aboutsummaryrefslogtreecommitdiff
path: root/src/jn.c
diff options
context:
space:
mode:
Diffstat (limited to 'src/jn.c')
-rw-r--r--src/jn.c329
1 files changed, 329 insertions, 0 deletions
diff --git a/src/jn.c b/src/jn.c
new file mode 100644
index 0000000..f857207
--- /dev/null
+++ b/src/jn.c
@@ -0,0 +1,329 @@
+/* mpfr_j0, mpfr_j1, mpfr_jn -- Bessel functions of 1st kind, integer order.
+ http://www.opengroup.org/onlinepubs/009695399/functions/j0.html
+
+Copyright 2007, 2008, 2009, 2010, 2011, 2012, 2013 Free Software Foundation, Inc.
+Contributed by the AriC and Caramel projects, INRIA.
+
+This file is part of the GNU MPFR Library.
+
+The GNU MPFR Library is free software; you can redistribute it and/or modify
+it under the terms of the GNU Lesser General Public License as published by
+the Free Software Foundation; either version 3 of the License, or (at your
+option) any later version.
+
+The GNU MPFR Library is distributed in the hope that it will be useful, but
+WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
+or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
+License for more details.
+
+You should have received a copy of the GNU Lesser General Public License
+along with the GNU MPFR Library; see the file COPYING.LESSER. If not, see
+http://www.gnu.org/licenses/ or write to the Free Software Foundation, Inc.,
+51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA. */
+
+#define MPFR_NEED_LONGLONG_H
+#include "mpfr-impl.h"
+
+/* Relations: j(-n,z) = (-1)^n j(n,z)
+ j(n,-z) = (-1)^n j(n,z)
+*/
+
+static int mpfr_jn_asympt (mpfr_ptr, long, mpfr_srcptr, mpfr_rnd_t);
+
+int
+mpfr_j0 (mpfr_ptr res, mpfr_srcptr z, mpfr_rnd_t r)
+{
+ return mpfr_jn (res, 0, z, r);
+}
+
+int
+mpfr_j1 (mpfr_ptr res, mpfr_srcptr z, mpfr_rnd_t r)
+{
+ return mpfr_jn (res, 1, z, r);
+}
+
+/* Estimate k1 such that z^2/4 = k1 * (k1 + n)
+ i.e., k1 = (sqrt(n^2+z^2)-n)/2 = n/2 * (sqrt(1+(z/n)^2) - 1) if n != 0.
+ Return k0 = min(2*k1/log(2), ULONG_MAX).
+*/
+static unsigned long
+mpfr_jn_k0 (unsigned long n, mpfr_srcptr z)
+{
+ mpfr_t t, u;
+ unsigned long k0;
+
+ mpfr_init2 (t, 32);
+ mpfr_init2 (u, 32);
+ if (n == 0)
+ {
+ mpfr_abs (t, z, MPFR_RNDN); /* t = 2*k1 */
+ }
+ else
+ {
+ mpfr_div_ui (t, z, n, MPFR_RNDN);
+ mpfr_sqr (t, t, MPFR_RNDN);
+ mpfr_add_ui (t, t, 1, MPFR_RNDN);
+ mpfr_sqrt (t, t, MPFR_RNDN);
+ mpfr_sub_ui (t, t, 1, MPFR_RNDN);
+ mpfr_mul_ui (t, t, n, MPFR_RNDN); /* t = 2*k1 */
+ }
+ /* the following is a 32-bit approximation to nearest to 1/log(2) */
+ mpfr_set_str_binary (u, "1.0111000101010100011101100101001");
+ mpfr_mul (t, t, u, MPFR_RNDN);
+ if (mpfr_fits_ulong_p (t, MPFR_RNDN))
+ k0 = mpfr_get_ui (t, MPFR_RNDN);
+ else
+ k0 = ULONG_MAX;
+ mpfr_clear (t);
+ mpfr_clear (u);
+ return k0;
+}
+
+int
+mpfr_jn (mpfr_ptr res, long n, mpfr_srcptr z, mpfr_rnd_t r)
+{
+ int inex;
+ int exception = 0;
+ unsigned long absn;
+ mpfr_prec_t prec, pbound, err;
+ mpfr_uprec_t uprec;
+ mpfr_exp_t exps, expT, diffexp;
+ mpfr_t y, s, t, absz;
+ unsigned long k, zz, k0;
+ MPFR_GROUP_DECL(g);
+ MPFR_SAVE_EXPO_DECL (expo);
+ MPFR_ZIV_DECL (loop);
+
+ MPFR_LOG_FUNC
+ (("n=%d x[%Pu]=%.*Rg rnd=%d", n, mpfr_get_prec (z), mpfr_log_prec, z, r),
+ ("res[%Pu]=%.*Rg inexact=%d",
+ mpfr_get_prec (res), mpfr_log_prec, res, inex));
+
+ absn = SAFE_ABS (unsigned long, n);
+
+ if (MPFR_UNLIKELY (MPFR_IS_SINGULAR (z)))
+ {
+ if (MPFR_IS_NAN (z))
+ {
+ MPFR_SET_NAN (res);
+ MPFR_RET_NAN;
+ }
+ /* j(n,z) tends to zero when z goes to +Inf or -Inf, oscillating around
+ 0. We choose to return +0 in that case. */
+ else if (MPFR_IS_INF (z)) /* FIXME: according to j(-n,z) = (-1)^n j(n,z)
+ we might want to give a sign depending on
+ z and n */
+ return mpfr_set_ui (res, 0, r);
+ else /* z=0: j(0,0)=1, j(n odd,+/-0) = +/-0 if n > 0, -/+0 if n < 0,
+ j(n even,+/-0) = +0 */
+ {
+ if (n == 0)
+ return mpfr_set_ui (res, 1, r);
+ else if (absn & 1) /* n odd */
+ return (n > 0) ? mpfr_set (res, z, r) : mpfr_neg (res, z, r);
+ else /* n even */
+ return mpfr_set_ui (res, 0, r);
+ }
+ }
+
+ MPFR_SAVE_EXPO_MARK (expo);
+
+ /* check for tiny input for j0: j0(z) = 1 - z^2/4 + ..., more precisely
+ |j0(z) - 1| <= z^2/4 for -1 <= z <= 1. */
+ if (n == 0)
+ MPFR_FAST_COMPUTE_IF_SMALL_INPUT (res, __gmpfr_one, -2 * MPFR_GET_EXP (z),
+ 2, 0, r, inex = _inexact; goto end);
+
+ /* idem for j1: j1(z) = z/2 - z^3/16 + ..., more precisely
+ |j1(z) - z/2| <= |z^3|/16 for -1 <= z <= 1, with the sign of j1(z) - z/2
+ being the opposite of that of z. */
+ /* TODO: add a test to trigger an error when
+ inex = _inexact; goto end
+ is forgotten in MPFR_FAST_COMPUTE_IF_SMALL_INPUT below. */
+ if (n == 1)
+ {
+ /* We first compute 2j1(z) = z - z^3/8 + ..., then divide by 2 using
+ the "extra" argument of MPFR_FAST_COMPUTE_IF_SMALL_INPUT. But we
+ must also handle the underflow case (an overflow is not possible
+ for small inputs). If an underflow occurred in mpfr_round_near_x,
+ the rounding was to zero or equivalent, and the result is 0, so
+ that the division by 2 will give the wanted result. Otherwise...
+ The rounded result in unbounded exponent range is res/2. If the
+ division by 2 doesn't underflow, it is exact, and we can return
+ this result. And an underflow in the division is a real underflow.
+ In case of directed rounding mode, the result is correct. But in
+ case of rounding to nearest, there is a double rounding problem,
+ and the result is 0 iff the result before the division is the
+ minimum positive number and _inexact has the same sign as z;
+ but in rounding to nearest, res/2 will yield 0 iff |res| is the
+ minimum positive number, so that we just need to test the result
+ of the division and the sign of _inexact. */
+ mpfr_clear_flags ();
+ MPFR_FAST_COMPUTE_IF_SMALL_INPUT
+ (res, z, -2 * MPFR_GET_EXP (z), 3, 0, r, {
+ int inex2 = mpfr_div_2ui (res, res, 1, r);
+ if (MPFR_UNLIKELY (r == MPFR_RNDN && MPFR_IS_ZERO (res)) &&
+ (MPFR_ASSERTN (inex2 != 0), SIGN (_inexact) != MPFR_SIGN (z)))
+ {
+ mpfr_nexttoinf (res);
+ inex = - inex2;
+ }
+ else
+ inex = inex2 != 0 ? inex2 : _inexact;
+ MPFR_SAVE_EXPO_UPDATE_FLAGS (expo, __gmpfr_flags);
+ goto end;
+ });
+ }
+
+ /* we can use the asymptotic expansion as soon as |z| > p log(2)/2,
+ but to get some margin we use it for |z| > p/2 */
+ pbound = MPFR_PREC (res) / 2 + 3;
+ MPFR_ASSERTN (pbound <= ULONG_MAX);
+ MPFR_ALIAS (absz, z, 1, MPFR_EXP (z));
+ if (mpfr_cmp_ui (absz, pbound) > 0)
+ {
+ inex = mpfr_jn_asympt (res, n, z, r);
+ if (inex != 0)
+ goto end;
+ }
+
+ MPFR_GROUP_INIT_3 (g, 32, y, s, t);
+
+ /* check underflow case: |j(n,z)| <= 1/sqrt(2 Pi n) (ze/2n)^n
+ (see algorithms.tex) */
+ /* FIXME: the code below doesn't detect all the underflow cases. Either
+ this should be done, or the generic code should detect underflows. */
+ if (absn > 0)
+ {
+ /* the following is an upper 32-bit approximation to exp(1)/2 */
+ mpfr_set_str_binary (y, "1.0101101111110000101010001011001");
+ if (MPFR_SIGN(z) > 0)
+ mpfr_mul (y, y, z, MPFR_RNDU);
+ else
+ {
+ mpfr_mul (y, y, z, MPFR_RNDD);
+ mpfr_neg (y, y, MPFR_RNDU);
+ }
+ mpfr_div_ui (y, y, absn, MPFR_RNDU);
+ /* now y is an upper approximation to |ze/2n|: y < 2^EXP(y),
+ thus |j(n,z)| < 1/2*y^n < 2^(n*EXP(y)-1).
+ If n*EXP(y) < emin then we have an underflow.
+ Note that if emin = MPFR_EMIN_MIN and j = 1, this inequality
+ will never be satisfied.
+ Warning: absn is an unsigned long. */
+ if ((MPFR_GET_EXP (y) < 0 && absn > - expo.saved_emin)
+ || (absn <= - MPFR_EMIN_MIN &&
+ MPFR_GET_EXP (y) < expo.saved_emin / (mpfr_exp_t) absn))
+ {
+ MPFR_GROUP_CLEAR (g);
+ MPFR_SAVE_EXPO_FREE (expo);
+ return mpfr_underflow (res, (r == MPFR_RNDN) ? MPFR_RNDZ : r,
+ (n % 2) ? ((n > 0) ? MPFR_SIGN(z) : -MPFR_SIGN(z))
+ : MPFR_SIGN_POS);
+ }
+ }
+
+ /* the logarithm of the ratio between the largest term in the series
+ and the first one is roughly bounded by k0, which we add to the
+ working precision to take into account this cancellation */
+ /* The following operations avoid integer overflow and ensure that
+ prec <= MPFR_PREC_MAX (prec = MPFR_PREC_MAX won't prevent an abort,
+ but the failure should be handled cleanly). */
+ k0 = mpfr_jn_k0 (absn, z);
+ MPFR_LOG_MSG (("k0 = %lu\n", k0));
+ uprec = MPFR_PREC_MAX - 2 * MPFR_INT_CEIL_LOG2 (MPFR_PREC_MAX) - 3;
+ if (k0 < uprec)
+ uprec = k0;
+ uprec += MPFR_PREC (res) + 2 * MPFR_INT_CEIL_LOG2 (MPFR_PREC (res)) + 3;
+ prec = uprec < MPFR_PREC_MAX ? (mpfr_prec_t) uprec : MPFR_PREC_MAX;
+
+ MPFR_ZIV_INIT (loop, prec);
+ for (;;)
+ {
+ MPFR_BLOCK_DECL (flags);
+
+ MPFR_GROUP_REPREC_3 (g, prec, y, s, t);
+ MPFR_BLOCK (flags, {
+ mpfr_pow_ui (t, z, absn, MPFR_RNDN); /* z^|n| */
+ mpfr_mul (y, z, z, MPFR_RNDN); /* z^2 */
+ mpfr_clear_erangeflag ();
+ zz = mpfr_get_ui (y, MPFR_RNDU);
+ /* FIXME: The error analysis is incorrect in case of range error. */
+ MPFR_ASSERTN (! mpfr_erangeflag_p ()); /* since mpfr_clear_erangeflag */
+ mpfr_div_2ui (y, y, 2, MPFR_RNDN); /* z^2/4 */
+ mpfr_fac_ui (s, absn, MPFR_RNDN); /* |n|! */
+ mpfr_div (t, t, s, MPFR_RNDN);
+ if (absn > 0)
+ mpfr_div_2ui (t, t, absn, MPFR_RNDN);
+ mpfr_set (s, t, MPFR_RNDN);
+ /* note: we assume here that the maximal error bound is proportional to
+ 2^exps, which is true also in the case where s=0 */
+ exps = MPFR_IS_ZERO (s) ? MPFR_EMIN_MIN : MPFR_GET_EXP (s);
+ expT = exps;
+ for (k = 1; ; k++)
+ {
+ MPFR_LOG_MSG (("loop on k, k = %lu\n", k));
+ mpfr_mul (t, t, y, MPFR_RNDN);
+ mpfr_neg (t, t, MPFR_RNDN);
+ /* Mathematically: absn <= LONG_MAX + 1 <= (ULONG_MAX + 1) / 2,
+ and in practice, k is not very large, so that one should have
+ k + absn <= ULONG_MAX. */
+ MPFR_ASSERTN (absn <= ULONG_MAX - k);
+ if (k + absn <= ULONG_MAX / k)
+ mpfr_div_ui (t, t, k * (k + absn), MPFR_RNDN);
+ else
+ {
+ mpfr_div_ui (t, t, k, MPFR_RNDN);
+ mpfr_div_ui (t, t, k + absn, MPFR_RNDN);
+ }
+ /* see above note */
+ exps = MPFR_IS_ZERO (s) ? MPFR_EMIN_MIN : MPFR_GET_EXP (t);
+ if (exps > expT)
+ expT = exps;
+ mpfr_add (s, s, t, MPFR_RNDN);
+ exps = MPFR_IS_ZERO (s) ? MPFR_EMIN_MIN : MPFR_GET_EXP (s);
+ if (exps > expT)
+ expT = exps;
+ /* Above it has been checked that k + absn <= ULONG_MAX. */
+ if (MPFR_GET_EXP (t) + (mpfr_exp_t) prec <= exps &&
+ zz / (2 * k) < k + absn)
+ break;
+ }
+ });
+ /* the error is bounded by (4k^2+21/2k+7) ulp(s)*2^(expT-exps)
+ <= (k+2)^2 ulp(s)*2^(2+expT-exps) */
+ diffexp = expT - exps;
+ err = 2 * MPFR_INT_CEIL_LOG2(k + 2) + 2;
+ /* FIXME: Can an overflow occur in the following sum? */
+ MPFR_ASSERTN (diffexp >= 0 && err >= 0 &&
+ diffexp <= MPFR_PREC_MAX - err);
+ err += diffexp;
+ if (MPFR_LIKELY (MPFR_CAN_ROUND (s, prec - err, MPFR_PREC(res), r)))
+ {
+ if (MPFR_LIKELY (! (MPFR_UNDERFLOW (flags) ||
+ MPFR_OVERFLOW (flags))))
+ break;
+ /* The error analysis is incorrect in case of exception.
+ If an underflow or overflow occurred, try once more in
+ a larger precision, and if this happens a second time,
+ then abort to avoid a probable infinite loop. This is
+ a problem that must be fixed! */
+ MPFR_ASSERTN (! exception);
+ exception = 1;
+ }
+ MPFR_ZIV_NEXT (loop, prec);
+ }
+ MPFR_ZIV_FREE (loop);
+
+ inex = ((n >= 0) || ((n & 1) == 0)) ? mpfr_set (res, s, r)
+ : mpfr_neg (res, s, r);
+
+ MPFR_GROUP_CLEAR (g);
+
+ end:
+ MPFR_SAVE_EXPO_FREE (expo);
+ return mpfr_check_range (res, inex, r);
+}
+
+#define MPFR_JN
+#include "jyn_asympt.c"