aboutsummaryrefslogtreecommitdiff
path: root/src/ai.c
diff options
context:
space:
mode:
Diffstat (limited to 'src/ai.c')
-rw-r--r--src/ai.c664
1 files changed, 664 insertions, 0 deletions
diff --git a/src/ai.c b/src/ai.c
new file mode 100644
index 0000000..19d9eb5
--- /dev/null
+++ b/src/ai.c
@@ -0,0 +1,664 @@
+/* mpfr_ai -- Airy function Ai
+
+Copyright 2010, 2011, 2012, 2013 Free Software Foundation, Inc.
+Contributed by the AriC and Caramel projects, INRIA.
+
+This file is part of the GNU MPFR Library.
+
+The GNU MPFR Library is free software; you can redistribute it and/or modify
+it under the terms of the GNU Lesser General Public License as published by
+the Free Software Foundation; either version 3 of the License, or (at your
+option) any later version.
+
+The GNU MPFR Library is distributed in the hope that it will be useful, but
+WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
+or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
+License for more details.
+
+You should have received a copy of the GNU Lesser General Public License
+along with the GNU MPFR Library; see the file COPYING.LESSER. If not, see
+http://www.gnu.org/licenses/ or write to the Free Software Foundation, Inc.,
+51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA. */
+
+#define MPFR_NEED_LONGLONG_H
+#include "mpfr-impl.h"
+
+/* Reminder and notations:
+ -----------------------
+
+ Ai is the solution of:
+ / y'' - x*y = 0
+ { Ai(0) = 1/ ( 9^(1/3)*Gamma(2/3) )
+ \ Ai'(0) = -1/ ( 3^(1/3)*Gamma(1/3) )
+
+ Series development:
+ Ai(x) = sum (a_i*x^i)
+ = sum (t_i)
+
+ Recurrences:
+ a_(i+3) = a_i / ((i+2)*(i+3))
+ t_(i+3) = t_i * x^3 / ((i+2)*(i+3))
+
+ Values:
+ a_0 = Ai(0) ~ 0.355
+ a_1 = Ai'(0) ~ -0.259
+*/
+
+
+/* Airy function Ai evaluated by the most naive algorithm */
+static int
+mpfr_ai1 (mpfr_ptr y, mpfr_srcptr x, mpfr_rnd_t rnd)
+{
+ MPFR_ZIV_DECL (loop);
+ MPFR_SAVE_EXPO_DECL (expo);
+ mpfr_prec_t wprec; /* working precision */
+ mpfr_prec_t prec; /* target precision */
+ mpfr_prec_t err; /* used to estimate the evaluation error */
+ mpfr_prec_t correct_bits; /* estimates the number of correct bits*/
+ unsigned long int k;
+ unsigned long int cond; /* condition number of the series */
+ unsigned long int assumed_exponent; /* used as a lowerbound of |EXP(Ai(x))| */
+ int r;
+ mpfr_t s; /* used to store the partial sum */
+ mpfr_t ti, tip1; /* used to store successive values of t_i */
+ mpfr_t x3; /* used to store x^3 */
+ mpfr_t tmp_sp, tmp2_sp; /* small precision variables */
+ unsigned long int x3u; /* used to store ceil(x^3) */
+ mpfr_t temp1, temp2;
+ int test1, test2;
+
+ /* Logging */
+ MPFR_LOG_FUNC (
+ ("x[%Pu]=%.*Rg rnd=%d", mpfr_get_prec (x), mpfr_log_prec, x, rnd),
+ ("y[%Pu]=%.*Rg", mpfr_get_prec (y), mpfr_log_prec, y) );
+
+ /* Special cases */
+ if (MPFR_UNLIKELY (MPFR_IS_SINGULAR (x)))
+ {
+ if (MPFR_IS_NAN (x))
+ {
+ MPFR_SET_NAN (y);
+ MPFR_RET_NAN;
+ }
+ else if (MPFR_IS_INF (x))
+ return mpfr_set_ui (y, 0, rnd);
+ }
+
+
+ /* Save current exponents range */
+ MPFR_SAVE_EXPO_MARK (expo);
+
+ if (MPFR_UNLIKELY (MPFR_IS_ZERO (x)))
+ {
+ mpfr_t y1, y2;
+ prec = MPFR_PREC (y) + 3;
+ mpfr_init2 (y1, prec);
+ mpfr_init2 (y2, prec);
+ MPFR_ZIV_INIT (loop, prec);
+
+ /* ZIV loop */
+ for (;;)
+ {
+ mpfr_gamma_one_and_two_third (y1, y2, prec); /* y2 = Gamma(2/3)(1 + delta1), |delta1| <= 2^{1-prec}. */
+
+ r = mpfr_set_ui (y1, 9, MPFR_RNDN);
+ MPFR_ASSERTD (r == 0);
+ mpfr_cbrt (y1, y1, MPFR_RNDN); /* y1 = cbrt(9)(1 + delta2), |delta2| <= 2^{-prec}. */
+ mpfr_mul (y1, y1, y2, MPFR_RNDN);
+ mpfr_ui_div (y1, 1, y1, MPFR_RNDN);
+ if (MPFR_LIKELY (MPFR_CAN_ROUND (y1, prec - 3, MPFR_PREC (y), rnd)))
+ break;
+ MPFR_ZIV_NEXT (loop, prec);
+ }
+ r = mpfr_set (y, y1, rnd);
+ MPFR_ZIV_FREE (loop);
+ MPFR_SAVE_EXPO_FREE (expo);
+ mpfr_clear (y1);
+ mpfr_clear (y2);
+ return mpfr_check_range (y, r, rnd);
+ }
+
+ /* FIXME: underflow for large values of |x| ? */
+
+
+ /* Set initial precision */
+ /* If we compute sum(i=0, N-1, t_i), the relative error is bounded by */
+ /* 2*(4N)*2^(1-wprec)*C(|x|)/Ai(x) */
+ /* where C(|x|) = 1 if 0<=x<=1 */
+ /* and C(|x|) = (1/2)*x^(-1/4)*exp(2/3 x^(3/2)) if x >= 1 */
+
+ /* A priori, we do not know N, so we estimate it to ~ prec */
+ /* If 0<=x<=1, we estimate Ai(x) ~ 1/8 */
+ /* if 1<=x, we estimate Ai(x) ~ (1/4)*x^(-1/4)*exp(-2/3 * x^(3/2)) */
+ /* if x<=0, ????? */
+
+ /* We begin with 11 guard bits */
+ prec = MPFR_PREC (y)+11;
+ MPFR_ZIV_INIT (loop, prec);
+
+ /* The working precision is heuristically chosen in order to obtain */
+ /* approximately prec correct bits in the sum. To sum up: the sum */
+ /* is stopped when the *exact* sum gives ~ prec correct bit. And */
+ /* when it is stopped, the accuracy of the computed sum, with respect*/
+ /* to the exact one should be ~prec bits. */
+ mpfr_init2 (tmp_sp, MPFR_SMALL_PRECISION);
+ mpfr_init2 (tmp2_sp, MPFR_SMALL_PRECISION);
+ mpfr_abs (tmp_sp, x, MPFR_RNDU);
+ mpfr_pow_ui (tmp_sp, tmp_sp, 3, MPFR_RNDU);
+ mpfr_sqrt (tmp_sp, tmp_sp, MPFR_RNDU); /* tmp_sp ~ x^3/2 */
+
+ /* 0.96179669392597567 >~ 2/3 * log2(e). See algorithms.tex */
+ mpfr_set_str (tmp2_sp, "0.96179669392597567", 10, MPFR_RNDU);
+ mpfr_mul (tmp2_sp, tmp_sp, tmp2_sp, MPFR_RNDU);
+
+ /* cond represents the number of lost bits in the evaluation of the sum */
+ if ( (MPFR_IS_ZERO (x)) || (MPFR_GET_EXP (x) <= 0) )
+ cond = 0;
+ else
+ cond = mpfr_get_ui (tmp2_sp, MPFR_RNDU) - (MPFR_GET_EXP (x)-1)/4 - 1;
+
+ /* The variable assumed_exponent is used to store the maximal assumed */
+ /* exponent of Ai(x). More precisely, we assume that |Ai(x)| will be */
+ /* greater than 2^{-assumed_exponent}. */
+ if (MPFR_IS_ZERO (x))
+ assumed_exponent = 2;
+ else
+ {
+ if (MPFR_IS_POS (x))
+ {
+ if (MPFR_GET_EXP (x) <= 0)
+ assumed_exponent = 3;
+ else
+ assumed_exponent = (2 + (MPFR_GET_EXP (x)/4 + 1)
+ + mpfr_get_ui (tmp2_sp, MPFR_RNDU));
+ }
+ /* We do not know Ai (x) yet */
+ /* We cover the case when EXP (Ai (x))>=-10 */
+ else
+ assumed_exponent = 10;
+ }
+
+ wprec = prec + MPFR_INT_CEIL_LOG2 (prec) + 5 + cond + assumed_exponent;
+
+ mpfr_init (ti);
+ mpfr_init (tip1);
+ mpfr_init (temp1);
+ mpfr_init (temp2);
+ mpfr_init (x3);
+ mpfr_init (s);
+
+ /* ZIV loop */
+ for (;;)
+ {
+ MPFR_LOG_MSG (("Working precision: %Pu\n", wprec));
+ mpfr_set_prec (ti, wprec);
+ mpfr_set_prec (tip1, wprec);
+ mpfr_set_prec (x3, wprec);
+ mpfr_set_prec (s, wprec);
+
+ mpfr_sqr (x3, x, MPFR_RNDU);
+ mpfr_mul (x3, x3, x, (MPFR_IS_POS (x)?MPFR_RNDU:MPFR_RNDD)); /* x3=x^3 */
+ if (MPFR_IS_NEG (x))
+ MPFR_CHANGE_SIGN (x3);
+ x3u = mpfr_get_ui (x3, MPFR_RNDU); /* x3u >= ceil(x^3) */
+ if (MPFR_IS_NEG (x))
+ MPFR_CHANGE_SIGN (x3);
+
+ mpfr_gamma_one_and_two_third (temp1, temp2, wprec);
+ mpfr_set_ui (ti, 9, MPFR_RNDN);
+ mpfr_cbrt (ti, ti, MPFR_RNDN);
+ mpfr_mul (ti, ti, temp2, MPFR_RNDN);
+ mpfr_ui_div (ti, 1, ti , MPFR_RNDN); /* ti = 1/( Gamma (2/3)*9^(1/3) ) */
+
+ mpfr_set_ui (tip1, 3, MPFR_RNDN);
+ mpfr_cbrt (tip1, tip1, MPFR_RNDN);
+ mpfr_mul (tip1, tip1, temp1, MPFR_RNDN);
+ mpfr_neg (tip1, tip1, MPFR_RNDN);
+ mpfr_div (tip1, x, tip1, MPFR_RNDN); /* tip1 = -x/(Gamma (1/3)*3^(1/3)) */
+
+ mpfr_add (s, ti, tip1, MPFR_RNDN);
+
+
+ /* Evaluation of the series */
+ k = 2;
+ for (;;)
+ {
+ mpfr_mul (ti, ti, x3, MPFR_RNDN);
+ mpfr_mul (tip1, tip1, x3, MPFR_RNDN);
+
+ mpfr_div_ui2 (ti, ti, k, (k+1), MPFR_RNDN);
+ mpfr_div_ui2 (tip1, tip1, (k+1), (k+2), MPFR_RNDN);
+
+ k += 3;
+ mpfr_add (s, s, ti, MPFR_RNDN);
+ mpfr_add (s, s, tip1, MPFR_RNDN);
+
+ /* FIXME: if s==0 */
+ test1 = MPFR_IS_ZERO (ti)
+ || (MPFR_GET_EXP (ti) + (mpfr_exp_t)prec + 3 <= MPFR_GET_EXP (s));
+ test2 = MPFR_IS_ZERO (tip1)
+ || (MPFR_GET_EXP (tip1) + (mpfr_exp_t)prec + 3 <= MPFR_GET_EXP (s));
+
+ if ( test1 && test2 && (x3u <= k*(k+1)/2) )
+ break; /* FIXME: if k*(k+1) overflows */
+ }
+
+ MPFR_LOG_MSG (("Truncation rank: %lu\n", k));
+
+ err = 4 + MPFR_INT_CEIL_LOG2 (k) + cond - MPFR_GET_EXP (s);
+
+ /* err is the number of bits lost due to the evaluation error */
+ /* wprec-(prec+1): number of bits lost due to the approximation error */
+ MPFR_LOG_MSG (("Roundoff error: %Pu\n", err));
+ MPFR_LOG_MSG (("Approxim error: %Pu\n", wprec-prec-1));
+
+ if (wprec < err+1)
+ correct_bits=0;
+ else
+ {
+ if (wprec < err+prec+1)
+ correct_bits = wprec - err - 1;
+ else
+ correct_bits = prec;
+ }
+
+ if (MPFR_LIKELY (MPFR_CAN_ROUND (s, correct_bits, MPFR_PREC (y), rnd)))
+ break;
+
+ if (correct_bits == 0)
+ {
+ assumed_exponent *= 2;
+ MPFR_LOG_MSG (("Not a single bit correct (assumed_exponent=%lu)\n",
+ assumed_exponent));
+ wprec = prec + 5 + MPFR_INT_CEIL_LOG2 (k) + cond + assumed_exponent;
+ }
+ else
+ {
+ if (correct_bits < prec)
+ { /* The precision was badly chosen */
+ MPFR_LOG_MSG (("Bad assumption on the exponent of Ai(x)", 0));
+ MPFR_LOG_MSG ((" (E=%ld)\n", (long) MPFR_GET_EXP (s)));
+ wprec = prec + err + 1;
+ }
+ else
+ { /* We are really in a bad case of the TMD */
+ MPFR_ZIV_NEXT (loop, prec);
+
+ /* We update wprec */
+ /* We assume that K will not be multiplied by more than 4 */
+ wprec = prec + (MPFR_INT_CEIL_LOG2 (k)+2) + 5 + cond
+ - MPFR_GET_EXP (s);
+ }
+ }
+
+ } /* End of ZIV loop */
+
+ MPFR_ZIV_FREE (loop);
+
+ r = mpfr_set (y, s, rnd);
+
+ mpfr_clear (ti);
+ mpfr_clear (tip1);
+ mpfr_clear (temp1);
+ mpfr_clear (temp2);
+ mpfr_clear (x3);
+ mpfr_clear (s);
+ mpfr_clear (tmp_sp);
+ mpfr_clear (tmp2_sp);
+
+ MPFR_SAVE_EXPO_FREE (expo);
+ return mpfr_check_range (y, r, rnd);
+}
+
+
+/* Airy function Ai evaluated by Smith algorithm */
+static int
+mpfr_ai2 (mpfr_ptr y, mpfr_srcptr x, mpfr_rnd_t rnd)
+{
+ MPFR_ZIV_DECL (loop);
+ MPFR_SAVE_EXPO_DECL (expo);
+ mpfr_prec_t wprec; /* working precision */
+ mpfr_prec_t prec; /* target precision */
+ mpfr_prec_t err; /* used to estimate the evaluation error */
+ mpfr_prec_t correctBits; /* estimates the number of correct bits*/
+ unsigned long int i, j, L, t;
+ unsigned long int cond; /* condition number of the series */
+ unsigned long int assumed_exponent; /* used as a lowerbound of |EXP(Ai(x))| */
+ int r; /* returned ternary value */
+ mpfr_t s; /* used to store the partial sum */
+ mpfr_t u0, u1;
+ mpfr_t *z; /* used to store the (x^3j) */
+ mpfr_t result;
+ mpfr_t tmp_sp, tmp2_sp; /* small precision variables */
+ unsigned long int x3u; /* used to store ceil (x^3) */
+ mpfr_t temp1, temp2;
+ int test0, test1;
+
+ /* Logging */
+ MPFR_LOG_FUNC (
+ ("x[%Pu]=%.*Rg rnd=%d", mpfr_get_prec (x), mpfr_log_prec, x, rnd),
+ ("y[%Pu]=%.*Rg", mpfr_get_prec (y), mpfr_log_prec, y));
+
+ /* Special cases */
+ if (MPFR_UNLIKELY (MPFR_IS_SINGULAR (x)))
+ {
+ if (MPFR_IS_NAN (x))
+ {
+ MPFR_SET_NAN (y);
+ MPFR_RET_NAN;
+ }
+ else if (MPFR_IS_INF (x))
+ return mpfr_set_ui (y, 0, rnd);
+ }
+
+ /* Save current exponents range */
+ MPFR_SAVE_EXPO_MARK (expo);
+
+ /* FIXME: underflow for large values of |x| */
+
+
+ /* Set initial precision */
+ /* See the analysis for the naive evaluation */
+
+ /* We begin with 11 guard bits */
+ prec = MPFR_PREC (y) + 11;
+ MPFR_ZIV_INIT (loop, prec);
+
+ mpfr_init2 (tmp_sp, MPFR_SMALL_PRECISION);
+ mpfr_init2 (tmp2_sp, MPFR_SMALL_PRECISION);
+ mpfr_abs (tmp_sp, x, MPFR_RNDU);
+ mpfr_pow_ui (tmp_sp, tmp_sp, 3, MPFR_RNDU);
+ mpfr_sqrt (tmp_sp, tmp_sp, MPFR_RNDU); /* tmp_sp ~ x^3/2 */
+
+ /* 0.96179669392597567 >~ 2/3 * log2(e). See algorithms.tex */
+ mpfr_set_str (tmp2_sp, "0.96179669392597567", 10, MPFR_RNDU);
+ mpfr_mul (tmp2_sp, tmp_sp, tmp2_sp, MPFR_RNDU);
+
+ /* cond represents the number of lost bits in the evaluation of the sum */
+ if ( (MPFR_IS_ZERO (x)) || (MPFR_GET_EXP (x) <= 0) )
+ cond = 0;
+ else
+ cond = mpfr_get_ui (tmp2_sp, MPFR_RNDU) - (MPFR_GET_EXP (x) - 1)/4 - 1;
+
+ /* This variable is used to store the maximal assumed exponent of */
+ /* Ai (x). More precisely, we assume that |Ai (x)| will be greater than */
+ /* 2^{-assumedExp}. */
+ if (MPFR_IS_ZERO (x))
+ assumed_exponent = 2;
+ else
+ {
+ if (MPFR_IS_POS (x))
+ {
+ if (MPFR_GET_EXP (x) <= 0)
+ assumed_exponent = 3;
+ else
+ assumed_exponent = (2 + (MPFR_GET_EXP (x)/4 + 1)
+ + mpfr_get_ui (tmp2_sp, MPFR_RNDU));
+ }
+ /* We do not know Ai (x) yet */
+ /* We cover the case when EXP (Ai (x))>=-10 */
+ else
+ assumed_exponent = 10;
+ }
+
+ wprec = prec + MPFR_INT_CEIL_LOG2 (prec) + 6 + cond + assumed_exponent;
+
+ /* We assume that the truncation rank will be ~ prec */
+ L = __gmpfr_isqrt (prec);
+ MPFR_LOG_MSG (("size of blocks L = %lu\n", L));
+
+ z = (mpfr_t *) (*__gmp_allocate_func) ( (L + 1) * sizeof (mpfr_t) );
+ MPFR_ASSERTN (z != NULL);
+ for (j=0; j<=L; j++)
+ mpfr_init (z[j]);
+
+ mpfr_init (s);
+ mpfr_init (u0); mpfr_init (u1);
+ mpfr_init (result);
+ mpfr_init (temp1);
+ mpfr_init (temp2);
+
+ /* ZIV loop */
+ for (;;)
+ {
+ MPFR_LOG_MSG (("working precision: %Pu\n", wprec));
+
+ for (j=0; j<=L; j++)
+ mpfr_set_prec (z[j], wprec);
+ mpfr_set_prec (s, wprec);
+ mpfr_set_prec (u0, wprec); mpfr_set_prec (u1, wprec);
+ mpfr_set_prec (result, wprec);
+
+ mpfr_set_ui (u0, 1, MPFR_RNDN);
+ mpfr_set (u1, x, MPFR_RNDN);
+
+ mpfr_set_ui (z[0], 1, MPFR_RNDU);
+ mpfr_sqr (z[1], u1, MPFR_RNDU);
+ mpfr_mul (z[1], z[1], x, (MPFR_IS_POS (x) ? MPFR_RNDU : MPFR_RNDD) );
+
+ if (MPFR_IS_NEG (x))
+ MPFR_CHANGE_SIGN (z[1]);
+ x3u = mpfr_get_ui (z[1], MPFR_RNDU); /* x3u >= ceil (x^3) */
+ if (MPFR_IS_NEG (x))
+ MPFR_CHANGE_SIGN (z[1]);
+
+ for (j=2; j<=L ;j++)
+ {
+ if (j%2 == 0)
+ mpfr_sqr (z[j], z[j/2], MPFR_RNDN);
+ else
+ mpfr_mul (z[j], z[j-1], z[1], MPFR_RNDN);
+ }
+
+ mpfr_gamma_one_and_two_third (temp1, temp2, wprec);
+ mpfr_set_ui (u0, 9, MPFR_RNDN);
+ mpfr_cbrt (u0, u0, MPFR_RNDN);
+ mpfr_mul (u0, u0, temp2, MPFR_RNDN);
+ mpfr_ui_div (u0, 1, u0 , MPFR_RNDN); /* u0 = 1/( Gamma (2/3)*9^(1/3) ) */
+
+ mpfr_set_ui (u1, 3, MPFR_RNDN);
+ mpfr_cbrt (u1, u1, MPFR_RNDN);
+ mpfr_mul (u1, u1, temp1, MPFR_RNDN);
+ mpfr_neg (u1, u1, MPFR_RNDN);
+ mpfr_div (u1, x, u1, MPFR_RNDN); /* u1 = -x/(Gamma (1/3)*3^(1/3)) */
+
+ mpfr_set_ui (result, 0, MPFR_RNDN);
+ t = 0;
+
+ /* Evaluation of the series by Smith' method */
+ for (i=0; ; i++)
+ {
+ t += 3 * L;
+
+ /* k = 0 */
+ t -= 3;
+ mpfr_set (s, z[L-1], MPFR_RNDN);
+ for (j=L-2; ; j--)
+ {
+ t -= 3;
+ mpfr_div_ui2 (s, s, (t+2), (t+3), MPFR_RNDN);
+ mpfr_add (s, s, z[j], MPFR_RNDN);
+ if (j==0)
+ break;
+ }
+ mpfr_mul (s, s, u0, MPFR_RNDN);
+ mpfr_add (result, result, s, MPFR_RNDN);
+
+ mpfr_mul (u0, u0, z[L], MPFR_RNDN);
+ for (j=0; j<=L-1; j++)
+ {
+ mpfr_div_ui2 (u0, u0, (t + 2), (t + 3), MPFR_RNDN);
+ t += 3;
+ }
+
+ t++;
+
+ /* k = 1 */
+ t -= 3;
+ mpfr_set (s, z[L-1], MPFR_RNDN);
+ for (j=L-2; ; j--)
+ {
+ t -= 3;
+ mpfr_div_ui2 (s, s, (t + 2), (t + 3), MPFR_RNDN);
+ mpfr_add (s, s, z[j], MPFR_RNDN);
+ if (j==0)
+ break;
+ }
+ mpfr_mul (s, s, u1, MPFR_RNDN);
+ mpfr_add (result, result, s, MPFR_RNDN);
+
+ mpfr_mul (u1, u1, z[L], MPFR_RNDN);
+ for (j=0; j<=L-1; j++)
+ {
+ mpfr_div_ui2 (u1, u1, (t + 2), (t + 3), MPFR_RNDN);
+ t += 3;
+ }
+
+ t++;
+
+ /* k = 2 */
+ t++;
+
+ /* End of the loop over k */
+ t -= 3;
+
+ test0 = MPFR_IS_ZERO (u0) ||
+ MPFR_GET_EXP (u0) + (mpfr_exp_t)prec + 4 <= MPFR_GET_EXP (result);
+ test1 = MPFR_IS_ZERO (u1) ||
+ MPFR_GET_EXP (u1) + (mpfr_exp_t)prec + 4 <= MPFR_GET_EXP (result);
+
+ if ( test0 && test1 && (x3u <= (t + 2) * (t + 3) / 2) )
+ break;
+ }
+
+ MPFR_LOG_MSG (("Truncation rank: %lu\n", t));
+
+ err = (5 + MPFR_INT_CEIL_LOG2 (L+1) + MPFR_INT_CEIL_LOG2 (i+1)
+ + cond - MPFR_GET_EXP (result));
+
+ /* err is the number of bits lost due to the evaluation error */
+ /* wprec-(prec+1): number of bits lost due to the approximation error */
+ MPFR_LOG_MSG (("Roundoff error: %Pu\n", err));
+ MPFR_LOG_MSG (("Approxim error: %Pu\n", wprec - prec - 1));
+
+ if (wprec < err+1)
+ correctBits = 0;
+ else
+ {
+ if (wprec < err+prec+1)
+ correctBits = wprec - err - 1;
+ else
+ correctBits = prec;
+ }
+
+ if (MPFR_LIKELY (MPFR_CAN_ROUND (result, correctBits,
+ MPFR_PREC (y), rnd)))
+ break;
+
+ for (j=0; j<=L; j++)
+ mpfr_clear (z[j]);
+ (*__gmp_free_func) (z, (L + 1) * sizeof (mpfr_t));
+ L = __gmpfr_isqrt (t);
+ MPFR_LOG_MSG (("size of blocks L = %lu\n", L));
+ z = (mpfr_t *) (*__gmp_allocate_func) ( (L + 1) * sizeof (mpfr_t));
+ MPFR_ASSERTN (z != NULL);
+ for (j=0; j<=L; j++)
+ mpfr_init (z[j]);
+
+ if (correctBits == 0)
+ {
+ assumed_exponent *= 2;
+ MPFR_LOG_MSG (("Not a single bit correct (assumed_exponent=%lu)\n",
+ assumed_exponent));
+ wprec = prec + 6 + MPFR_INT_CEIL_LOG2 (t) + cond + assumed_exponent;
+ }
+ else
+ {
+ if (correctBits < prec)
+ { /* The precision was badly chosen */
+ MPFR_LOG_MSG (("Bad assumption on the exponent of Ai (x)", 0));
+ MPFR_LOG_MSG ((" (E=%ld)\n", (long) (MPFR_GET_EXP (result))));
+ wprec = prec + err + 1;
+ }
+ else
+ { /* We are really in a bad case of the TMD */
+ MPFR_ZIV_NEXT (loop, prec);
+
+ /* We update wprec */
+ /* We assume that t will not be multiplied by more than 4 */
+ wprec = (prec + (MPFR_INT_CEIL_LOG2 (t) + 2) + 6 + cond
+ - MPFR_GET_EXP (result));
+ }
+ }
+ } /* End of ZIV loop */
+
+ MPFR_ZIV_FREE (loop);
+ MPFR_SAVE_EXPO_FREE (expo);
+
+ r = mpfr_set (y, result, rnd);
+
+ mpfr_clear (tmp_sp);
+ mpfr_clear (tmp2_sp);
+ for (j=0; j<=L; j++)
+ mpfr_clear (z[j]);
+ (*__gmp_free_func) (z, (L + 1) * sizeof (mpfr_t));
+
+ mpfr_clear (s);
+ mpfr_clear (u0); mpfr_clear (u1);
+ mpfr_clear (result);
+ mpfr_clear (temp1);
+ mpfr_clear (temp2);
+
+ return r;
+}
+
+/* We consider that the boundary between the area where the naive method
+ should preferably be used and the area where Smith' method should preferably
+ be used has the following form:
+ it is a triangle defined by two lines (one for the negative values of x, and
+ one for the positive values of x) crossing at x=0.
+
+ More precisely,
+
+ * If x<0 and MPFR_AI_THRESHOLD1*x + MPFR_AI_THRESHOLD2*prec > MPFR_AI_SCALE,
+ use Smith' algorithm;
+ * If x>0 and MPFR_AI_THRESHOLD3*x + MPFR_AI_THRESHOLD2*prec > MPFR_AI_SCALE,
+ use Smith' algorithm;
+ * otherwise, use the naive method.
+*/
+
+#define MPFR_AI_SCALE 1048576
+
+int
+mpfr_ai (mpfr_ptr y, mpfr_srcptr x, mpfr_rnd_t rnd)
+{
+ mpfr_t temp1, temp2;
+ int use_ai2;
+ MPFR_SAVE_EXPO_DECL (expo);
+
+ /* The exponent range must be large enough for the computation of temp1. */
+ MPFR_SAVE_EXPO_MARK (expo);
+
+ mpfr_init2 (temp1, MPFR_SMALL_PRECISION);
+ mpfr_init2 (temp2, MPFR_SMALL_PRECISION);
+
+ mpfr_set (temp1, x, MPFR_RNDN);
+ mpfr_set_si (temp2, MPFR_AI_THRESHOLD2, MPFR_RNDN);
+ mpfr_mul_ui (temp2, temp2, MPFR_PREC (y) > ULONG_MAX ?
+ ULONG_MAX : (unsigned long) MPFR_PREC (y), MPFR_RNDN);
+
+ if (MPFR_IS_NEG (x))
+ mpfr_mul_si (temp1, temp1, MPFR_AI_THRESHOLD1, MPFR_RNDN);
+ else
+ mpfr_mul_si (temp1, temp1, MPFR_AI_THRESHOLD3, MPFR_RNDN);
+
+ mpfr_add (temp1, temp1, temp2, MPFR_RNDN);
+ mpfr_clear (temp2);
+
+ use_ai2 = mpfr_cmp_si (temp1, MPFR_AI_SCALE) > 0;
+ mpfr_clear (temp1);
+
+ MPFR_SAVE_EXPO_FREE (expo); /* Ignore all previous exceptions. */
+
+ return use_ai2 ? mpfr_ai2 (y, x, rnd) : mpfr_ai1 (y, x, rnd);
+}