summaryrefslogtreecommitdiff
path: root/src/main/java/org/apache/commons/math3/geometry/partitioning/utilities
diff options
context:
space:
mode:
Diffstat (limited to 'src/main/java/org/apache/commons/math3/geometry/partitioning/utilities')
-rw-r--r--src/main/java/org/apache/commons/math3/geometry/partitioning/utilities/AVLTree.java634
-rw-r--r--src/main/java/org/apache/commons/math3/geometry/partitioning/utilities/OrderedTuple.java431
-rw-r--r--src/main/java/org/apache/commons/math3/geometry/partitioning/utilities/doc-files/OrderedTuple.pngbin0 -> 28882 bytes
-rw-r--r--src/main/java/org/apache/commons/math3/geometry/partitioning/utilities/package-info.java24
4 files changed, 1089 insertions, 0 deletions
diff --git a/src/main/java/org/apache/commons/math3/geometry/partitioning/utilities/AVLTree.java b/src/main/java/org/apache/commons/math3/geometry/partitioning/utilities/AVLTree.java
new file mode 100644
index 0000000..00c9d3e
--- /dev/null
+++ b/src/main/java/org/apache/commons/math3/geometry/partitioning/utilities/AVLTree.java
@@ -0,0 +1,634 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one or more
+ * contributor license agreements. See the NOTICE file distributed with
+ * this work for additional information regarding copyright ownership.
+ * The ASF licenses this file to You under the Apache License, Version 2.0
+ * (the "License"); you may not use this file except in compliance with
+ * the License. You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+package org.apache.commons.math3.geometry.partitioning.utilities;
+
+/** This class implements AVL trees.
+ *
+ * <p>The purpose of this class is to sort elements while allowing
+ * duplicate elements (i.e. such that {@code a.equals(b)} is
+ * true). The {@code SortedSet} interface does not allow this, so
+ * a specific class is needed. Null elements are not allowed.</p>
+ *
+ * <p>Since the {@code equals} method is not sufficient to
+ * differentiate elements, the {@link #delete delete} method is
+ * implemented using the equality operator.</p>
+ *
+ * <p>In order to clearly mark the methods provided here do not have
+ * the same semantics as the ones specified in the
+ * {@code SortedSet} interface, different names are used
+ * ({@code add} has been replaced by {@link #insert insert} and
+ * {@code remove} has been replaced by {@link #delete
+ * delete}).</p>
+ *
+ * <p>This class is based on the C implementation Georg Kraml has put
+ * in the public domain. Unfortunately, his <a
+ * href="www.purists.org/georg/avltree/index.html">page</a> seems not
+ * to exist any more.</p>
+ *
+ * @param <T> the type of the elements
+ *
+ * @since 3.0
+ * @deprecated as of 3.4, this class is not used anymore and considered
+ * to be out of scope of Apache Commons Math
+ */
+@Deprecated
+public class AVLTree<T extends Comparable<T>> {
+
+ /** Top level node. */
+ private Node top;
+
+ /** Build an empty tree.
+ */
+ public AVLTree() {
+ top = null;
+ }
+
+ /** Insert an element in the tree.
+ * @param element element to insert (silently ignored if null)
+ */
+ public void insert(final T element) {
+ if (element != null) {
+ if (top == null) {
+ top = new Node(element, null);
+ } else {
+ top.insert(element);
+ }
+ }
+ }
+
+ /** Delete an element from the tree.
+ * <p>The element is deleted only if there is a node {@code n}
+ * containing exactly the element instance specified, i.e. for which
+ * {@code n.getElement() == element}. This is purposely
+ * <em>different</em> from the specification of the
+ * {@code java.util.Set} {@code remove} method (in fact,
+ * this is the reason why a specific class has been developed).</p>
+ * @param element element to delete (silently ignored if null)
+ * @return true if the element was deleted from the tree
+ */
+ public boolean delete(final T element) {
+ if (element != null) {
+ for (Node node = getNotSmaller(element); node != null; node = node.getNext()) {
+ // loop over all elements neither smaller nor larger
+ // than the specified one
+ if (node.element == element) {
+ node.delete();
+ return true;
+ } else if (node.element.compareTo(element) > 0) {
+ // all the remaining elements are known to be larger,
+ // the element is not in the tree
+ return false;
+ }
+ }
+ }
+ return false;
+ }
+
+ /** Check if the tree is empty.
+ * @return true if the tree is empty
+ */
+ public boolean isEmpty() {
+ return top == null;
+ }
+
+
+ /** Get the number of elements of the tree.
+ * @return number of elements contained in the tree
+ */
+ public int size() {
+ return (top == null) ? 0 : top.size();
+ }
+
+ /** Get the node whose element is the smallest one in the tree.
+ * @return the tree node containing the smallest element in the tree
+ * or null if the tree is empty
+ * @see #getLargest
+ * @see #getNotSmaller
+ * @see #getNotLarger
+ * @see Node#getPrevious
+ * @see Node#getNext
+ */
+ public Node getSmallest() {
+ return (top == null) ? null : top.getSmallest();
+ }
+
+ /** Get the node whose element is the largest one in the tree.
+ * @return the tree node containing the largest element in the tree
+ * or null if the tree is empty
+ * @see #getSmallest
+ * @see #getNotSmaller
+ * @see #getNotLarger
+ * @see Node#getPrevious
+ * @see Node#getNext
+ */
+ public Node getLargest() {
+ return (top == null) ? null : top.getLargest();
+ }
+
+ /** Get the node whose element is not smaller than the reference object.
+ * @param reference reference object (may not be in the tree)
+ * @return the tree node containing the smallest element not smaller
+ * than the reference object or null if either the tree is empty or
+ * all its elements are smaller than the reference object
+ * @see #getSmallest
+ * @see #getLargest
+ * @see #getNotLarger
+ * @see Node#getPrevious
+ * @see Node#getNext
+ */
+ public Node getNotSmaller(final T reference) {
+ Node candidate = null;
+ for (Node node = top; node != null;) {
+ if (node.element.compareTo(reference) < 0) {
+ if (node.right == null) {
+ return candidate;
+ }
+ node = node.right;
+ } else {
+ candidate = node;
+ if (node.left == null) {
+ return candidate;
+ }
+ node = node.left;
+ }
+ }
+ return null;
+ }
+
+ /** Get the node whose element is not larger than the reference object.
+ * @param reference reference object (may not be in the tree)
+ * @return the tree node containing the largest element not larger
+ * than the reference object (in which case the node is guaranteed
+ * not to be empty) or null if either the tree is empty or all its
+ * elements are larger than the reference object
+ * @see #getSmallest
+ * @see #getLargest
+ * @see #getNotSmaller
+ * @see Node#getPrevious
+ * @see Node#getNext
+ */
+ public Node getNotLarger(final T reference) {
+ Node candidate = null;
+ for (Node node = top; node != null;) {
+ if (node.element.compareTo(reference) > 0) {
+ if (node.left == null) {
+ return candidate;
+ }
+ node = node.left;
+ } else {
+ candidate = node;
+ if (node.right == null) {
+ return candidate;
+ }
+ node = node.right;
+ }
+ }
+ return null;
+ }
+
+ /** Enum for tree skew factor. */
+ private enum Skew {
+ /** Code for left high trees. */
+ LEFT_HIGH,
+
+ /** Code for right high trees. */
+ RIGHT_HIGH,
+
+ /** Code for Skew.BALANCED trees. */
+ BALANCED;
+ }
+
+ /** This class implements AVL trees nodes.
+ * <p>AVL tree nodes implement all the logical structure of the
+ * tree. Nodes are created by the {@link AVLTree AVLTree} class.</p>
+ * <p>The nodes are not independant from each other but must obey
+ * specific balancing constraints and the tree structure is
+ * rearranged as elements are inserted or deleted from the tree. The
+ * creation, modification and tree-related navigation methods have
+ * therefore restricted access. Only the order-related navigation,
+ * reading and delete methods are public.</p>
+ * @see AVLTree
+ */
+ public class Node {
+
+ /** Element contained in the current node. */
+ private T element;
+
+ /** Left sub-tree. */
+ private Node left;
+
+ /** Right sub-tree. */
+ private Node right;
+
+ /** Parent tree. */
+ private Node parent;
+
+ /** Skew factor. */
+ private Skew skew;
+
+ /** Build a node for a specified element.
+ * @param element element
+ * @param parent parent node
+ */
+ Node(final T element, final Node parent) {
+ this.element = element;
+ left = null;
+ right = null;
+ this.parent = parent;
+ skew = Skew.BALANCED;
+ }
+
+ /** Get the contained element.
+ * @return element contained in the node
+ */
+ public T getElement() {
+ return element;
+ }
+
+ /** Get the number of elements of the tree rooted at this node.
+ * @return number of elements contained in the tree rooted at this node
+ */
+ int size() {
+ return 1 + ((left == null) ? 0 : left.size()) + ((right == null) ? 0 : right.size());
+ }
+
+ /** Get the node whose element is the smallest one in the tree
+ * rooted at this node.
+ * @return the tree node containing the smallest element in the
+ * tree rooted at this node or null if the tree is empty
+ * @see #getLargest
+ */
+ Node getSmallest() {
+ Node node = this;
+ while (node.left != null) {
+ node = node.left;
+ }
+ return node;
+ }
+
+ /** Get the node whose element is the largest one in the tree
+ * rooted at this node.
+ * @return the tree node containing the largest element in the
+ * tree rooted at this node or null if the tree is empty
+ * @see #getSmallest
+ */
+ Node getLargest() {
+ Node node = this;
+ while (node.right != null) {
+ node = node.right;
+ }
+ return node;
+ }
+
+ /** Get the node containing the next smaller or equal element.
+ * @return node containing the next smaller or equal element or
+ * null if there is no smaller or equal element in the tree
+ * @see #getNext
+ */
+ public Node getPrevious() {
+
+ if (left != null) {
+ final Node node = left.getLargest();
+ if (node != null) {
+ return node;
+ }
+ }
+
+ for (Node node = this; node.parent != null; node = node.parent) {
+ if (node != node.parent.left) {
+ return node.parent;
+ }
+ }
+
+ return null;
+
+ }
+
+ /** Get the node containing the next larger or equal element.
+ * @return node containing the next larger or equal element (in
+ * which case the node is guaranteed not to be empty) or null if
+ * there is no larger or equal element in the tree
+ * @see #getPrevious
+ */
+ public Node getNext() {
+
+ if (right != null) {
+ final Node node = right.getSmallest();
+ if (node != null) {
+ return node;
+ }
+ }
+
+ for (Node node = this; node.parent != null; node = node.parent) {
+ if (node != node.parent.right) {
+ return node.parent;
+ }
+ }
+
+ return null;
+
+ }
+
+ /** Insert an element in a sub-tree.
+ * @param newElement element to insert
+ * @return true if the parent tree should be re-Skew.BALANCED
+ */
+ boolean insert(final T newElement) {
+ if (newElement.compareTo(this.element) < 0) {
+ // the inserted element is smaller than the node
+ if (left == null) {
+ left = new Node(newElement, this);
+ return rebalanceLeftGrown();
+ }
+ return left.insert(newElement) ? rebalanceLeftGrown() : false;
+ }
+
+ // the inserted element is equal to or greater than the node
+ if (right == null) {
+ right = new Node(newElement, this);
+ return rebalanceRightGrown();
+ }
+ return right.insert(newElement) ? rebalanceRightGrown() : false;
+
+ }
+
+ /** Delete the node from the tree.
+ */
+ public void delete() {
+ if ((parent == null) && (left == null) && (right == null)) {
+ // this was the last node, the tree is now empty
+ element = null;
+ top = null;
+ } else {
+
+ Node node;
+ Node child;
+ boolean leftShrunk;
+ if ((left == null) && (right == null)) {
+ node = this;
+ element = null;
+ leftShrunk = node == node.parent.left;
+ child = null;
+ } else {
+ node = (left != null) ? left.getLargest() : right.getSmallest();
+ element = node.element;
+ leftShrunk = node == node.parent.left;
+ child = (node.left != null) ? node.left : node.right;
+ }
+
+ node = node.parent;
+ if (leftShrunk) {
+ node.left = child;
+ } else {
+ node.right = child;
+ }
+ if (child != null) {
+ child.parent = node;
+ }
+
+ while (leftShrunk ? node.rebalanceLeftShrunk() : node.rebalanceRightShrunk()) {
+ if (node.parent == null) {
+ return;
+ }
+ leftShrunk = node == node.parent.left;
+ node = node.parent;
+ }
+
+ }
+ }
+
+ /** Re-balance the instance as left sub-tree has grown.
+ * @return true if the parent tree should be reSkew.BALANCED too
+ */
+ private boolean rebalanceLeftGrown() {
+ switch (skew) {
+ case LEFT_HIGH:
+ if (left.skew == Skew.LEFT_HIGH) {
+ rotateCW();
+ skew = Skew.BALANCED;
+ right.skew = Skew.BALANCED;
+ } else {
+ final Skew s = left.right.skew;
+ left.rotateCCW();
+ rotateCW();
+ switch(s) {
+ case LEFT_HIGH:
+ left.skew = Skew.BALANCED;
+ right.skew = Skew.RIGHT_HIGH;
+ break;
+ case RIGHT_HIGH:
+ left.skew = Skew.LEFT_HIGH;
+ right.skew = Skew.BALANCED;
+ break;
+ default:
+ left.skew = Skew.BALANCED;
+ right.skew = Skew.BALANCED;
+ }
+ skew = Skew.BALANCED;
+ }
+ return false;
+ case RIGHT_HIGH:
+ skew = Skew.BALANCED;
+ return false;
+ default:
+ skew = Skew.LEFT_HIGH;
+ return true;
+ }
+ }
+
+ /** Re-balance the instance as right sub-tree has grown.
+ * @return true if the parent tree should be reSkew.BALANCED too
+ */
+ private boolean rebalanceRightGrown() {
+ switch (skew) {
+ case LEFT_HIGH:
+ skew = Skew.BALANCED;
+ return false;
+ case RIGHT_HIGH:
+ if (right.skew == Skew.RIGHT_HIGH) {
+ rotateCCW();
+ skew = Skew.BALANCED;
+ left.skew = Skew.BALANCED;
+ } else {
+ final Skew s = right.left.skew;
+ right.rotateCW();
+ rotateCCW();
+ switch (s) {
+ case LEFT_HIGH:
+ left.skew = Skew.BALANCED;
+ right.skew = Skew.RIGHT_HIGH;
+ break;
+ case RIGHT_HIGH:
+ left.skew = Skew.LEFT_HIGH;
+ right.skew = Skew.BALANCED;
+ break;
+ default:
+ left.skew = Skew.BALANCED;
+ right.skew = Skew.BALANCED;
+ }
+ skew = Skew.BALANCED;
+ }
+ return false;
+ default:
+ skew = Skew.RIGHT_HIGH;
+ return true;
+ }
+ }
+
+ /** Re-balance the instance as left sub-tree has shrunk.
+ * @return true if the parent tree should be reSkew.BALANCED too
+ */
+ private boolean rebalanceLeftShrunk() {
+ switch (skew) {
+ case LEFT_HIGH:
+ skew = Skew.BALANCED;
+ return true;
+ case RIGHT_HIGH:
+ if (right.skew == Skew.RIGHT_HIGH) {
+ rotateCCW();
+ skew = Skew.BALANCED;
+ left.skew = Skew.BALANCED;
+ return true;
+ } else if (right.skew == Skew.BALANCED) {
+ rotateCCW();
+ skew = Skew.LEFT_HIGH;
+ left.skew = Skew.RIGHT_HIGH;
+ return false;
+ } else {
+ final Skew s = right.left.skew;
+ right.rotateCW();
+ rotateCCW();
+ switch (s) {
+ case LEFT_HIGH:
+ left.skew = Skew.BALANCED;
+ right.skew = Skew.RIGHT_HIGH;
+ break;
+ case RIGHT_HIGH:
+ left.skew = Skew.LEFT_HIGH;
+ right.skew = Skew.BALANCED;
+ break;
+ default:
+ left.skew = Skew.BALANCED;
+ right.skew = Skew.BALANCED;
+ }
+ skew = Skew.BALANCED;
+ return true;
+ }
+ default:
+ skew = Skew.RIGHT_HIGH;
+ return false;
+ }
+ }
+
+ /** Re-balance the instance as right sub-tree has shrunk.
+ * @return true if the parent tree should be reSkew.BALANCED too
+ */
+ private boolean rebalanceRightShrunk() {
+ switch (skew) {
+ case RIGHT_HIGH:
+ skew = Skew.BALANCED;
+ return true;
+ case LEFT_HIGH:
+ if (left.skew == Skew.LEFT_HIGH) {
+ rotateCW();
+ skew = Skew.BALANCED;
+ right.skew = Skew.BALANCED;
+ return true;
+ } else if (left.skew == Skew.BALANCED) {
+ rotateCW();
+ skew = Skew.RIGHT_HIGH;
+ right.skew = Skew.LEFT_HIGH;
+ return false;
+ } else {
+ final Skew s = left.right.skew;
+ left.rotateCCW();
+ rotateCW();
+ switch (s) {
+ case LEFT_HIGH:
+ left.skew = Skew.BALANCED;
+ right.skew = Skew.RIGHT_HIGH;
+ break;
+ case RIGHT_HIGH:
+ left.skew = Skew.LEFT_HIGH;
+ right.skew = Skew.BALANCED;
+ break;
+ default:
+ left.skew = Skew.BALANCED;
+ right.skew = Skew.BALANCED;
+ }
+ skew = Skew.BALANCED;
+ return true;
+ }
+ default:
+ skew = Skew.LEFT_HIGH;
+ return false;
+ }
+ }
+
+ /** Perform a clockwise rotation rooted at the instance.
+ * <p>The skew factor are not updated by this method, they
+ * <em>must</em> be updated by the caller</p>
+ */
+ private void rotateCW() {
+
+ final T tmpElt = element;
+ element = left.element;
+ left.element = tmpElt;
+
+ final Node tmpNode = left;
+ left = tmpNode.left;
+ tmpNode.left = tmpNode.right;
+ tmpNode.right = right;
+ right = tmpNode;
+
+ if (left != null) {
+ left.parent = this;
+ }
+ if (right.right != null) {
+ right.right.parent = right;
+ }
+
+ }
+
+ /** Perform a counter-clockwise rotation rooted at the instance.
+ * <p>The skew factor are not updated by this method, they
+ * <em>must</em> be updated by the caller</p>
+ */
+ private void rotateCCW() {
+
+ final T tmpElt = element;
+ element = right.element;
+ right.element = tmpElt;
+
+ final Node tmpNode = right;
+ right = tmpNode.right;
+ tmpNode.right = tmpNode.left;
+ tmpNode.left = left;
+ left = tmpNode;
+
+ if (right != null) {
+ right.parent = this;
+ }
+ if (left.left != null) {
+ left.left.parent = left;
+ }
+
+ }
+
+ }
+
+}
diff --git a/src/main/java/org/apache/commons/math3/geometry/partitioning/utilities/OrderedTuple.java b/src/main/java/org/apache/commons/math3/geometry/partitioning/utilities/OrderedTuple.java
new file mode 100644
index 0000000..2dad2d7
--- /dev/null
+++ b/src/main/java/org/apache/commons/math3/geometry/partitioning/utilities/OrderedTuple.java
@@ -0,0 +1,431 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one or more
+ * contributor license agreements. See the NOTICE file distributed with
+ * this work for additional information regarding copyright ownership.
+ * The ASF licenses this file to You under the Apache License, Version 2.0
+ * (the "License"); you may not use this file except in compliance with
+ * the License. You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+package org.apache.commons.math3.geometry.partitioning.utilities;
+
+import java.util.Arrays;
+
+import org.apache.commons.math3.util.FastMath;
+
+/** This class implements an ordering operation for T-uples.
+ *
+ * <p>Ordering is done by encoding all components of the T-uple into a
+ * single scalar value and using this value as the sorting
+ * key. Encoding is performed using the method invented by Georg
+ * Cantor in 1877 when he proved it was possible to establish a
+ * bijection between a line and a plane. The binary representations of
+ * the components of the T-uple are mixed together to form a single
+ * scalar. This means that the 2<sup>k</sup> bit of component 0 is
+ * followed by the 2<sup>k</sup> bit of component 1, then by the
+ * 2<sup>k</sup> bit of component 2 up to the 2<sup>k</sup> bit of
+ * component {@code t}, which is followed by the 2<sup>k-1</sup>
+ * bit of component 0, followed by the 2<sup>k-1</sup> bit of
+ * component 1 ... The binary representations are extended as needed
+ * to handle numbers with different scales and a suitable
+ * 2<sup>p</sup> offset is added to the components in order to avoid
+ * negative numbers (this offset is adjusted as needed during the
+ * comparison operations).</p>
+ *
+ * <p>The more interesting property of the encoding method for our
+ * purpose is that it allows to select all the points that are in a
+ * given range. This is depicted in dimension 2 by the following
+ * picture:</p>
+ *
+ * <img src="doc-files/OrderedTuple.png" />
+ *
+ * <p>This picture shows a set of 100000 random 2-D pairs having their
+ * first component between -50 and +150 and their second component
+ * between -350 and +50. We wanted to extract all pairs having their
+ * first component between +30 and +70 and their second component
+ * between -120 and -30. We built the lower left point at coordinates
+ * (30, -120) and the upper right point at coordinates (70, -30). All
+ * points smaller than the lower left point are drawn in red and all
+ * points larger than the upper right point are drawn in blue. The
+ * green points are between the two limits. This picture shows that
+ * all the desired points are selected, along with spurious points. In
+ * this case, we get 15790 points, 4420 of which really belonging to
+ * the desired rectangle. It is possible to extract very small
+ * subsets. As an example extracting from the same 100000 points set
+ * the points having their first component between +30 and +31 and
+ * their second component between -91 and -90, we get a subset of 11
+ * points, 2 of which really belonging to the desired rectangle.</p>
+ *
+ * <p>the previous selection technique can be applied in all
+ * dimensions, still using two points to define the interval. The
+ * first point will have all its components set to their lower bounds
+ * while the second point will have all its components set to their
+ * upper bounds.</p>
+ *
+ * <p>T-uples with negative infinite or positive infinite components
+ * are sorted logically.</p>
+ *
+ * <p>Since the specification of the {@code Comparator} interface
+ * allows only {@code ClassCastException} errors, some arbitrary
+ * choices have been made to handle specific cases. The rationale for
+ * these choices is to keep <em>regular</em> and consistent T-uples
+ * together.</p>
+ * <ul>
+ * <li>instances with different dimensions are sorted according to
+ * their dimension regardless of their components values</li>
+ * <li>instances with {@code Double.NaN} components are sorted
+ * after all other ones (even after instances with positive infinite
+ * components</li>
+ * <li>instances with both positive and negative infinite components
+ * are considered as if they had {@code Double.NaN}
+ * components</li>
+ * </ul>
+ *
+ * @since 3.0
+ * @deprecated as of 3.4, this class is not used anymore and considered
+ * to be out of scope of Apache Commons Math
+ */
+@Deprecated
+public class OrderedTuple implements Comparable<OrderedTuple> {
+
+ /** Sign bit mask. */
+ private static final long SIGN_MASK = 0x8000000000000000L;
+
+ /** Exponent bits mask. */
+ private static final long EXPONENT_MASK = 0x7ff0000000000000L;
+
+ /** Mantissa bits mask. */
+ private static final long MANTISSA_MASK = 0x000fffffffffffffL;
+
+ /** Implicit MSB for normalized numbers. */
+ private static final long IMPLICIT_ONE = 0x0010000000000000L;
+
+ /** Double components of the T-uple. */
+ private double[] components;
+
+ /** Offset scale. */
+ private int offset;
+
+ /** Least Significant Bit scale. */
+ private int lsb;
+
+ /** Ordering encoding of the double components. */
+ private long[] encoding;
+
+ /** Positive infinity marker. */
+ private boolean posInf;
+
+ /** Negative infinity marker. */
+ private boolean negInf;
+
+ /** Not A Number marker. */
+ private boolean nan;
+
+ /** Build an ordered T-uple from its components.
+ * @param components double components of the T-uple
+ */
+ public OrderedTuple(final double ... components) {
+ this.components = components.clone();
+ int msb = Integer.MIN_VALUE;
+ lsb = Integer.MAX_VALUE;
+ posInf = false;
+ negInf = false;
+ nan = false;
+ for (int i = 0; i < components.length; ++i) {
+ if (Double.isInfinite(components[i])) {
+ if (components[i] < 0) {
+ negInf = true;
+ } else {
+ posInf = true;
+ }
+ } else if (Double.isNaN(components[i])) {
+ nan = true;
+ } else {
+ final long b = Double.doubleToLongBits(components[i]);
+ final long m = mantissa(b);
+ if (m != 0) {
+ final int e = exponent(b);
+ msb = FastMath.max(msb, e + computeMSB(m));
+ lsb = FastMath.min(lsb, e + computeLSB(m));
+ }
+ }
+ }
+
+ if (posInf && negInf) {
+ // instance cannot be sorted logically
+ posInf = false;
+ negInf = false;
+ nan = true;
+ }
+
+ if (lsb <= msb) {
+ // encode the T-upple with the specified offset
+ encode(msb + 16);
+ } else {
+ encoding = new long[] {
+ 0x0L
+ };
+ }
+
+ }
+
+ /** Encode the T-uple with a given offset.
+ * @param minOffset minimal scale of the offset to add to all
+ * components (must be greater than the MSBs of all components)
+ */
+ private void encode(final int minOffset) {
+
+ // choose an offset with some margins
+ offset = minOffset + 31;
+ offset -= offset % 32;
+
+ if ((encoding != null) && (encoding.length == 1) && (encoding[0] == 0x0L)) {
+ // the components are all zeroes
+ return;
+ }
+
+ // allocate an integer array to encode the components (we use only
+ // 63 bits per element because there is no unsigned long in Java)
+ final int neededBits = offset + 1 - lsb;
+ final int neededLongs = (neededBits + 62) / 63;
+ encoding = new long[components.length * neededLongs];
+
+ // mix the bits from all components
+ int eIndex = 0;
+ int shift = 62;
+ long word = 0x0L;
+ for (int k = offset; eIndex < encoding.length; --k) {
+ for (int vIndex = 0; vIndex < components.length; ++vIndex) {
+ if (getBit(vIndex, k) != 0) {
+ word |= 0x1L << shift;
+ }
+ if (shift-- == 0) {
+ encoding[eIndex++] = word;
+ word = 0x0L;
+ shift = 62;
+ }
+ }
+ }
+
+ }
+
+ /** Compares this ordered T-uple with the specified object.
+
+ * <p>The ordering method is detailed in the general description of
+ * the class. Its main property is to be consistent with distance:
+ * geometrically close T-uples stay close to each other when stored
+ * in a sorted collection using this comparison method.</p>
+
+ * <p>T-uples with negative infinite, positive infinite are sorted
+ * logically.</p>
+
+ * <p>Some arbitrary choices have been made to handle specific
+ * cases. The rationale for these choices is to keep
+ * <em>normal</em> and consistent T-uples together.</p>
+ * <ul>
+ * <li>instances with different dimensions are sorted according to
+ * their dimension regardless of their components values</li>
+ * <li>instances with {@code Double.NaN} components are sorted
+ * after all other ones (evan after instances with positive infinite
+ * components</li>
+ * <li>instances with both positive and negative infinite components
+ * are considered as if they had {@code Double.NaN}
+ * components</li>
+ * </ul>
+
+ * @param ot T-uple to compare instance with
+ * @return a negative integer if the instance is less than the
+ * object, zero if they are equal, or a positive integer if the
+ * instance is greater than the object
+
+ */
+ public int compareTo(final OrderedTuple ot) {
+ if (components.length == ot.components.length) {
+ if (nan) {
+ return +1;
+ } else if (ot.nan) {
+ return -1;
+ } else if (negInf || ot.posInf) {
+ return -1;
+ } else if (posInf || ot.negInf) {
+ return +1;
+ } else {
+
+ if (offset < ot.offset) {
+ encode(ot.offset);
+ } else if (offset > ot.offset) {
+ ot.encode(offset);
+ }
+
+ final int limit = FastMath.min(encoding.length, ot.encoding.length);
+ for (int i = 0; i < limit; ++i) {
+ if (encoding[i] < ot.encoding[i]) {
+ return -1;
+ } else if (encoding[i] > ot.encoding[i]) {
+ return +1;
+ }
+ }
+
+ if (encoding.length < ot.encoding.length) {
+ return -1;
+ } else if (encoding.length > ot.encoding.length) {
+ return +1;
+ } else {
+ return 0;
+ }
+
+ }
+ }
+
+ return components.length - ot.components.length;
+
+ }
+
+ /** {@inheritDoc} */
+ @Override
+ public boolean equals(final Object other) {
+ if (this == other) {
+ return true;
+ } else if (other instanceof OrderedTuple) {
+ return compareTo((OrderedTuple) other) == 0;
+ } else {
+ return false;
+ }
+ }
+
+ /** {@inheritDoc} */
+ @Override
+ public int hashCode() {
+ // the following constants are arbitrary small primes
+ final int multiplier = 37;
+ final int trueHash = 97;
+ final int falseHash = 71;
+
+ // hash fields and combine them
+ // (we rely on the multiplier to have different combined weights
+ // for all int fields and all boolean fields)
+ int hash = Arrays.hashCode(components);
+ hash = hash * multiplier + offset;
+ hash = hash * multiplier + lsb;
+ hash = hash * multiplier + (posInf ? trueHash : falseHash);
+ hash = hash * multiplier + (negInf ? trueHash : falseHash);
+ hash = hash * multiplier + (nan ? trueHash : falseHash);
+
+ return hash;
+
+ }
+
+ /** Get the components array.
+ * @return array containing the T-uple components
+ */
+ public double[] getComponents() {
+ return components.clone();
+ }
+
+ /** Extract the sign from the bits of a double.
+ * @param bits binary representation of the double
+ * @return sign bit (zero if positive, non zero if negative)
+ */
+ private static long sign(final long bits) {
+ return bits & SIGN_MASK;
+ }
+
+ /** Extract the exponent from the bits of a double.
+ * @param bits binary representation of the double
+ * @return exponent
+ */
+ private static int exponent(final long bits) {
+ return ((int) ((bits & EXPONENT_MASK) >> 52)) - 1075;
+ }
+
+ /** Extract the mantissa from the bits of a double.
+ * @param bits binary representation of the double
+ * @return mantissa
+ */
+ private static long mantissa(final long bits) {
+ return ((bits & EXPONENT_MASK) == 0) ?
+ ((bits & MANTISSA_MASK) << 1) : // subnormal number
+ (IMPLICIT_ONE | (bits & MANTISSA_MASK)); // normal number
+ }
+
+ /** Compute the most significant bit of a long.
+ * @param l long from which the most significant bit is requested
+ * @return scale of the most significant bit of {@code l},
+ * or 0 if {@code l} is zero
+ * @see #computeLSB
+ */
+ private static int computeMSB(final long l) {
+
+ long ll = l;
+ long mask = 0xffffffffL;
+ int scale = 32;
+ int msb = 0;
+
+ while (scale != 0) {
+ if ((ll & mask) != ll) {
+ msb |= scale;
+ ll >>= scale;
+ }
+ scale >>= 1;
+ mask >>= scale;
+ }
+
+ return msb;
+
+ }
+
+ /** Compute the least significant bit of a long.
+ * @param l long from which the least significant bit is requested
+ * @return scale of the least significant bit of {@code l},
+ * or 63 if {@code l} is zero
+ * @see #computeMSB
+ */
+ private static int computeLSB(final long l) {
+
+ long ll = l;
+ long mask = 0xffffffff00000000L;
+ int scale = 32;
+ int lsb = 0;
+
+ while (scale != 0) {
+ if ((ll & mask) == ll) {
+ lsb |= scale;
+ ll >>= scale;
+ }
+ scale >>= 1;
+ mask >>= scale;
+ }
+
+ return lsb;
+
+ }
+
+ /** Get a bit from the mantissa of a double.
+ * @param i index of the component
+ * @param k scale of the requested bit
+ * @return the specified bit (either 0 or 1), after the offset has
+ * been added to the double
+ */
+ private int getBit(final int i, final int k) {
+ final long bits = Double.doubleToLongBits(components[i]);
+ final int e = exponent(bits);
+ if ((k < e) || (k > offset)) {
+ return 0;
+ } else if (k == offset) {
+ return (sign(bits) == 0L) ? 1 : 0;
+ } else if (k > (e + 52)) {
+ return (sign(bits) == 0L) ? 0 : 1;
+ } else {
+ final long m = (sign(bits) == 0L) ? mantissa(bits) : -mantissa(bits);
+ return (int) ((m >> (k - e)) & 0x1L);
+ }
+ }
+
+}
diff --git a/src/main/java/org/apache/commons/math3/geometry/partitioning/utilities/doc-files/OrderedTuple.png b/src/main/java/org/apache/commons/math3/geometry/partitioning/utilities/doc-files/OrderedTuple.png
new file mode 100644
index 0000000..4eca233
--- /dev/null
+++ b/src/main/java/org/apache/commons/math3/geometry/partitioning/utilities/doc-files/OrderedTuple.png
Binary files differ
diff --git a/src/main/java/org/apache/commons/math3/geometry/partitioning/utilities/package-info.java b/src/main/java/org/apache/commons/math3/geometry/partitioning/utilities/package-info.java
new file mode 100644
index 0000000..31f57f1
--- /dev/null
+++ b/src/main/java/org/apache/commons/math3/geometry/partitioning/utilities/package-info.java
@@ -0,0 +1,24 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one or more
+ * contributor license agreements. See the NOTICE file distributed with
+ * this work for additional information regarding copyright ownership.
+ * The ASF licenses this file to You under the Apache License, Version 2.0
+ * (the "License"); you may not use this file except in compliance with
+ * the License. You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+/**
+ *
+ * <p>
+ * This package provides multidimensional ordering features for partitioning.
+ * </p>
+ *
+ */
+package org.apache.commons.math3.geometry.partitioning.utilities;