aboutsummaryrefslogtreecommitdiff
path: root/src/round_near_x.c
diff options
context:
space:
mode:
Diffstat (limited to 'src/round_near_x.c')
-rw-r--r--src/round_near_x.c233
1 files changed, 233 insertions, 0 deletions
diff --git a/src/round_near_x.c b/src/round_near_x.c
new file mode 100644
index 0000000..9789c9b
--- /dev/null
+++ b/src/round_near_x.c
@@ -0,0 +1,233 @@
+/* mpfr_round_near_x -- Round a floating point number nears another one.
+
+Copyright 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013 Free Software Foundation, Inc.
+Contributed by the AriC and Caramel projects, INRIA.
+
+This file is part of the GNU MPFR Library.
+
+The GNU MPFR Library is free software; you can redistribute it and/or modify
+it under the terms of the GNU Lesser General Public License as published by
+the Free Software Foundation; either version 3 of the License, or (at your
+option) any later version.
+
+The GNU MPFR Library is distributed in the hope that it will be useful, but
+WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
+or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
+License for more details.
+
+You should have received a copy of the GNU Lesser General Public License
+along with the GNU MPFR Library; see the file COPYING.LESSER. If not, see
+http://www.gnu.org/licenses/ or write to the Free Software Foundation, Inc.,
+51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA. */
+
+#include "mpfr-impl.h"
+
+/* Use MPFR_FAST_COMPUTE_IF_SMALL_INPUT instead (a simple wrapper) */
+
+/* int mpfr_round_near_x (mpfr_ptr y, mpfr_srcptr v, mpfr_uexp_t err, int dir,
+ mpfr_rnd_t rnd)
+
+ TODO: fix this description.
+ Assuming y = o(f(x)) = o(x + g(x)) with |g(x)| < 2^(EXP(v)-error)
+ If x is small enough, y ~= v. This function checks and does this.
+
+ It assumes that f(x) is not representable exactly as a FP number.
+ v must not be a singular value (NAN, INF or ZERO), usual values are
+ v=1 or v=x.
+
+ y is the destination (a mpfr_t), v the value to set (a mpfr_t),
+ err the error term (a mpfr_uexp_t) such that |g(x)| < 2^(EXP(x)-err),
+ dir (an int) is the direction of the error (if dir = 0,
+ it rounds toward 0, if dir=1, it rounds away from 0),
+ rnd the rounding mode.
+
+ It returns 0 if it can't round.
+ Otherwise it returns the ternary flag (It can't return an exact value).
+*/
+
+/* What "small enough" means?
+
+ We work with the positive values.
+ Assuming err > Prec (y)+1
+
+ i = [ y = o(x)] // i = inexact flag
+ If i == 0
+ Setting x in y is exact. We have:
+ y = [XXXXXXXXX[...]]0[...] + error where [..] are optional zeros
+ if dirError = ToInf,
+ x < f(x) < x + 2^(EXP(x)-err)
+ since x=y, and ulp (y)/2 > 2^(EXP(x)-err), we have:
+ y < f(x) < y+ulp(y) and |y-f(x)| < ulp(y)/2
+ if rnd = RNDN, nothing
+ if rnd = RNDZ, nothing
+ if rnd = RNDA, addoneulp
+ elif dirError = ToZero
+ x -2^(EXP(x)-err) < f(x) < x
+ since x=y, and ulp (y)/2 > 2^(EXP(x)-err), we have:
+ y-ulp(y) < f(x) < y and |y-f(x)| < ulp(y)/2
+ if rnd = RNDN, nothing
+ if rnd = RNDZ, nexttozero
+ if rnd = RNDA, nothing
+ NOTE: err > prec (y)+1 is needed only for RNDN.
+ elif i > 0 and i = EVEN_ROUNDING
+ So rnd = RNDN and we have y = x + ulp(y)/2
+ if dirError = ToZero,
+ we have x -2^(EXP(x)-err) < f(x) < x
+ so y - ulp(y)/2 - 2^(EXP(x)-err) < f(x) < y-ulp(y)/2
+ so y -ulp(y) < f(x) < y-ulp(y)/2
+ => nexttozero(y)
+ elif dirError = ToInf
+ we have x < f(x) < x + 2^(EXP(x)-err)
+ so y - ulp(y)/2 < f(x) < y+ulp(y)/2-ulp(y)/2
+ so y - ulp(y)/2 < f(x) < y
+ => do nothing
+ elif i < 0 and i = -EVEN_ROUNDING
+ So rnd = RNDN and we have y = x - ulp(y)/2
+ if dirError = ToZero,
+ y < f(x) < y + ulp(y)/2 => do nothing
+ if dirError = ToInf
+ y + ulp(y)/2 < f(x) < y + ulp(y) => AddOneUlp
+ elif i > 0
+ we can't have rnd = RNDZ, and prec(x) > prec(y), so ulp(x) < ulp(y)
+ we have y - ulp (y) < x < y
+ or more exactly y - ulp(y) + ulp(x)/2 <= x <= y - ulp(x)/2
+ if rnd = RNDA,
+ if dirError = ToInf,
+ we have x < f(x) < x + 2^(EXP(x)-err)
+ if err > prec (x),
+ we have 2^(EXP(x)-err) < ulp(x), so 2^(EXP(x)-err) <= ulp(x)/2
+ so f(x) <= y - ulp(x)/2+ulp(x)/2 <= y
+ and y - ulp(y) < x < f(x)
+ so we have y - ulp(y) < f(x) < y
+ so do nothing.
+ elif we can round, ie y - ulp(y) < x + 2^(EXP(x)-err) < y
+ we have y - ulp(y) < x < f(x) < x + 2^(EXP(x)-err) < y
+ so do nothing
+ otherwise
+ Wrong. Example X=[0.11101]111111110000
+ + 1111111111111111111....
+ elif dirError = ToZero
+ we have x - 2^(EXP(x)-err) < f(x) < x
+ so f(x) < x < y
+ if err > prec (x)
+ x-2^(EXP(x)-err) >= x-ulp(x)/2 >= y - ulp(y) + ulp(x)/2-ulp(x)/2
+ so y - ulp(y) < f(x) < y
+ so do nothing
+ elif we can round, ie y - ulp(y) < x - 2^(EXP(x)-err) < y
+ y - ulp(y) < x - 2^(EXP(x)-err) < f(x) < y
+ so do nothing
+ otherwise
+ Wrong. Example: X=[1.111010]00000010
+ - 10000001000000000000100....
+ elif rnd = RNDN,
+ y - ulp(y)/2 < x < y and we can't have x = y-ulp(y)/2:
+ so we have:
+ y - ulp(y)/2 + ulp(x)/2 <= x <= y - ulp(x)/2
+ if dirError = ToInf
+ we have x < f(x) < x+2^(EXP(x)-err) and ulp(y) > 2^(EXP(x)-err)
+ so y - ulp(y)/2 + ulp (x)/2 < f(x) < y + ulp (y)/2 - ulp (x)/2
+ we can round but we can't compute inexact flag.
+ if err > prec (x)
+ y - ulp(y)/2 + ulp (x)/2 < f(x) < y + ulp(x)/2 - ulp(x)/2
+ so y - ulp(y)/2 + ulp (x)/2 < f(x) < y
+ we can round and compute inexact flag. do nothing
+ elif we can round, ie y - ulp(y)/2 < x + 2^(EXP(x)-err) < y
+ we have y - ulp(y)/2 + ulp (x)/2 < f(x) < y
+ so do nothing
+ otherwise
+ Wrong
+ elif dirError = ToZero
+ we have x -2^(EXP(x)-err) < f(x) < x and ulp(y)/2 > 2^(EXP(x)-err)
+ so y-ulp(y)+ulp(x)/2 < f(x) < y - ulp(x)/2
+ if err > prec (x)
+ x- ulp(x)/2 < f(x) < x
+ so y - ulp(y)/2+ulp(x)/2 - ulp(x)/2 < f(x) < x <= y - ulp(x)/2 < y
+ do nothing
+ elif we can round, ie y-ulp(y)/2 < x-2^(EXP(x)-err) < y
+ we have y-ulp(y)/2 < x-2^(EXP(x)-err) < f(x) < x < y
+ do nothing
+ otherwise
+ Wrong
+ elif i < 0
+ same thing?
+ */
+
+int
+mpfr_round_near_x (mpfr_ptr y, mpfr_srcptr v, mpfr_uexp_t err, int dir,
+ mpfr_rnd_t rnd)
+{
+ int inexact, sign;
+ unsigned int old_flags = __gmpfr_flags;
+
+ MPFR_ASSERTD (!MPFR_IS_SINGULAR (v));
+ MPFR_ASSERTD (dir == 0 || dir == 1);
+
+ /* First check if we can round. The test is more restrictive than
+ necessary. Note that if err is not representable in an mpfr_exp_t,
+ then err > MPFR_PREC (v) and the conversion to mpfr_exp_t will not
+ occur. */
+ if (!(err > MPFR_PREC (y) + 1
+ && (err > MPFR_PREC (v)
+ || mpfr_round_p (MPFR_MANT (v), MPFR_LIMB_SIZE (v),
+ (mpfr_exp_t) err,
+ MPFR_PREC (y) + (rnd == MPFR_RNDN)))))
+ /* If we assume we can not round, return 0, and y is not modified */
+ return 0;
+
+ /* First round v in y */
+ sign = MPFR_SIGN (v);
+ MPFR_SET_EXP (y, MPFR_GET_EXP (v));
+ MPFR_SET_SIGN (y, sign);
+ MPFR_RNDRAW_GEN (inexact, y, MPFR_MANT (v), MPFR_PREC (v), rnd, sign,
+ if (dir == 0)
+ {
+ inexact = -sign;
+ goto trunc_doit;
+ }
+ else
+ goto addoneulp;
+ , if (MPFR_UNLIKELY (++MPFR_EXP (y) > __gmpfr_emax))
+ mpfr_overflow (y, rnd, sign)
+ );
+
+ /* Fix it in some cases */
+ MPFR_ASSERTD (!MPFR_IS_NAN (y) && !MPFR_IS_ZERO (y));
+ /* If inexact == 0, setting y from v is exact but we haven't
+ take into account yet the error term */
+ if (inexact == 0)
+ {
+ if (dir == 0) /* The error term is negative for v positive */
+ {
+ inexact = sign;
+ if (MPFR_IS_LIKE_RNDZ (rnd, MPFR_IS_NEG_SIGN (sign)))
+ {
+ /* case nexttozero */
+ /* The underflow flag should be set if the result is zero */
+ __gmpfr_flags = old_flags;
+ inexact = -sign;
+ mpfr_nexttozero (y);
+ if (MPFR_UNLIKELY (MPFR_IS_ZERO (y)))
+ mpfr_set_underflow ();
+ }
+ }
+ else /* The error term is positive for v positive */
+ {
+ inexact = -sign;
+ /* Round Away */
+ if (rnd != MPFR_RNDN && !MPFR_IS_LIKE_RNDZ (rnd, MPFR_IS_NEG_SIGN(sign)))
+ {
+ /* case nexttoinf */
+ /* The overflow flag should be set if the result is infinity */
+ inexact = sign;
+ mpfr_nexttoinf (y);
+ if (MPFR_UNLIKELY (MPFR_IS_INF (y)))
+ mpfr_set_overflow ();
+ }
+ }
+ }
+
+ /* the inexact flag cannot be 0, since this would mean an exact value,
+ and in this case we cannot round correctly */
+ MPFR_ASSERTD(inexact != 0);
+ MPFR_RET (inexact);
+}