summaryrefslogtreecommitdiff
path: root/base/task_scheduler/sequence_unittest.cc
blob: c45d8a87d010054872e5861824f5e9911e92f15d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
// Copyright 2016 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "base/task_scheduler/sequence.h"

#include <utility>

#include "base/bind.h"
#include "base/macros.h"
#include "base/memory/ptr_util.h"
#include "base/test/gtest_util.h"
#include "base/time/time.h"
#include "testing/gtest/include/gtest/gtest.h"

namespace base {
namespace internal {

namespace {


class TaskSchedulerSequenceTest : public testing::Test {
 public:
  TaskSchedulerSequenceTest()
      : task_a_owned_(
            new Task(FROM_HERE,
                     Closure(),
                     TaskTraits().WithPriority(TaskPriority::BACKGROUND),
                     TimeDelta())),
        task_b_owned_(
            new Task(FROM_HERE,
                     Closure(),
                     TaskTraits().WithPriority(TaskPriority::USER_VISIBLE),
                     TimeDelta())),
        task_c_owned_(
            new Task(FROM_HERE,
                     Closure(),
                     TaskTraits().WithPriority(TaskPriority::USER_BLOCKING),
                     TimeDelta())),
        task_d_owned_(
            new Task(FROM_HERE,
                     Closure(),
                     TaskTraits().WithPriority(TaskPriority::USER_BLOCKING),
                     TimeDelta())),
        task_e_owned_(
            new Task(FROM_HERE,
                     Closure(),
                     TaskTraits().WithPriority(TaskPriority::BACKGROUND),
                     TimeDelta())),
        task_a_(task_a_owned_.get()),
        task_b_(task_b_owned_.get()),
        task_c_(task_c_owned_.get()),
        task_d_(task_d_owned_.get()),
        task_e_(task_e_owned_.get()) {}

 protected:
  // Tasks to be handed off to a Sequence for testing.
  std::unique_ptr<Task> task_a_owned_;
  std::unique_ptr<Task> task_b_owned_;
  std::unique_ptr<Task> task_c_owned_;
  std::unique_ptr<Task> task_d_owned_;
  std::unique_ptr<Task> task_e_owned_;

  // Raw pointers to those same tasks for verification. This is needed because
  // the unique_ptrs above no longer point to the tasks once they have been
  // moved into a Sequence.
  const Task* task_a_;
  const Task* task_b_;
  const Task* task_c_;
  const Task* task_d_;
  const Task* task_e_;

 private:
  DISALLOW_COPY_AND_ASSIGN(TaskSchedulerSequenceTest);
};

}  // namespace

TEST_F(TaskSchedulerSequenceTest, PushTakeRemove) {
  scoped_refptr<Sequence> sequence(new Sequence);

  // Push task A in the sequence. Its sequenced time should be updated and it
  // should be in front of the sequence.
  EXPECT_TRUE(sequence->PushTask(std::move(task_a_owned_)));
  EXPECT_FALSE(task_a_->sequenced_time.is_null());
  EXPECT_EQ(task_a_->traits.priority(), sequence->PeekTaskTraits().priority());

  // Push task B, C and D in the sequence. Their sequenced time should be
  // updated and task A should always remain in front of the sequence.
  EXPECT_FALSE(sequence->PushTask(std::move(task_b_owned_)));
  EXPECT_FALSE(task_b_->sequenced_time.is_null());
  EXPECT_EQ(task_a_->traits.priority(), sequence->PeekTaskTraits().priority());

  EXPECT_FALSE(sequence->PushTask(std::move(task_c_owned_)));
  EXPECT_FALSE(task_c_->sequenced_time.is_null());
  EXPECT_EQ(task_a_->traits.priority(), sequence->PeekTaskTraits().priority());

  EXPECT_FALSE(sequence->PushTask(std::move(task_d_owned_)));
  EXPECT_FALSE(task_d_->sequenced_time.is_null());
  EXPECT_EQ(task_a_->traits.priority(), sequence->PeekTaskTraits().priority());

  // Get the task in front of the sequence. It should be task A.
  EXPECT_EQ(task_a_, sequence->TakeTask().get());

  // Remove the empty slot. Task B should now be in front.
  EXPECT_FALSE(sequence->Pop());
  EXPECT_EQ(task_b_, sequence->TakeTask().get());

  // Remove the empty slot. Task C should now be in front.
  EXPECT_FALSE(sequence->Pop());
  EXPECT_EQ(task_c_, sequence->TakeTask().get());

  // Remove the empty slot. Task D should now be in front.
  EXPECT_FALSE(sequence->Pop());
  EXPECT_EQ(task_d_, sequence->TakeTask().get());

  // Push task E in the sequence. Its sequenced time should be updated.
  EXPECT_FALSE(sequence->PushTask(std::move(task_e_owned_)));
  EXPECT_FALSE(task_e_->sequenced_time.is_null());

  // Remove the empty slot. Task E should now be in front.
  EXPECT_FALSE(sequence->Pop());
  EXPECT_EQ(task_e_, sequence->TakeTask().get());

  // Remove the empty slot. The sequence should now be empty.
  EXPECT_TRUE(sequence->Pop());
}

TEST_F(TaskSchedulerSequenceTest, GetSortKey) {
  scoped_refptr<Sequence> sequence(new Sequence);

  // Push task A in the sequence. The highest priority is from task A
  // (BACKGROUND). Task A is in front of the sequence.
  sequence->PushTask(std::move(task_a_owned_));
  EXPECT_EQ(SequenceSortKey(TaskPriority::BACKGROUND, task_a_->sequenced_time),
            sequence->GetSortKey());

  // Push task B in the sequence. The highest priority is from task B
  // (USER_VISIBLE). Task A is still in front of the sequence.
  sequence->PushTask(std::move(task_b_owned_));
  EXPECT_EQ(
      SequenceSortKey(TaskPriority::USER_VISIBLE, task_a_->sequenced_time),
      sequence->GetSortKey());

  // Push task C in the sequence. The highest priority is from task C
  // (USER_BLOCKING). Task A is still in front of the sequence.
  sequence->PushTask(std::move(task_c_owned_));
  EXPECT_EQ(
      SequenceSortKey(TaskPriority::USER_BLOCKING, task_a_->sequenced_time),
      sequence->GetSortKey());

  // Push task D in the sequence. The highest priority is from tasks C/D
  // (USER_BLOCKING). Task A is still in front of the sequence.
  sequence->PushTask(std::move(task_d_owned_));
  EXPECT_EQ(
      SequenceSortKey(TaskPriority::USER_BLOCKING, task_a_->sequenced_time),
      sequence->GetSortKey());

  // Pop task A. The highest priority is still USER_BLOCKING. The task in front
  // of the sequence is now task B.
  sequence->TakeTask();
  sequence->Pop();
  EXPECT_EQ(
      SequenceSortKey(TaskPriority::USER_BLOCKING, task_b_->sequenced_time),
      sequence->GetSortKey());

  // Pop task B. The highest priority is still USER_BLOCKING. The task in front
  // of the sequence is now task C.
  sequence->TakeTask();
  sequence->Pop();
  EXPECT_EQ(
      SequenceSortKey(TaskPriority::USER_BLOCKING, task_c_->sequenced_time),
      sequence->GetSortKey());

  // Pop task C. The highest priority is still USER_BLOCKING. The task in front
  // of the sequence is now task D.
  sequence->TakeTask();
  sequence->Pop();
  EXPECT_EQ(
      SequenceSortKey(TaskPriority::USER_BLOCKING, task_d_->sequenced_time),
      sequence->GetSortKey());

  // Push task E in the sequence. The highest priority is still USER_BLOCKING.
  // The task in front of the sequence is still task D.
  sequence->PushTask(std::move(task_e_owned_));
  EXPECT_EQ(
      SequenceSortKey(TaskPriority::USER_BLOCKING, task_d_->sequenced_time),
      sequence->GetSortKey());

  // Pop task D. The highest priority is now from task E (BACKGROUND). The
  // task in front of the sequence is now task E.
  sequence->TakeTask();
  sequence->Pop();
  EXPECT_EQ(SequenceSortKey(TaskPriority::BACKGROUND, task_e_->sequenced_time),
            sequence->GetSortKey());
}

// Verify that a DCHECK fires if Pop() is called on a sequence whose front slot
// isn't empty.
TEST_F(TaskSchedulerSequenceTest, PopNonEmptyFrontSlot) {
  scoped_refptr<Sequence> sequence(new Sequence);
  sequence->PushTask(
      MakeUnique<Task>(FROM_HERE, Bind(&DoNothing), TaskTraits(), TimeDelta()));

  EXPECT_DCHECK_DEATH({ sequence->Pop(); });
}

// Verify that a DCHECK fires if TakeTask() is called on a sequence whose front
// slot is empty.
TEST_F(TaskSchedulerSequenceTest, TakeEmptyFrontSlot) {
  scoped_refptr<Sequence> sequence(new Sequence);
  sequence->PushTask(
      MakeUnique<Task>(FROM_HERE, Bind(&DoNothing), TaskTraits(), TimeDelta()));

  EXPECT_TRUE(sequence->TakeTask());
  EXPECT_DCHECK_DEATH({ sequence->TakeTask(); });
}

// Verify that a DCHECK fires if TakeTask() is called on an empty sequence.
TEST_F(TaskSchedulerSequenceTest, TakeEmptySequence) {
  scoped_refptr<Sequence> sequence(new Sequence);
  EXPECT_DCHECK_DEATH({ sequence->TakeTask(); });
}

}  // namespace internal
}  // namespace base