature, and used by many programs.
template <class ELFT>
void Writer<ELFT>::addStartStopSymbols(OutputSection *Sec) {
  StringRef S = Sec->Name;
  if (!isValidCIdentifier(S))
    return;
  addOptionalRegular(Saver.save("__start_" + S), Sec, 0, STV_PROTECTED);
  addOptionalRegular(Saver.save("__stop_" + S), Sec, -1, STV_PROTECTED);
}

static bool needsPtLoad(OutputSection *Sec) {
  if (!(Sec->Flags & SHF_ALLOC) || Sec->Noload)
    return false;

  // Don't allocate VA space for TLS NOBITS sections. The PT_TLS PHDR is
  // responsible for allocating space for them, not the PT_LOAD that
  // contains the TLS initialization image.
  if ((Sec->Flags & SHF_TLS) && Sec->Type == SHT_NOBITS)
    return false;
  return true;
}

// Linker scripts are responsible for aligning addresses. Unfortunately, most
// linker scripts are designed for creating two PT_LOADs only, one RX and one
// RW. This means that there is no alignment in the RO to RX transition and we
// cannot create a PT_LOAD there.
static uint64_t computeFlags(uint64_t Flags) {
  if (Config->Omagic)
    return PF_R | PF_W | PF_X;
  if (Config->ExecuteOnly && (Flags & PF_X))
    return Flags & ~PF_R;
  if (Config->SingleRoRx && !(Flags & PF_W))
    return Flags | PF_X;
  return Flags;
}

// Decide which program headers to create and which sections to include in each
// one.
template <class ELFT> std::vector<PhdrEntry *> Writer<ELFT>::createPhdrs() {
  std::vector<PhdrEntry *> Ret;
  auto AddHdr = [&](unsigned Type, unsigned Flags) -> PhdrEntry * {
    Ret.push_back(make<PhdrEntry>(Type, Flags));
    return Ret.back();
  };

  // The first phdr entry is PT_PHDR which describes the program header itself.
  AddHdr(PT_PHDR, PF_R)->add(Out::ProgramHeaders);

  // PT_INTERP must be the second entry if exists.
  if (OutputSection *Cmd = findSection(".interp"))
    AddHdr(PT_INTERP, Cmd->getPhdrFlags())->add(Cmd);

  // Add the first PT_LOAD segment for regular output sections.
  uint64_t Flags = computeFlags(PF_R);
  PhdrEntry *Load = AddHdr(PT_LOAD, Flags);

  // Add the headers. We will remove them if they don't fit.
  Load->add(Out::ElfHeader);
  Load->add(Out::ProgramHeaders);

  for (OutputSection *Sec : OutputSections) {
    if (!(Sec->Flags & SHF_ALLOC))
      break;
    if (!needsPtLoad(Sec))
      continue;

    // Segments are contiguous memory regions that has the same attributes
    // (e.g. executable or writable). There is one phdr for each segment.
    // Therefore, we need to create a new phdr when the next section has
    // different flags or is loaded at a discontiguous address or memory
    // region using AT or AT> linker script command, respectively. At the same
    // time, we don't want to create a separate load segment for the headers,
    // even if the first output section has an AT or AT> attribute.
    uint64_t NewFlags = computeFlags(Sec->getPhdrFlags());
    if (((Sec->LMAExpr ||
          (Sec->LMARegion && (Sec->LMARegion != Load->FirstSec->LMARegion))) &&
         Load->LastSec != Out::ProgramHeaders) ||
        Sec->MemRegion != Load->FirstSec->MemRegion || Flags != NewFlags) {

      Load = AddHdr(PT_LOAD, NewFlags);
      Flags = NewFlags;
    }

    Load->add(Sec);
  }

  // Add a TLS segment if any.
  PhdrEntry *TlsHdr = make<PhdrEntry>(PT_TLS, PF_R);
  for (OutputSection *Sec : OutputSections)
    if (Sec->Flags & SHF_TLS)
      TlsHdr->add(Sec);
  if (TlsHdr->FirstSec)
    Ret.push_back(TlsHdr);

  // Add an entry for .dynamic.
  if (OutputSection *Sec = In.Dynamic->getParent())
    AddHdr(PT_DYNAMIC, Sec->getPhdrFlags())->add(Sec);

  // PT_GNU_RELRO includes all sections that should be marked as
  // read-only by dynamic linker after proccessing relocations.
  // Current dynamic loaders only support one PT_GNU_RELRO PHDR, give
  // an error message if more than one PT_GNU_RELRO PHDR is required.
  PhdrEntry *RelRo = make<PhdrEntry>(PT_GNU_RELRO, PF_R);
  bool InRelroPhdr = false;
  bool IsRelroFinished = false;
  for (OutputSection *Sec : OutputSections) {
    if (!needsPtLoad(Sec))
      continue;
    if (isRelroSection(Sec)) {
      InRelroPhdr = true;
      if (!IsRelroFinished)
        RelRo->add(Sec);
      else
        error("section: " + Sec->Name + " is not contiguous with other relro" +
              " sections");
    } else if (InRelroPhdr) {
      InRelroPhdr = false;
      IsRelroFinished = true;
    }
  }
  if (RelRo->FirstSec)
    Ret.push_back(RelRo);

  // PT_GNU_EH_FRAME is a special section pointing on .eh_frame_hdr.
  if (!In.EhFrame->empty() && In.EhFrameHdr && In.EhFrame->getParent() &&
      In.EhFrameHdr->getParent())
    AddHdr(PT_GNU_EH_FRAME, In.EhFrameHdr->getParent()->getPhdrFlags())
        ->add(In.EhFrameHdr->getParent());

  // PT_OPENBSD_RANDOMIZE is an OpenBSD-specific feature. That makes
  // the dynamic linker fill the segment with random data.
  if (OutputSection *Cmd = findSection(".openbsd.randomdata"))
    AddHdr(PT_OPENBSD_RANDOMIZE, Cmd->getPhdrFlags())->add(Cmd);

  // PT_GNU_STACK is a special section to tell the loader to make the
  // pages for the stack non-executable. If you really want an executable
  // stack, you can pass -z execstack, but that's not recommended for
  // security reasons.
  unsigned Perm = PF_R | PF_W;
  if (Config->ZExecstack)
    Perm |= PF_X;
  AddHdr(PT_GNU_STACK, Perm)->p_memsz = Config->ZStackSize;

  // PT_OPENBSD_WXNEEDED is a OpenBSD-specific header to mark the executable
  // is expected to perform W^X violations, such as calling mprotect(2) or
  // mmap(2) with PROT_WRITE | PROT_EXEC, which is prohibited by default on
  // OpenBSD.
  if (Config->ZWxneeded)
    AddHdr(PT_OPENBSD_WXNEEDED, PF_X);

  // Create one PT_NOTE per a group of contiguous .note sections.
  PhdrEntry *Note = nullptr;
  for (OutputSection *Sec : OutputSections) {
    if (Sec->Type == SHT_NOTE && (Sec->Flags & SHF_ALLOC)) {
      if (!Note || Sec->LMAExpr)
        Note = AddHdr(PT_NOTE, PF_R);
      Note->add(Sec);
    } else {
      Note = nullptr;
    }
  }
  return Ret;
}

template <class ELFT>
void Writer<ELFT>::addPtArmExid(std::vector<PhdrEntry *> &Phdrs) {
  if (Config->EMachine != EM_ARM)
    return;
  auto I = llvm::find_if(OutputSections, [](OutputSection *Cmd) {
    return Cmd->Type == SHT_ARM_EXIDX;
  });
  if (I == OutputSections.end())
    return;

  // PT_ARM_EXIDX is the ARM EHABI equivalent of PT_GNU_EH_FRAME
  PhdrEntry *ARMExidx = make<PhdrEntry>(PT_ARM_EXIDX, PF_R);
  ARMExidx->add(*I);
  Phdrs.push_back(ARMExidx);
}

// The first section of each PT_LOAD, the first section in PT_GNU_RELRO and the
// first section after PT_GNU_RELRO have to be page aligned so that the dynamic
// linker can set the permissions.
template <class ELFT> void Writer<ELFT>::fixSectionAlignments() {
  auto PageAlign = [](OutputSection *Cmd) {
    if (Cmd && !Cmd->AddrExpr)
      Cmd->AddrExpr = [=] {
        return alignTo(Script->getDot(), Config->MaxPageSize);
      };
  };

  for (const PhdrEntry *P : Phdrs)
    if (P->p_type == PT_LOAD && P->FirstSec)
      PageAlign(P->FirstSec);

  for (const PhdrEntry *P : Phdrs) {
    if (P->p_type != PT_GNU_RELRO)
      continue;

    if (P->FirstSec)
      PageAlign(P->FirstSec);

    // Find the first section after PT_GNU_RELRO. If it is in a PT_LOAD we
    // have to align it to a page.
    auto End = OutputSections.end();
    auto I = std::find(OutputSections.begin(), End, P->LastSec);
    if (I == End || (I + 1) == End)
      continue;

    OutputSection *Cmd = (*(I + 1));
    if (needsPtLoad(Cmd))
      PageAlign(Cmd);
  }
}

// Compute an in-file position for a given section. The file offset must be the
// same with its virtual address modulo the page size, so that the loader can
// load executables without any address adjustment.
static uint64_t computeFileOffset(OutputSection *OS, uint64_t Off) {
  // File offsets are not significant for .bss sections. By convention, we keep
  // section offsets monotonically increasing rather than setting to zero.
  if (OS->Type == SHT_NOBITS)
    return Off;

  // If the section is not in a PT_LOAD, we just have to align it.
  if (!OS->PtLoad)
    return alignTo(Off, OS->Alignment);

  // The first section in a PT_LOAD has to have congruent offset and address
  // module the page size.
  OutputSection *First = OS->PtLoad->FirstSec;
  if (OS == First) {
    uint64_t Alignment = std::max<uint64_t>(OS->Alignment, Config->MaxPageSize);
    return alignTo(Off, Alignment, OS->Addr);
  }

  // If two sections share the same PT_LOAD the file offset is calculated
  // using this formula: Off2 = Off1 + (VA2 - VA1).
  return First->Offset + OS->Addr - First->Addr;
}

// Set an in-file position to a given section and returns the end position of
// the section.
static uint64_t setFileOffset(OutputSection *OS, uint64_t Off) {
  Off = computeFileOffset(OS, Off);
  OS->Offset = Off;

  if (OS->Type == SHT_NOBITS)
    return Off;
  return Off + OS->Size;
}

template <class ELFT> void Writer<ELFT>::assignFileOffsetsBinary() {
  uint64_t Off = 0;
  for (OutputSection *Sec : OutputSections)
    if (Sec->Flags & SHF_ALLOC)
      Off = setFileOffset(Sec, Off);
  FileSize = alignTo(Off, Config->Wordsize);
}

static std::string rangeToString(uint64_t Addr, uint64_t Len) {
  return "[0x" + utohexstr(Addr) + ", 0x" + utohexstr(Addr + Len - 1) + "]";
}

// Assign file offsets to output sections.
template <class ELFT> void Writer<ELFT>::assignFileOffsets() {
  uint64_t Off = 0;
  Off = setFileOffset(Out::ElfHeader, Off);
  Off = setFileOffset(Out::ProgramHeaders, Off);

  PhdrEntry *LastRX = nullptr;
  for (PhdrEntry *P : Phdrs)
    if (P->p_type == PT_LOAD && (P->p_flags & PF_X))
      LastRX = P;

  for (OutputSection *Sec : OutputSections) {
    Off = setFileOffset(Sec, Off);
    if (Script->HasSectionsCommand)
      continue;

    // If this is a last section of the last executable segment and that
    // segment is the last loadable segment, align the offset of the
    // following section to avoid loading non-segments parts of the file.
    if (LastRX && LastRX->LastSec == Sec)
      Off = alignTo(Off, Target->PageSize);
  }

  SectionHeaderOff = alignTo(Off, Config->Wordsize);
  FileSize = SectionHeaderOff + (OutputSections.size() + 1) * sizeof(Elf_Shdr);

  // Our logic assumes that sections have rising VA within the same segment.
  // With use of linker scripts it is possible to violate this rule and get file
  // offset overlaps or overflows. That should never happen with a valid script
  // which does not move the location counter backwards and usually scripts do
  // not do that. Unfortunately, there are apps in the wild, for example, Linux
  // kernel, which control segment distribution explicitly and move the counter
  // backwards, so we have to allow doing that to support linking them. We
  // perform non-critical checks for overlaps in checkSectionOverlap(), but here
  // we want to prevent file size overflows because it would crash the linker.
  for (OutputSection *Sec : OutputSections) {
    if (Sec->Type == SHT_NOBITS)
      continue;
    if ((Sec->Offset > FileSize) || (Sec->Offset + Sec->Size > FileSize))
      error("unable to place section " + Sec->Name + " at file offset " +
            rangeToString(Sec->Offset, Sec->Size) +
            "; check your linker script for overflows");
  }
}

// Finalize the program headers. We call this function after we assign
// file offsets and VAs to all sections.
template <class ELFT> void Writer<ELFT>::setPhdrs() {
  for (PhdrEntry *P : Phdrs) {
    OutputSection *First = P->FirstSec;
    OutputSection *Last = P->LastSec;

    if (First) {
      P->p_filesz = Last->Offset - First->Offset;
      if (Last->Type != SHT_NOBITS)
        P->p_filesz += Last->Size;

      P->p_memsz = Last->Addr + Last->Size - First->Addr;
      P->p_offset = First->Offset;
      P->p_vaddr = First->Addr;

      if (!P->HasLMA)
        P->p_paddr = First->getLMA();
    }

    if (P->p_type == PT_LOAD) {
      P->p_align = std::max<uint64_t>(P->p_align, Config->MaxPageSize);
    } else if (P->p_type == PT_GNU_RELRO) {
      P->p_align = 1;
      // The glibc dynamic loader rounds the size down, so we need to round up
      // to protect the last page. This is a no-op on FreeBSD which always
      // rounds up.
      P->p_memsz = alignTo(P->p_memsz, Target->PageSize);
    }

    if (P->p_type == PT_TLS && P->p_memsz) {
      if (!Config->Shared &&
          (Config->EMachine == EM_ARM || Config->EMachine == EM_AARCH64)) {
        // On ARM/AArch64, reserve extra space (8 words) between the thread
        // pointer and an executable's TLS segment by overaligning the segment.
        // This reservation is needed for backwards compatibility with Android's
        // TCB, which allocates several slots after the thread pointer (e.g.
        // TLS_SLOT_STACK_GUARD==5). For simplicity, this overalignment is also
        // done on other operating systems.
        P->p_align = std::max<uint64_t>(P->p_align, Config->Wordsize * 8);
      }

      // The TLS pointer goes after PT_TLS for variant 2 targets. At least glibc
      // will align it, so round up the size to make sure the offsets are
      // correct.
      P->p_memsz = alignTo(P->p_memsz, P->p_align);
    }
  }
}

// A helper struct for checkSectionOverlap.
namespace {
struct SectionOffset {
  OutputSection *Sec;
  uint64_t Offset;
};
} // namespace

// Check whether sections overlap for a specific address range (file offsets,
// load and virtual adresses).
static void checkOverlap(StringRef Name, std::vector<SectionOffset> &Sections,
                         bool IsVirtualAddr) {
  llvm::sort(Sections, [=](const SectionOffset &A, const SectionOffset &B) {
    return A.Offset < B.Offset;
  });

  // Finding overlap is easy given a vector is sorted by start position.
  // If an element starts before the end of the previous element, they overlap.
  for (size_t I = 1, End = Sections.size(); I < End; ++I) {
    SectionOffset A = Sections[I - 1];
    SectionOffset B = Sections[I];
    if (B.Offset >= A.Offset + A.Sec->Size)
      continue;

    // If both sections are in OVERLAY we allow the overlapping of virtual
    // addresses, because it is what OVERLAY was designed for.
    if (IsVirtualAddr && A.Sec->InOverlay && B.Sec->InOverlay)
      continue;

    errorOrWarn("section " + A.Sec->Name + " " + Name +
                " range overlaps with " + B.Sec->Name + "\n>>> " + A.Sec->Name +
                " range is " + rangeToString(A.Offset, A.Sec->Size) + "\n>>> " +
                B.Sec->Name + " range is " +
                rangeToString(B.Offset, B.Sec->Size));
  }
}

// Check for overlapping sections and address overflows.
//
// In this function we check that none of the output sections have overlapping
// file offsets. For SHF_ALLOC sections we also check that the load address
// ranges and the virtual address ranges don't overlap
template <class ELFT> void Writer<ELFT>::checkSections() {
  // First, check that section's VAs fit in available address space for target.
  for (OutputSection *OS : OutputSections)
    if ((OS->Addr + OS->Size < OS->Addr) ||
        (!ELFT::Is64Bits && OS->Addr + OS->Size > UINT32_MAX))
      errorOrWarn("section " + OS->Name + " at 0x" + utohexstr(OS->Addr) +
                  " of size 0x" + utohexstr(OS->Size) +
                  " exceeds available address space");

  // Check for overlapping file offsets. In this case we need to skip any
  // section marked as SHT_NOBITS. These sections don't actually occupy space in
  // the file so Sec->Offset + Sec->Size can overlap with others. If --oformat
  // binary is specified only add SHF_ALLOC sections are added to the output
  // file so we skip any non-allocated sections in that case.
  std::vector<SectionOffset> FileOffs;
  for (OutputSection *Sec : OutputSections)
    if (Sec->Size > 0 && Sec->Type != SHT_NOBITS &&
        (!Config->OFormatBinary || (Sec->Flags & SHF_ALLOC)))
      FileOffs.push_back({Sec, Sec->Offset});
  checkOverlap("file", FileOffs, false);

  // When linking with -r there is no need to check for overlapping virtual/load
  // addresses since those addresses will only be assigned when the final
  // executable/shared object is created.
  if (Config->Relocatable)
    return;

  // Checking for overlapping virtual and load addresses only needs to take
  // into account SHF_ALLOC sections since others will not be loaded.
  // Furthermore, we also need to skip SHF_TLS sections since these will be
  // mapped to other addresses at runtime and can therefore have overlapping
  // ranges in the file.
  std::vector<SectionOffset> VMAs;
  for (OutputSection *Sec : OutputSections)
    if (Sec->Size > 0 && (Sec->Flags & SHF_ALLOC) && !(Sec->Flags & SHF_TLS))
      VMAs.push_back({Sec, Sec->Addr});
  checkOverlap("virtual address", VMAs, true);

  // Finally, check that the load addresses don't overlap. This will usually be
  // the same as the virtual addresses but can be different when using a linker
  // script with AT().
  std::vector<SectionOffset> LMAs;
  for (OutputSection *Sec : OutputSections)
    if (Sec->Size > 0 && (Sec->Flags & SHF_ALLOC) && !(Sec->Flags & SHF_TLS))
      LMAs.push_back({Sec, Sec->getLMA()});
  checkOverlap("load address", LMAs, false);
}

// The entry point address is chosen in the following ways.
//
// 1. the '-e' entry command-line option;
// 2. the ENTRY(symbol) command in a linker control script;
// 3. the value of the symbol _start, if present;
// 4. the number represented by the entry symbol, if it is a number;
// 5. the address of the first byte of the .text section, if present;
// 6. the address 0.
static uint64_t getEntryAddr() {
  // Case 1, 2 or 3
  if (Symbol *B = Symtab->find(Config->Entry))
    return B->getVA();

  // Case 4
  uint64_t Addr;
  if (to_integer(Config->Entry, Addr))
    return Addr;

  // Case 5
  if (OutputSection *Sec = findSection(".text")) {
    if (Config->WarnMissingEntry)
      warn("cannot find entry symbol " + Config->Entry + "; defaulting to 0x" +
           utohexstr(Sec->Addr));
    return Sec->Addr;
  }

  // Case 6
  if (Config->WarnMissingEntry)
    warn("cannot find entry symbol " + Config->Entry +
         "; not setting start address");
  return 0;
}

static uint16_t getELFType() {
  if (Config->Pic)
    return ET_DYN;
  if (Config->Relocatable)
    return ET_REL;
  return ET_EXEC;
}

static uint8_t getAbiVersion() {
  // MIPS non-PIC executable gets ABI version 1.
  if (Config->EMachine == EM_MIPS && getELFType() == ET_EXEC &&
      (Config->EFlags & (EF_MIPS_PIC | EF_MIPS_CPIC)) == EF_MIPS_CPIC)
    return 1;
  return 0;
}

template <class ELFT> void Writer<ELFT>::writeHeader() {
  uint8_t *Buf = Buffer->getBufferStart();

  // For executable segments, the trap instructions are written before writing
  // the header. Setting Elf header bytes to zero ensures that any unused bytes
  // in header are zero-cleared, instead of having trap instructions.
  memset(Buf, 0, sizeof(Elf_Ehdr));
  memcpy(Buf, "\177ELF", 4);

  // Write the ELF header.
  auto *EHdr = reinterpret_cast<Elf_Ehdr *>(Buf);
  EHdr->e_ident[EI_CLASS] = Config->Is64 ? ELFCLASS64 : ELFCLASS32;
  EHdr->e_ident[EI_DATA] = Config->IsLE ? ELFDATA2LSB : ELFDATA2MSB;
  EHdr->e_ident[EI_VERSION] = EV_CURRENT;
  EHdr->e_ident[EI_OSABI] = Config->OSABI;
  EHdr->e_ident[EI_ABIVERSION] = getAbiVersion();
  EHdr->e_type = getELFType();
  EHdr->e_machine = Config->EMachine;
  EHdr->e_version = EV_CURRENT;
  EHdr->e_entry = getEntryAddr();
  EHdr->e_shoff = SectionHeaderOff;
  EHdr->e_flags = Config->EFlags;
  EHdr->e_ehsize = sizeof(Elf_Ehdr);
  EHdr->e_phnum = Phdrs.size();
  EHdr->e_shentsize = sizeof(Elf_Shdr);

  if (!Config->Relocatable) {
    EHdr->e_phoff = sizeof(Elf_Ehdr);
    EHdr->e_phentsize = sizeof(Elf_Phdr);
  }

  // Write the program header table.
  auto *HBuf = reinterpret_cast<Elf_Phdr *>(Buf + EHdr->e_phoff);
  for (PhdrEntry *P : Phdrs) {
    HBuf->p_type = P->p_type;
    HBuf->p_flags = P->p_flags;
    HBuf->p_offset = P->p_offset;
    HBuf->p_vaddr = P->p_vaddr;
    HBuf->p_paddr = P->p_paddr;
    HBuf->p_filesz = P->p_filesz;
    HBuf->p_memsz = P->p_memsz;
    HBuf->p_align = P->p_align;
    ++HBuf;
  }

  // Write the section header table.
  //
  // The ELF header can only store numbers up to SHN_LORESERVE in the e_shnum
  // and e_shstrndx fields. When the value of one of these fields exceeds
  // SHN_LORESERVE ELF requires us to put sentinel values in the ELF header and
  // use fields in the section header at index 0 to store
  // the value. The sentinel values and fields are:
  // e_shnum = 0, SHdrs[0].sh_size = number of sections.
  // e_shstrndx = SHN_XINDEX, SHdrs[0].sh_link = .shstrtab section index.
  auto *SHdrs = reinterpret_cast<Elf_Shdr *>(Buf + EHdr->e_shoff);
  size_t Num = OutputSections.size() + 1;
  if (Num >= SHN_LORESERVE)
    SHdrs->sh_size = Num;
  else
    EHdr->e_shnum = Num;

  uint32_t StrTabIndex = In.ShStrTab->getParent()->SectionIndex;
  if (StrTabIndex >= SHN_LORESERVE) {
    SHdrs->sh_link = StrTabIndex;
    EHdr->e_shstrndx = SHN_XINDEX;
  } else {
    EHdr->e_shstrndx = StrTabIndex;
  }

  for (OutputSection *Sec : OutputSections)
    Sec->writeHeaderTo<ELFT>(++SHdrs);
}

// Open a result file.
template <class ELFT> void Writer<ELFT>::openFile() {
  uint64_t MaxSize = Config->Is64 ? INT64_MAX : UINT32_MAX;
  if (MaxSize < FileSize) {
    error("output file too large: " + Twine(FileSize) + " bytes");
    return;
  }

  unlinkAsync(Config->OutputFile);
  unsigned Flags = 0;
  if (!Config->Relocatable)
    Flags = FileOutputBuffer::F_executable;
  Expected<std::unique_ptr<FileOutputBuffer>> BufferOrErr =
      FileOutputBuffer::create(Config->OutputFile, FileSize, Flags);

  if (!BufferOrErr)
    error("failed to open " + Config->OutputFile + ": " +
          llvm::toString(BufferOrErr.takeError()));
  else
    Buffer = std::move(*BufferOrErr);
}

template <class ELFT> void Writer<ELFT>::writeSectionsBinary() {
  uint8_t *Buf = Buffer->getBufferStart();
  for (OutputSection *Sec : OutputSections)
    if (Sec->Flags & SHF_ALLOC)
      Sec->writeTo<ELFT>(Buf + Sec->Offset);
}

static void fillTrap(uint8_t *I, uint8_t *End) {
  for (; I + 4 <= End; I += 4)
    memcpy(I, &Target->TrapInstr, 4);
}

// Fill the last page of executable segments with trap instructions
// instead of leaving them as zero. Even though it is not required by any
// standard, it is in general a good thing to do for security reasons.
//
// We'll leave other pages in segments as-is because the rest will be
// overwritten by output sections.
template <class ELFT> void Writer<ELFT>::writeTrapInstr() {
  if (Script->HasSectionsCommand)
    return;

  // Fill the last page.
  uint8_t *Buf = Buffer->getBufferStart();
  for (PhdrEntry *P : Phdrs)
    if (P->p_type == PT_LOAD && (P->p_flags & PF_X))
      fillTrap(Buf + alignDown(P->p_offset + P->p_filesz, Target->PageSize),
               Buf + alignTo(P->p_offset + P->p_filesz, Target->PageSize));

  // Round up the file size of the last segment to the page boundary iff it is
  // an executable segment to ensure that other tools don't accidentally
  // trim the instruction padding (e.g. when stripping the file).
  PhdrEntry *Last = nullptr;
  for (PhdrEntry *P : Phdrs)
    if (P->p_type == PT_LOAD)
      Last = P;

  if (Last && (Last->p_flags & PF_X))
    Last->p_memsz = Last->p_filesz = alignTo(Last->p_filesz, Target->PageSize);
}

// Write section contents to a mmap'ed file.
template <class ELFT> void Writer<ELFT>::writeSections() {
  uint8_t *Buf = Buffer->getBufferStart();

  OutputSection *EhFrameHdr = nullptr;
  if (In.EhFrameHdr && !In.EhFrameHdr->empty())
    EhFrameHdr = In.EhFrameHdr->getParent();

  // In -r or -emit-relocs mode, write the relocation sections first as in
  // ELf_Rel targets we might find out that we need to modify the relocated
  // section while doing it.
  for (OutputSection *Sec : OutputSections)
    if (Sec->Type == SHT_REL || Sec->Type == SHT_RELA)
      Sec->writeTo<ELFT>(Buf + Sec->Offset);

  for (OutputSection *Sec : OutputSections)
    if (Sec != EhFrameHdr && Sec->Type != SHT_REL && Sec->Type != SHT_RELA)
      Sec->writeTo<ELFT>(Buf + Sec->Offset);

  // The .eh_frame_hdr depends on .eh_frame section contents, therefore
  // it should be written after .eh_frame is written.
  if (EhFrameHdr)
    EhFrameHdr->writeTo<ELFT>(Buf + EhFrameHdr->Offset);
}

template <class ELFT> void Writer<ELFT>::writeBuildId() {
  if (!In.BuildId || !In.BuildId->getParent())
    return;

  // Compute a hash of all sections of the output file.
  uint8_t *Start = Buffer->getBufferStart();
  uint8_t *End = Start + FileSize;
  In.BuildId->writeBuildId({Start, End});
}

template void elf::writeResult<ELF32LE>();
template void elf::writeResult<ELF32BE>();
template void elf::writeResult<ELF64LE>();
template void elf::writeResult<ELF64BE>();