aboutsummaryrefslogtreecommitdiff
path: root/platform/zynq/platform.c
blob: 8166641f22da18460d1a9a1d0a9bcc56d6192f2c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
/*
 * Copyright (c) 2012-2015 Travis Geiselbrecht
 *
 * Permission is hereby granted, free of charge, to any person obtaining
 * a copy of this software and associated documentation files
 * (the "Software"), to deal in the Software without restriction,
 * including without limitation the rights to use, copy, modify, merge,
 * publish, distribute, sublicense, and/or sell copies of the Software,
 * and to permit persons to whom the Software is furnished to do so,
 * subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be
 * included in all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
 * IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
 * CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
 */
#include <err.h>
#include <debug.h>
#include <stdio.h>
#include <string.h>
#include <arch/arm/mmu.h>
#include <kernel/vm.h>
#include <dev/uart.h>
#include <dev/interrupt/arm_gic.h>
#include <dev/timer/arm_cortex_a9.h>
#include <lib/console.h>
#include <lib/watchdog.h>
#include <platform.h>
#include <platform/zynq.h>
#include <platform/gem.h>
#include <platform/timer.h>
#include "platform_p.h"

#if ZYNQ_SDRAM_INIT
STATIC_ASSERT(SDRAM_SIZE != 0);
#endif

/* default timeout of the global hardware watchdog */
#ifndef ZYNQ_WATCHDOG_TIMEOUT
#define ZYNQ_WATCHDOG_TIMEOUT (1000) // 1 second
#endif

/* saved REBOOT_STATUS register */
static uint32_t saved_reboot_status;

/* target can specify this as the initial jam table to set up the soc */
__WEAK void ps7_init(void) { }

/* These should be defined in the target somewhere */
extern const uint32_t zynq_mio_cfg[ZYNQ_MIO_CNT];
extern const long zynq_ddr_cfg[];
extern const uint32_t zynq_ddr_cfg_cnt;
extern const zynq_pll_cfg_tree_t zynq_pll_cfg;
extern const zynq_clk_cfg_t zynq_clk_cfg;
extern const zynq_ddriob_cfg_t zynq_ddriob_cfg;

static inline int reg_poll(uint32_t addr,uint32_t mask)
{
    uint32_t iters = UINT_MAX;
    while (iters-- && !(*REG32(addr) & mask)) ;

    if (iters) {
        return 0;
    }

    return -1;
}

/* For each PLL we need to configure the cp / res / lock_cnt and then place the PLL in bypass
 * before doing a reset to switch to the new values. Then bypass is removed to switch back to using
 * the PLL once its locked.
 */
int zynq_pll_init(void)
{
    const zynq_pll_cfg_tree_t *cfg = &zynq_pll_cfg;

    SLCR_REG(ARM_PLL_CFG)  = PLL_CFG_LOCK_CNT(cfg->arm.lock_cnt) | PLL_CFG_PLL_CP(cfg->arm.cp) |
                             PLL_CFG_PLL_RES(cfg->arm.res);
    SLCR_REG(ARM_PLL_CTRL) = PLL_FDIV(cfg->arm.fdiv) | PLL_BYPASS_FORCE | PLL_RESET;
    SLCR_REG(ARM_PLL_CTRL) &= ~PLL_RESET;

    if (reg_poll((uintptr_t)&SLCR->PLL_STATUS, PLL_STATUS_ARM_PLL_LOCK) == -1) {
        return -1;
    }

    SLCR_REG(ARM_PLL_CTRL) &= ~PLL_BYPASS_FORCE;
    SLCR_REG(ARM_CLK_CTRL) = zynq_clk_cfg.arm_clk;

#if ZYNQ_SDRAM_INIT
    SLCR_REG(DDR_PLL_CFG)  = PLL_CFG_LOCK_CNT(cfg->ddr.lock_cnt) | PLL_CFG_PLL_CP(cfg->ddr.cp) |
                             PLL_CFG_PLL_RES(cfg->ddr.res);
    SLCR_REG(DDR_PLL_CTRL) = PLL_FDIV(cfg->ddr.fdiv) | PLL_BYPASS_FORCE | PLL_RESET;
    SLCR_REG(DDR_PLL_CTRL) &= ~PLL_RESET;

    if (reg_poll((uintptr_t)&SLCR->PLL_STATUS, PLL_STATUS_DDR_PLL_LOCK) == -1) {
        return -1;
    }

    SLCR_REG(DDR_PLL_CTRL) &= ~PLL_BYPASS_FORCE;
    SLCR_REG(DDR_CLK_CTRL) = zynq_clk_cfg.ddr_clk;
#elif SDRAM_SIZE == 0
    /* if we're not using sdram and haven't been told to initialize sdram, stop the DDR pll */
    SLCR_REG(DDR_CLK_CTRL) = 0;
    SLCR_REG(DDR_PLL_CTRL) |= PLL_PWRDOWN;
#endif
    SLCR_REG(IO_PLL_CFG)  = PLL_CFG_LOCK_CNT(cfg->io.lock_cnt) | PLL_CFG_PLL_CP(cfg->io.cp) |
                            PLL_CFG_PLL_RES(cfg->io.res);
    SLCR_REG(IO_PLL_CTRL) = PLL_FDIV(cfg->io.fdiv) | PLL_BYPASS_FORCE | PLL_RESET;
    SLCR_REG(IO_PLL_CTRL) &= ~PLL_RESET;

    if (reg_poll((uintptr_t)&SLCR->PLL_STATUS, PLL_STATUS_IO_PLL_LOCK) == -1) {
        return -1;
    }

    SLCR_REG(IO_PLL_CTRL) &= ~PLL_BYPASS_FORCE;
    return 0;
}

int zynq_mio_init(void)
{

    /* This DDRIOB configuration applies to both zybo and uzed, but it's possible
     * it may not work for all boards in the future. Just something to keep in mind
     * with different memory configurations.
     */
    SLCR_REG(GPIOB_CTRL) = GPIOB_CTRL_VREF_EN;

    for (size_t pin = 0; pin < countof(zynq_mio_cfg); pin++) {
        if (zynq_mio_cfg[pin] != MIO_DEFAULT) {
            SLCR_REG(MIO_PIN_00 + (pin * 4)) = zynq_mio_cfg[pin];
        }
    }

    SLCR_REG(SD0_WP_CD_SEL) = SDIO0_WP_SEL(0x37) | SDIO0_CD_SEL(0x2F);

    return 0;
}

void zynq_clk_init(void)
{
    SLCR_REG(DCI_CLK_CTRL)   = zynq_clk_cfg.dci_clk;
    SLCR_REG(GEM0_CLK_CTRL)  = zynq_clk_cfg.gem0_clk;
    SLCR_REG(GEM0_RCLK_CTRL) = zynq_clk_cfg.gem0_rclk;
    SLCR_REG(GEM1_CLK_CTRL)  = zynq_clk_cfg.gem1_clk;
    SLCR_REG(GEM1_RCLK_CTRL) = zynq_clk_cfg.gem1_rclk;
    SLCR_REG(SMC_CLK_CTRL)   = zynq_clk_cfg.smc_clk;
    SLCR_REG(LQSPI_CLK_CTRL) = zynq_clk_cfg.lqspi_clk;
    SLCR_REG(SDIO_CLK_CTRL)  = zynq_clk_cfg.sdio_clk;
    SLCR_REG(UART_CLK_CTRL)  = zynq_clk_cfg.uart_clk;
    SLCR_REG(SPI_CLK_CTRL)   = zynq_clk_cfg.spi_clk;
    SLCR_REG(CAN_CLK_CTRL)   = zynq_clk_cfg.can_clk;
    SLCR_REG(CAN_MIOCLK_CTRL)= zynq_clk_cfg.can_mioclk;
    SLCR_REG(USB0_CLK_CTRL)  = zynq_clk_cfg.usb0_clk;
    SLCR_REG(USB1_CLK_CTRL)  = zynq_clk_cfg.usb1_clk;
    SLCR_REG(PCAP_CLK_CTRL)  = zynq_clk_cfg.pcap_clk;
    SLCR_REG(FPGA0_CLK_CTRL) = zynq_clk_cfg.fpga0_clk;
    SLCR_REG(FPGA1_CLK_CTRL) = zynq_clk_cfg.fpga1_clk;
    SLCR_REG(FPGA2_CLK_CTRL) = zynq_clk_cfg.fpga2_clk;
    SLCR_REG(FPGA3_CLK_CTRL) = zynq_clk_cfg.fpga3_clk;
    SLCR_REG(APER_CLK_CTRL)  = zynq_clk_cfg.aper_clk;
    SLCR_REG(CLK_621_TRUE)   = zynq_clk_cfg.clk_621_true;
}

#if ZYNQ_SDRAM_INIT
void zynq_ddr_init(void)
{
    SLCR_REG(DDRIOB_ADDR0) = zynq_ddriob_cfg.addr0;
    SLCR_REG(DDRIOB_ADDR1) = zynq_ddriob_cfg.addr1;
    SLCR_REG(DDRIOB_DATA0) = zynq_ddriob_cfg.data0;
    SLCR_REG(DDRIOB_DATA1) = zynq_ddriob_cfg.data1;
    SLCR_REG(DDRIOB_DIFF0) = zynq_ddriob_cfg.diff0;
    SLCR_REG(DDRIOB_DIFF1) = zynq_ddriob_cfg.diff1;
    SLCR_REG(DDRIOB_CLOCK) = DDRIOB_OUTPUT_EN(0x3);

    /* These register fields are not documented in the TRM. These
     * values represent the defaults generated via the Zynq tools
     */
    SLCR_REG(DDRIOB_DRIVE_SLEW_ADDR) = 0x0018C61CU;
    SLCR_REG(DDRIOB_DRIVE_SLEW_DATA) = 0x00F9861CU;
    SLCR_REG(DDRIOB_DRIVE_SLEW_DIFF) = 0x00F9861CU;
    SLCR_REG(DDRIOB_DRIVE_SLEW_CLOCK) = 0x00F9861CU;
    SLCR_REG(DDRIOB_DDR_CTRL) = 0x00000E60U;
    SLCR_REG(DDRIOB_DCI_CTRL) = 0x00000001U;
    SLCR_REG(DDRIOB_DCI_CTRL) |= 0x00000020U;
    SLCR_REG(DDRIOB_DCI_CTRL) |= 0x00000823U;

    /* Write addresss / value pairs from target table */
    for (size_t i = 0; i < zynq_ddr_cfg_cnt; i += 2) {
        *REG32(zynq_ddr_cfg[i]) = zynq_ddr_cfg[i+1];
    }

    /* Wait for DCI done */
    reg_poll((uintptr_t)&SLCR->DDRIOB_DCI_STATUS, 0x2000);

    /* Bring ddr out of reset and wait until self refresh */
    *REG32(DDRC_CTRL) |= DDRC_CTRL_OUT_OF_RESET;
    reg_poll(DDRC_MODE_STATUS, DDRC_STS_SELF_REFRESH);

    /* Switch timer to 64k */
    *REG32(0XF8007000) = *REG32(0xF8007000) & ~0x20000000U;

    if (zynq_ddriob_cfg.ibuf_disable) {
        SLCR_REG(DDRIOB_DATA0) |= DDRIOB_IBUF_DISABLE_MODE;
        SLCR_REG(DDRIOB_DATA1) |= DDRIOB_IBUF_DISABLE_MODE;
        SLCR_REG(DDRIOB_DIFF0) |= DDRIOB_IBUF_DISABLE_MODE;
        SLCR_REG(DDRIOB_DIFF1) |= DDRIOB_IBUF_DISABLE_MODE;
    }

    if (zynq_ddriob_cfg.term_disable) {
        SLCR_REG(DDRIOB_DATA0) |= DDRIOB_TERM_DISABLE_MODE;
        SLCR_REG(DDRIOB_DATA1) |= DDRIOB_TERM_DISABLE_MODE;
        SLCR_REG(DDRIOB_DIFF0) |= DDRIOB_TERM_DISABLE_MODE;
        SLCR_REG(DDRIOB_DIFF1) |= DDRIOB_TERM_DISABLE_MODE;
    }
}
#endif

STATIC_ASSERT(IS_ALIGNED(SDRAM_BASE, MB));
STATIC_ASSERT(IS_ALIGNED(SDRAM_SIZE, MB));

#if SDRAM_SIZE != 0
/* if we have sdram, the first 1MB is covered by sram */
#define RAM_SIZE (MB + (SDRAM_SIZE - MB))
#else
#define RAM_SIZE (MB)
#endif

/* initial memory mappings. parsed by start.S */
struct mmu_initial_mapping mmu_initial_mappings[] = {
    /* 1GB of sram + sdram space */
    {
        .phys = SRAM_BASE,
        .virt = KERNEL_BASE,
        .size = RAM_SIZE,
        .flags = 0,
        .name = "memory"
    },

    /* AXI fpga fabric bus 0 */
    {
        .phys = 0x40000000,
        .virt = 0x40000000,
        .size = (128*1024*1024),
        .flags = MMU_INITIAL_MAPPING_FLAG_DEVICE,
        .name = "axi0"
    },

    /* AXI fpga fabric bus 1 */
    {
        .phys = 0x80000000,
        .virt = 0x80000000,
        .size = (16*1024*1024),
        .flags = MMU_INITIAL_MAPPING_FLAG_DEVICE,
        .name = "axi1"
    },
    /* 0xe0000000 hardware devices */
    {
        .phys = 0xe0000000,
        .virt = 0xe0000000,
        .size = 0x00300000,
        .flags = MMU_INITIAL_MAPPING_FLAG_DEVICE,
        .name = "hw-e0000000"
    },

    /* 0xe1000000 hardware devices */
    {
        .phys = 0xe1000000,
        .virt = 0xe1000000,
        .size = 0x05000000,
        .flags = MMU_INITIAL_MAPPING_FLAG_DEVICE,
        .name = "hw-e1000000"
    },

    /* 0xf8000000 hardware devices */
    {
        .phys = 0xf8000000,
        .virt = 0xf8000000,
        .size = 0x01000000,
        .flags = MMU_INITIAL_MAPPING_FLAG_DEVICE,
        .name = "hw-f8000000"
    },

    /* 0xfc000000 hardware devices */
    {
        .phys = 0xfc000000,
        .virt = 0xfc000000,
        .size = 0x02000000,
        .flags = MMU_INITIAL_MAPPING_FLAG_DEVICE,
        .name = "hw-fc000000"
    },

    /* sram high aperture */
    {
        .phys = 0xfff00000,
        .virt = 0xfff00000,
        .size = 0x00100000,
        .flags = MMU_INITIAL_MAPPING_FLAG_DEVICE
    },

    /* identity map to let the boot code run */
    {
        .phys = SRAM_BASE,
        .virt = SRAM_BASE,
        .size = RAM_SIZE,
        .flags = MMU_INITIAL_MAPPING_TEMPORARY
    },

    /* null entry to terminate the list */
    { 0 }
};

#if SDRAM_SIZE != 0
static pmm_arena_t sdram_arena = {
    .name = "sdram",
    .base = SDRAM_BASE,
    .size = SDRAM_SIZE - MB, /* first 1MB is covered by SRAM */
    .flags = PMM_ARENA_FLAG_KMAP
};
#endif

static pmm_arena_t sram_arena = {
    .name = "sram",
    .base = SRAM_BASE,
    .size = SRAM_SIZE,
    .priority = 1,
    .flags = PMM_ARENA_FLAG_KMAP
};

void platform_init_mmu_mappings(void)
{
}

void platform_early_init(void)
{
#if 0
    ps7_init();
#else
    /* Unlock the registers and leave them that way */
    zynq_slcr_unlock();
    zynq_mio_init();
    zynq_pll_init();
    zynq_clk_init();
#if ZYNQ_SDRAM_INIT
    zynq_ddr_init();
#endif
#endif

    /* Enable all level shifters */
    SLCR_REG(LVL_SHFTR_EN) = 0xF;
    /* FPGA SW reset (not documented, but mandatory) */
    SLCR_REG(FPGA_RST_CTRL) = 0x0;

    /* zynq manual says this is mandatory for cache init */
    *REG32(SLCR_BASE + 0xa1c) = 0x020202;

    /* save the reboot status register, clear bits we dont want to save */
    saved_reboot_status = SLCR->REBOOT_STATUS;
    SLCR->REBOOT_STATUS &= ~(0xff << 16);

    /* early initialize the uart so we can printf */
    uart_init_early();

    /* initialize the interrupt controller */
    arm_gic_init();
    zynq_gpio_init();

    /* initialize the timer block */
    arm_cortex_a9_timer_init(CPUPRIV_BASE, zynq_get_arm_timer_freq());

    /* initialize the hardware watchdog */
    watchdog_hw_init(ZYNQ_WATCHDOG_TIMEOUT);

    /* bump the 2nd cpu into our code space and remap the top SRAM block */
    if (KERNEL_LOAD_OFFSET != 0) {
        /* construct a trampoline to get the 2nd cpu up to the trap routine */

        /* figure out the offset of the trampoline routine in physical space from address 0 */
        extern void platform_reset(void);
        addr_t tramp = (addr_t)&platform_reset;
        tramp -= KERNEL_BASE;
        tramp += MEMBASE;

        /* stuff in a ldr pc, [nextaddrress], and a target address */
        uint32_t *ptr = (uint32_t *)KERNEL_BASE;

        ptr[0] = 0xe51ff004; // ldr pc, [pc, #-4]
        ptr[1] = tramp;
        arch_clean_invalidate_cache_range((addr_t)ptr, 8);
    }

    /* reset the 2nd cpu, letting it go through its reset vector (at 0x0 physical) */
    SLCR_REG(A9_CPU_RST_CTRL) |= (1<<1); // reset cpu 1
    spin(10);
    SLCR_REG(A9_CPU_RST_CTRL) &= ~(1<<1); // unreset cpu 1

    /* wait for the 2nd cpu to reset, go through the usual reset vector, and get trapped by our code */
    /* see platform/zynq/reset.S */
    extern volatile int __cpu_trapped;
    uint count = 100000;
    while (--count) {
        arch_clean_invalidate_cache_range((addr_t)&__cpu_trapped, sizeof(__cpu_trapped));
        if (__cpu_trapped != 0)
            break;
    }
    if (count == 0) {
        panic("ZYNQ: failed to trap 2nd cpu\n");
    }

    /* bounce the 4th sram region down to lower address */
    SLCR_REG(OCM_CFG) &= ~0xf; /* all banks at low address */

    /* add the main memory arena */
#if !ZYNQ_CODE_IN_SDRAM && SDRAM_SIZE != 0
    /* In the case of running from SRAM, and we are using SDRAM,
     * there is a discontinuity between the end of SRAM (256K) and the start of SDRAM (1MB),
     * so intentionally bump the boot-time allocator to start in the base of SDRAM.
     */
    extern uintptr_t boot_alloc_start;
    extern uintptr_t boot_alloc_end;

    boot_alloc_start = KERNEL_BASE + MB;
    boot_alloc_end = KERNEL_BASE + MB;
#endif

#if SDRAM_SIZE != 0
    pmm_add_arena(&sdram_arena);
#endif
    pmm_add_arena(&sram_arena);
}

void platform_init(void)
{
    uart_init();

    /* enable if we want to see some hardware boot status */
#if LK_DEBUGLEVEL > 0
    printf("zynq boot status:\n");
    printf("\tREBOOT_STATUS 0x%x\n", saved_reboot_status);
    if (BIT(saved_reboot_status, 16)) printf("\t\tSWDT_RST\n");
    if (BIT(saved_reboot_status, 17)) printf("\t\tAWDT0_RST\n");
    if (BIT(saved_reboot_status, 18)) printf("\t\tAWDT1_RST\n");
    if (BIT(saved_reboot_status, 19)) printf("\t\tSLC_RST\n");
    if (BIT(saved_reboot_status, 20)) printf("\t\tDBG_RST\n");
    if (BIT(saved_reboot_status, 21)) printf("\t\tSRST_B\n");
    if (BIT(saved_reboot_status, 22)) printf("\t\tPOR\n");
    printf("\tREBOOT_STATE 0x%lx\n", BITS_SHIFT(saved_reboot_status, 31, 24));
    printf("\tboot mode 0x%x\n", zynq_get_boot_mode());
#endif
}

void platform_quiesce(void)
{
#if ZYNQ_WITH_GEM_ETH
    gem_disable();
#endif

    platform_stop_timer();

    /* stop the 2nd cpu and hold in reset */
    SLCR_REG(A9_CPU_RST_CTRL) |= (1<<1); // reset cpu 1
}

/* called from lkboot to see if we want to abort autobooting.
 * having the BOOT_MODE pins set to JTAG should cause us to hang out in
 * whatever binary is loaded at the time.
 */
bool platform_abort_autoboot(void)
{
    /* test BOOT_MODE pins to see if we want to skip the autoboot stuff */
    uint32_t boot_mode = zynq_get_boot_mode();
    if (boot_mode == ZYNQ_BOOT_MODE_JTAG) {
        printf("ZYNQ: disabling autoboot due to JTAG/QSPI jumper being set to JTAG\n");
        return true;
    }

    return false;
}

#if WITH_LIB_CONSOLE
static int cmd_zynq(int argc, const cmd_args *argv)
{
    if (argc < 2) {
notenoughargs:
        printf("not enough arguments\n");
usage:
        printf("usage: %s <command>\n", argv[0].str);
        printf("\tslcr lock\n");
        printf("\tslcr unlock\n");
        printf("\tslcr lockstatus\n");
        printf("\tmio\n");
        printf("\tclocks\n");
        printf("\ttrip_watchdog\n");
        return -1;
    }

    if (!strcmp(argv[1].str, "slcr")) {
        if (argc < 3) goto notenoughargs;

        bool print_lock_status = false;
        if (!strcmp(argv[2].str, "lock")) {
            zynq_slcr_lock();
            print_lock_status = true;
        } else if (!strcmp(argv[2].str, "unlock")) {
            zynq_slcr_unlock();
            print_lock_status = true;
        } else if (print_lock_status || !strcmp(argv[2].str, "lockstatus")) {
            printf("%s\n", (SLCR->SLCR_LOCKSTA & 0x1) ? "locked" : "unlocked");
        } else {
            goto usage;
        }
    } else if (!strcmp(argv[1].str, "mio")) {
        printf("zynq mio:\n");
        for (size_t i = 0; i < ZYNQ_MIO_CNT; i++) {
            printf("\t%02u: 0x%08x", i, *REG32((uintptr_t)&SLCR->MIO_PIN_00 + (i * 4)));
            if (i % 4 == 3 || i == 53) {
                putchar('\n');
            }
        }
    } else if (!strcmp(argv[1].str, "clocks")) {
        zynq_dump_clocks();
    } else if (!strcmp(argv[1].str, "trip_watchdog")) {
        /* try to trip the watchdog by disabling interrupts for a while */
        arch_disable_ints();
        for (int i = 0; i < 20; i++) {
            spin(250000);
            printf("SWDT MODE 0x%x CONTROL 0x%x STATUS 0x%x\n", SWDT->MODE, SWDT->CONTROL, SWDT->STATUS);
        }
        arch_enable_ints();
    } else {
        goto usage;
    }

    return 0;
}

STATIC_COMMAND_START
#if LK_DEBUGLEVEL > 1
STATIC_COMMAND("zynq", "zynq configuration commands", &cmd_zynq)
#endif
STATIC_COMMAND_END(zynq);
#endif // WITH_LIB_CONSOLE